新高考數(shù)學(xué)一輪復(fù)習(xí)分層提升練習(xí)第11練 對(duì)數(shù)與對(duì)數(shù)函數(shù)(含解析)_第1頁(yè)
新高考數(shù)學(xué)一輪復(fù)習(xí)分層提升練習(xí)第11練 對(duì)數(shù)與對(duì)數(shù)函數(shù)(含解析)_第2頁(yè)
新高考數(shù)學(xué)一輪復(fù)習(xí)分層提升練習(xí)第11練 對(duì)數(shù)與對(duì)數(shù)函數(shù)(含解析)_第3頁(yè)
新高考數(shù)學(xué)一輪復(fù)習(xí)分層提升練習(xí)第11練 對(duì)數(shù)與對(duì)數(shù)函數(shù)(含解析)_第4頁(yè)
新高考數(shù)學(xué)一輪復(fù)習(xí)分層提升練習(xí)第11練 對(duì)數(shù)與對(duì)數(shù)函數(shù)(含解析)_第5頁(yè)
已閱讀5頁(yè),還剩21頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

第11練對(duì)數(shù)與對(duì)數(shù)函數(shù)(精練)【A組

在基礎(chǔ)中考查功底】一、單選題1.(2023·天津·統(tǒng)考二模)已知SKIPIF1<0,則SKIPIF1<0(

)A.3 B.5 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【分析】根據(jù)指對(duì)運(yùn)算化簡(jiǎn)SKIPIF1<0,再根據(jù)對(duì)數(shù)運(yùn)算法則計(jì)算SKIPIF1<0的值.【詳解】SKIPIF1<0,SKIPIF1<0SKIPIF1<0.故選:A.2.(2023·山西陽(yáng)泉·統(tǒng)考三模)函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0存在零點(diǎn).則實(shí)數(shù)m的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【分析】利用函數(shù)的單調(diào)性的性質(zhì)及函數(shù)零點(diǎn)的存在性定理即可求解.【詳解】由SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,得函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào)遞增,因?yàn)楹瘮?shù)SKIPIF1<0在區(qū)間SKIPIF1<0存在零點(diǎn),所以SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0,所以實(shí)數(shù)m的取值范圍是SKIPIF1<0.故選:B.3.(2023·浙江紹興·統(tǒng)考模擬預(yù)測(cè))基本再生數(shù)SKIPIF1<0與世代間隔SKIPIF1<0是新冠肺炎的流行病學(xué)基本參數(shù),基本再生數(shù)指一個(gè)感染者傳染的平均人數(shù),世代間隔指相鄰兩代間傳染所需的平均時(shí)間.在新冠肺炎疫情初始階段,可以用指數(shù)模型:SKIPIF1<0(其中SKIPIF1<0是自然對(duì)數(shù)的底數(shù))描述累計(jì)感染病例數(shù)SKIPIF1<0隨時(shí)間SKIPIF1<0(單位:天)的變化規(guī)律,指數(shù)增長(zhǎng)率SKIPIF1<0與SKIPIF1<0,SKIPIF1<0近似滿足SKIPIF1<0.有學(xué)者基于已有數(shù)據(jù)估計(jì)出SKIPIF1<0,SKIPIF1<0,據(jù)此,在新冠肺炎疫情初始階段,累計(jì)感染病例數(shù)增加SKIPIF1<0倍需要的時(shí)間約為(

)(參考數(shù)據(jù):SKIPIF1<0,SKIPIF1<0)A.SKIPIF1<0天 B.SKIPIF1<0天 C.SKIPIF1<0天 D.SKIPIF1<0天【答案】B【分析】根據(jù)所給模型求得SKIPIF1<0,令SKIPIF1<0,求得SKIPIF1<0,根據(jù)條件可得方程SKIPIF1<0,然后解出SKIPIF1<0即可.【詳解】把SKIPIF1<0,SKIPIF1<0代入SKIPIF1<0,可得SKIPIF1<0,SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,則SKIPIF1<0,兩邊取對(duì)數(shù)得SKIPIF1<0,解得SKIPIF1<0.故選:B.4.(2023春·貴州·高三校聯(lián)考期中)若SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【分析】SKIPIF1<0用對(duì)數(shù)函數(shù)的單調(diào)性和SKIPIF1<0比較,SKIPIF1<0用指數(shù)函數(shù)的單調(diào)性和SKIPIF1<0比較,SKIPIF1<0用對(duì)數(shù)函數(shù)的單調(diào)性和SKIPIF1<0比較,即可判斷大小關(guān)系.【詳解】因?yàn)镾KIPIF1<0,所以SKIPIF1<0為減函數(shù),所以SKIPIF1<0,即SKIPIF1<0.因?yàn)镾KIPIF1<0,所以SKIPIF1<0為增函數(shù),所以SKIPIF1<0,即SKIPIF1<0.因?yàn)镾KIPIF1<0,所以SKIPIF1<0為增函數(shù),所以SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0.故選:D5.(2023·云南·校聯(lián)考二模)函數(shù)SKIPIF1<0的圖象大致形如(

)A. B. C. D.【答案】A【分析】根據(jù)函數(shù)的奇偶性和函數(shù)值等知識(shí)確定正確答案.【詳解】依題意SKIPIF1<0,SKIPIF1<0為偶函數(shù),則SKIPIF1<0為偶函數(shù),又SKIPIF1<0,則SKIPIF1<0.故選A.6.(2023春·黑龍江哈爾濱·高三哈爾濱市第十三中學(xué)校??奸_(kāi)學(xué)考試)已知函數(shù)SKIPIF1<0.若SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】根據(jù)函數(shù)圖象得SKIPIF1<0,則SKIPIF1<0,令SKIPIF1<0,利用對(duì)勾函數(shù)的圖象與性質(zhì)即可求出其范圍.【詳解】由SKIPIF1<0得SKIPIF1<0.根據(jù)函數(shù)SKIPIF1<0的圖象及SKIPIF1<0,得SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0.令SKIPIF1<0,根據(jù)對(duì)勾函數(shù)的圖像與性質(zhì)易得SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,所以SKIPIF1<0.故SKIPIF1<0,故選:C.7.(2023·全國(guó)·高三專題練習(xí))已知函數(shù)SKIPIF1<0,SKIPIF1<0恒過(guò)定點(diǎn)SKIPIF1<0,過(guò)定點(diǎn)SKIPIF1<0的直線SKIPIF1<0與坐標(biāo)軸的正半軸相交,則SKIPIF1<0的最大值為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】求出SKIPIF1<0,代入直線方程,再根據(jù)基本不等式可求出結(jié)果.【詳解】令SKIPIF1<0,即SKIPIF1<0,得SKIPIF1<0,則SKIPIF1<0,則SKIPIF1<0且SKIPIF1<0,SKIPIF1<0,由SKIPIF1<0.當(dāng)且僅當(dāng)SKIPIF1<0,SKIPIF1<0時(shí),等號(hào)成立,故選:C【點(diǎn)睛】易錯(cuò)點(diǎn)睛:利用基本不等式求最值時(shí),要注意其必須滿足的三個(gè)條件:(1)“一正二定三相等”“一正”就是各項(xiàng)必須為正數(shù);(2)“二定”就是要求和的最小值,必須把構(gòu)成和的二項(xiàng)之積轉(zhuǎn)化成定值;要求積的最大值,則必須把構(gòu)成積的因式的和轉(zhuǎn)化成定值;(3)“三相等”是利用基本不等式求最值時(shí),必須驗(yàn)證等號(hào)成立的條件,若不能取等號(hào)則這個(gè)定值就不是所求的最值,這也是最容易發(fā)生錯(cuò)誤的地方.8.(2023秋·江蘇無(wú)錫·高三統(tǒng)考期末)函數(shù)SKIPIF1<0的部分圖象大致為(

).A. B.C. D.【答案】A【分析】先求出定義域,由SKIPIF1<0得到SKIPIF1<0為偶函數(shù),結(jié)合函數(shù)在SKIPIF1<0上函數(shù)值的正負(fù),排除BC,結(jié)合函數(shù)圖象的走勢(shì),排除D,得到正確答案.【詳解】SKIPIF1<0變形為SKIPIF1<0,定義域?yàn)镾KIPIF1<0,SKIPIF1<0,故SKIPIF1<0為偶函數(shù),關(guān)于y軸對(duì)稱.當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0時(shí),SKIPIF1<0,排除BC,又SKIPIF1<0時(shí),SKIPIF1<0,故排除D,A正確.故選:A.9.(2023·河南周口·統(tǒng)考模擬預(yù)測(cè))若SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【分析】運(yùn)用對(duì)數(shù)的運(yùn)算法則和指數(shù)函數(shù)的性質(zhì)求解.【詳解】SKIPIF1<0,對(duì)于指數(shù)函數(shù)SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0,SKIPIF1<0;故選:A.10.(2023·全國(guó)·高三專題練習(xí))已知函數(shù)SKIPIF1<0,若命題“SKIPIF1<0,SKIPIF1<0”為假命題,則實(shí)數(shù)SKIPIF1<0的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【分析】根據(jù)題意,轉(zhuǎn)化為命題“SKIPIF1<0,SKIPIF1<0”為真命題.利用不等式恒成立得出關(guān)于SKIPIF1<0的不等式求解.【詳解】由題意知SKIPIF1<0且SKIPIF1<0,命題“SKIPIF1<0,SKIPIF1<0”為真命題,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,易知SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,其最小值為SKIPIF1<0,則由SKIPIF1<0恒成立得SKIPIF1<0,即SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0恒成立,則SKIPIF1<0,此時(shí)函數(shù)SKIPIF1<0為增函數(shù),故SKIPIF1<0,得SKIPIF1<0.綜上,SKIPIF1<0,即實(shí)數(shù)SKIPIF1<0的取值范圍是SKIPIF1<0.故選:A11.(2023·河北·高三學(xué)業(yè)考試)若函數(shù)SKIPIF1<0(SKIPIF1<0且SKIPIF1<0)在區(qū)間SKIPIF1<0上的最大值比最小值多2,則SKIPIF1<0(

)A.2或SKIPIF1<0 B.3或SKIPIF1<0 C.4或SKIPIF1<0 D.2或SKIPIF1<0【答案】A【分析】分別討論SKIPIF1<0和SKIPIF1<0,然后利用對(duì)數(shù)函數(shù)的單調(diào)性列方程即可得解.【詳解】由題意SKIPIF1<0解得SKIPIF1<0或SKIPIF1<0(舍去),①當(dāng)SKIPIF1<0時(shí),函數(shù)SKIPIF1<0在定義域內(nèi)為增函數(shù),則由題意得SKIPIF1<0,所以SKIPIF1<0即SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0(舍去);②當(dāng)SKIPIF1<0時(shí),函數(shù)SKIPIF1<0在定義域內(nèi)為減函數(shù),則由題意得SKIPIF1<0,所以SKIPIF1<0即SKIPIF1<0,解得SKIPIF1<0;綜上可得:SKIPIF1<0或SKIPIF1<0.故選:A.【點(diǎn)睛】本題考查了分類討論思想的應(yīng)用,考查了對(duì)數(shù)函數(shù)單調(diào)性的應(yīng)用,屬于基礎(chǔ)題.12.(2023·全國(guó)·高三專題練習(xí))設(shè)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】根據(jù)題意,化為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,即可比較SKIPIF1<0的大小關(guān)系,然后SKIPIF1<0作商即可比較SKIPIF1<0的大小,從而得到結(jié)果.【詳解】由題設(shè)知SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.因?yàn)镾KIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,故SKIPIF1<0.因?yàn)镾KIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,于是SKIPIF1<0.故選:C.二、多選題13.(2023·湖南·鉛山縣第一中學(xué)校聯(lián)考二模)下列結(jié)論正確的是(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】BD【分析】根據(jù)指數(shù)以及對(duì)數(shù)的運(yùn)算性質(zhì)即可結(jié)合選項(xiàng)逐一求解.【詳解】對(duì)于A,SKIPIF1<0,由于SKIPIF1<0,所以SKIPIF1<0,故A錯(cuò)誤,對(duì)于B,由于SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,故B正確,對(duì)于C,SKIPIF1<0,所以C錯(cuò)誤,對(duì)于D,由于SKIPIF1<0,所以SKIPIF1<0,故D正確,故選:BD14.(2023·全國(guó)·高三專題練習(xí))設(shè)函數(shù)SKIPIF1<0在SKIPIF1<0上的最小值為SKIPIF1<0,函數(shù)SKIPIF1<0在SKIPIF1<0上的最大值為SKIPIF1<0,若SKIPIF1<0,則滿足條件的實(shí)數(shù)SKIPIF1<0可以是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】BD【分析】根據(jù)對(duì)數(shù)函數(shù)和正弦函數(shù)的圖象,對(duì)a分類討論,結(jié)合對(duì)數(shù)函數(shù)、正弦函數(shù)的單調(diào)性求解即可.【詳解】函數(shù)SKIPIF1<0和SKIPIF1<0的圖象,如圖,當(dāng)SKIPIF1<0時(shí),函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增,所以SKIPIF1<0,函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,所以SKIPIF1<0,所以SKIPIF1<0,解得SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,所以SKIPIF1<0,由圖可知,函數(shù)SKIPIF1<0在SKIPIF1<0上,有SKIPIF1<0,得SKIPIF1<0所以SKIPIF1<0,解得SKIPIF1<0,結(jié)合選項(xiàng),實(shí)數(shù)a可以是SKIPIF1<0和SKIPIF1<0.故選:BD.三、填空題15.(2023·上?!じ呷龑n}練習(xí))若實(shí)數(shù)SKIPIF1<0、SKIPIF1<0滿足SKIPIF1<0、SKIPIF1<0,則SKIPIF1<0______________.【答案】SKIPIF1<0【分析】根據(jù)指數(shù)式與對(duì)數(shù)式的關(guān)系,將SKIPIF1<0轉(zhuǎn)化為指數(shù)式,再根據(jù)指數(shù)運(yùn)算公式求值.【詳解】由SKIPIF1<0,得SKIPIF1<0,所以SKIPIF1<0,故答案為:SKIPIF1<0.16.(2023·全國(guó)·高三專題練習(xí))已知函數(shù)SKIPIF1<0且SKIPIF1<0的圖像恒過(guò)定點(diǎn)SKIPIF1<0,且點(diǎn)SKIPIF1<0在圓SKIPIF1<0外,則符合條件的整數(shù)SKIPIF1<0的取值可以為_(kāi)_________.(寫(xiě)出一個(gè)值即可)【答案】SKIPIF1<0(不唯一,取SKIPIF1<0的整數(shù)即可)【分析】先求定點(diǎn)SKIPIF1<0的坐標(biāo),結(jié)合點(diǎn)在圓外以及圓的限制條件可得SKIPIF1<0的取值.【詳解】因?yàn)楹瘮?shù)SKIPIF1<0的圖像恒過(guò)定點(diǎn)SKIPIF1<0,所以SKIPIF1<0;因?yàn)辄c(diǎn)SKIPIF1<0在圓SKIPIF1<0外,所以SKIPIF1<0且SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0;又SKIPIF1<0為整數(shù),所以SKIPIF1<0的取值可以為SKIPIF1<0.故答案為:SKIPIF1<0(不唯一,取SKIPIF1<0的整數(shù)即可).17.(2023·全國(guó)·高三專題練習(xí))一種藥在病人血液中的量保持1000mg以上才有療效,而低于500mg病人就有危險(xiǎn).現(xiàn)給某病人靜脈注射了這種藥2000mg,如果藥在血液中以每小時(shí)10%的比例衰減,為了充分發(fā)揮藥物的利用價(jià)值,那么從現(xiàn)在起經(jīng)過(guò)______小時(shí)內(nèi)向病人的血液補(bǔ)充這種藥,才能保持療效.(附:SKIPIF1<0,SKIPIF1<0,精確到0.1h)【答案】6.6【分析】寫(xiě)出血液中藥物含量關(guān)于時(shí)間的關(guān)系式,解不等式求出答案.【詳解】設(shè)SKIPIF1<0h后血液中的藥物量為SKIPIF1<0mg,則有SKIPIF1<0,令SKIPIF1<0得:SKIPIF1<0故從現(xiàn)在起經(jīng)過(guò)6.6h內(nèi)向病人的血液補(bǔ)充這種藥,才能保持療效.故答案為:6.618.(2023·河南平頂山·葉縣高級(jí)中學(xué)校聯(lián)考模擬預(yù)測(cè))已知函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào)遞增,則SKIPIF1<0的取值范圍為_(kāi)_____.【答案】SKIPIF1<0【分析】令SKIPIF1<0,即可判斷SKIPIF1<0在SKIPIF1<0上的單調(diào)性,依題意可得SKIPIF1<0在SKIPIF1<0上為減函數(shù),即可得到不等式組,解得即可.【詳解】令SKIPIF1<0,則SKIPIF1<0在SKIPIF1<0為減函數(shù),所以由復(fù)合函數(shù)的單調(diào)性可知SKIPIF1<0在SKIPIF1<0上為減函數(shù),則SKIPIF1<0,解得SKIPIF1<0,即SKIPIF1<0的取值范圍為SKIPIF1<0.故答案為:SKIPIF1<0【B組

在綜合中考查能力】一、單選題1.(2023·天津河西·統(tǒng)考一模)已知SKIPIF1<0SKIPIF1<0,則SKIPIF1<0的值為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】?jī)蛇吶?duì)數(shù),根據(jù)對(duì)數(shù)的運(yùn)算性質(zhì)、法則化簡(jiǎn)即可得解.【詳解】SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0或SKIPIF1<0(舍去)故選:C2.(2023·江西南昌·校聯(lián)考模擬預(yù)測(cè))已知SKIPIF1<0,則SKIPIF1<0(

)A.11或SKIPIF1<0 B.11或SKIPIF1<0 C.12或SKIPIF1<0 D.10或SKIPIF1<0【答案】A【分析】對(duì)SKIPIF1<0兩邊同時(shí)取對(duì)數(shù),可解得SKIPIF1<0或SKIPIF1<0,討論SKIPIF1<0或SKIPIF1<0時(shí)SKIPIF1<0的值,即可得出答案.【詳解】由SKIPIF1<0,兩邊取對(duì)數(shù)得SKIPIF1<0SKIPIF1<0,所以SKIPIF1<0或SKIPIF1<0.當(dāng)SKIPIF1<0時(shí),SKIPIF1<08,所以SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,所以SKIPIF1<0,綜上,SKIPIF1<0SKIPIF1<0或SKIPIF1<0,故選:A.3.(2023·全國(guó)·高三專題練習(xí))如圖為一臺(tái)冷軋機(jī)的示意圖.冷軋機(jī)由若干對(duì)軋輥組成,厚度為SKIPIF1<0(單位:SKIPIF1<0)的帶鋼從一端輸入,經(jīng)過(guò)各對(duì)車輥逐步減薄后輸出,厚度變?yōu)镾KIPIF1<0(單位:SKIPIF1<0).若SKIPIF1<0,每對(duì)軋輥的減薄率SKIPIF1<0不超過(guò)4%,則冷軋機(jī)至少需要安裝軋輥的對(duì)數(shù)為(

)(一對(duì)軋輥減薄率SKIPIF1<0)A.14 B.15 C.16 D.17【答案】D【分析】根據(jù)題意可得SKIPIF1<0,兩邊取對(duì)數(shù)能求出冷軋機(jī)至少需要安裝軋輥的對(duì)數(shù).【詳解】厚度為SKIPIF1<0SKIPIF1<0的帶鋼從一端輸入經(jīng)過(guò)減薄率為4%的SKIPIF1<0對(duì)軋輥后厚度為SKIPIF1<0,過(guò)各對(duì)車輥逐步減薄后輸出,厚度變?yōu)镾KIPIF1<0,則SKIPIF1<0SKIPIF1<0,SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0故選:D.4.(2023秋·安徽宣城·高三統(tǒng)考期末)設(shè)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【分析】先構(gòu)造函數(shù)SKIPIF1<0,對(duì)函數(shù)求導(dǎo),利用導(dǎo)函數(shù)的單調(diào)性可得到SKIPIF1<0,且SKIPIF1<0,再結(jié)合SKIPIF1<0,即可得到SKIPIF1<0,進(jìn)而即可得到答案.【詳解】設(shè)SKIPIF1<0,則SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,此時(shí)SKIPIF1<0單調(diào)遞增;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,此時(shí)SKIPIF1<0單調(diào)遞減,所以SKIPIF1<0,所以SKIPIF1<0,且SKIPIF1<0,即SKIPIF1<0,且SKIPIF1<0,又SKIPIF1<0,則SKIPIF1<0,即SKIPIF1<0,即SKIPIF1<0,即SKIPIF1<0,故SKIPIF1<0,故選:D.5.(2023·全國(guó)·高三專題練習(xí))已知函數(shù)SKIPIF1<0,若對(duì)任意的SKIPIF1<0,不等式SKIPIF1<0恒成立,則實(shí)數(shù)SKIPIF1<0的取值范圍為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【解析】求出函數(shù)SKIPIF1<0的最大值,結(jié)合已知條件可得出SKIPIF1<0,進(jìn)而可求得實(shí)數(shù)SKIPIF1<0的取值范圍.【詳解】SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0.所以,SKIPIF1<0.若對(duì)任意的SKIPIF1<0,不等式SKIPIF1<0恒成立,則SKIPIF1<0,所以,SKIPIF1<0,解得SKIPIF1<0.因此,實(shí)數(shù)SKIPIF1<0的取值范圍是SKIPIF1<0.故選:B.【點(diǎn)睛】結(jié)論點(diǎn)睛:利用參變量分離法求解函數(shù)不等式恒(能)成立,可根據(jù)以下原則進(jìn)行求解:(1)SKIPIF1<0,SKIPIF1<0;(2)SKIPIF1<0,SKIPIF1<0;(3)SKIPIF1<0,SKIPIF1<0;(4)SKIPIF1<0,SKIPIF1<0.6.(2023·安徽銅陵·統(tǒng)考三模)已知SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【分析】利用換底公式得到SKIPIF1<0,再利用基本不等式比較即可;同理得到SKIPIF1<0的大小.【詳解】解:因?yàn)镾KIPIF1<0,又因?yàn)镾KIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0;因?yàn)镾KIPIF1<0,又因?yàn)镾KIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,故選:A7.(2023·全國(guó)·高三專題練習(xí))若SKIPIF1<0且SKIPIF1<0在SKIPIF1<0上恒正,則實(shí)數(shù)SKIPIF1<0的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】根據(jù)題意,結(jié)合對(duì)數(shù)型復(fù)合函數(shù)的性質(zhì),列出不等式,即可容易列出不等式,即可容易求得參數(shù)范圍.【詳解】因?yàn)楹瘮?shù)SKIPIF1<0,SKIPIF1<0且SKIPIF1<0,在SKIPIF1<0上恒正,令SKIPIF1<0,所以當(dāng)SKIPIF1<0時(shí),SKIPIF1<0的對(duì)稱軸方程為SKIPIF1<0,知SKIPIF1<0,即SKIPIF1<0.當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,滿足SKIPIF1<0或SKIPIF1<0或SKIPIF1<0解不等式得:SKIPIF1<0,所以實(shí)數(shù)SKIPIF1<0的取值范圍是SKIPIF1<0.故選:SKIPIF1<0.【點(diǎn)睛】本題考查對(duì)數(shù)型復(fù)合函數(shù)的性質(zhì),注意函數(shù)定義域即可,屬中檔題.二、多選題8.(2023春·廣東·高三校聯(lián)考階段練習(xí))若SKIPIF1<0,則(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】ABD【分析】構(gòu)造函數(shù)SKIPIF1<0,通過(guò)函數(shù)單調(diào)性及SKIPIF1<0,比較出各式的大小關(guān)系.【詳解】設(shè)函數(shù)SKIPIF1<0,易得SKIPIF1<0在SKIPIF1<0上單調(diào)遞增.因?yàn)镾KIPIF1<0,SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0.故選:ABD9.(2023·全國(guó)·高三專題練習(xí))已知函數(shù)SKIPIF1<0,則(

)A.SKIPIF1<0在SKIPIF1<0單調(diào)遞增B.SKIPIF1<0在SKIPIF1<0單調(diào)遞增,在SKIPIF1<0單調(diào)遞減C.SKIPIF1<0的圖象關(guān)于直線SKIPIF1<0對(duì)稱D.SKIPIF1<0的圖象關(guān)于點(diǎn)SKIPIF1<0對(duì)稱【答案】BC【分析】由題可得函數(shù)的定義域,化簡(jiǎn)函數(shù)SKIPIF1<0,分析函數(shù)的單調(diào)性和對(duì)稱性,從而判斷選項(xiàng).【詳解】函數(shù)的定義域滿足SKIPIF1<0,即SKIPIF1<0,即函數(shù)的定義域是SKIPIF1<0,∵SKIPIF1<0,設(shè)SKIPIF1<0,則函數(shù)在SKIPIF1<0單調(diào)遞增,在SKIPIF1<0單調(diào)遞減,又函數(shù)SKIPIF1<0單調(diào)遞增,由復(fù)合函數(shù)單調(diào)性可知函數(shù)SKIPIF1<0在SKIPIF1<0單調(diào)遞增,在SKIPIF1<0單調(diào)遞減,故A錯(cuò)誤,B正確;因?yàn)镾KIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,即函數(shù)SKIPIF1<0圖象關(guān)于直線SKIPIF1<0對(duì)稱,故C正確;又SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,所以D錯(cuò)誤.故選:BC.三、填空題10.(2023·全國(guó)·高三專題練習(xí))若SKIPIF1<0,不等式SKIPIF1<0恒成立,則實(shí)數(shù)SKIPIF1<0的取值范圍為_(kāi)__________.【答案】SKIPIF1<0【分析】分離參數(shù),將恒成立問(wèn)題轉(zhuǎn)化為函數(shù)最值問(wèn)題,根據(jù)單調(diào)性可得.【詳解】因?yàn)镾KIPIF1<0,不等式SKIPIF1<0恒成立,所以SKIPIF1<0對(duì)SKIPIF1<0恒成立.記SKIPIF1<0,SKIPIF1<0,只需SKIPIF1<0.因?yàn)镾KIPIF1<0在SKIPIF1<0上單調(diào)遞減,SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,所以SKIPIF1<0,所以SKIPIF1<0.故答案為:SKIPIF1<011.(2023·全國(guó)·高三專題練習(xí))若函數(shù)SKIPIF1<0(SKIPIF1<0且SKIPIF1<0)的圖像經(jīng)過(guò)定點(diǎn)SKIPIF1<0,則函數(shù)SKIPIF1<0的最大值為_(kāi)__________.【答案】SKIPIF1<0【分析】由題知SKIPIF1<0,進(jìn)而得SKIPIF1<0,進(jìn)而結(jié)合復(fù)合函數(shù)求值域即可.【詳解】由于函數(shù)SKIPIF1<0是由函數(shù)SKIPIF1<0(SKIPIF1<0且SKIPIF1<0)向左平移SKIPIF1<0個(gè)單位,再向下平移SKIPIF1<0個(gè)單位得到,所以函數(shù)SKIPIF1<0(SKIPIF1<0且SKIPIF1<0)的圖像經(jīng)過(guò)定點(diǎn)SKIPIF1<0,所以SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時(shí)等號(hào)成立.故答案為:SKIPIF1<0.【點(diǎn)睛】本題考查指數(shù)型函數(shù)過(guò)定點(diǎn)問(wèn)題,對(duì)數(shù)型復(fù)合函數(shù)值域求解問(wèn)題,考查運(yùn)算求解能力,是中檔題.本題解題的關(guān)鍵在于根據(jù)已知條件得SKIPIF1<0,進(jìn)而利用配方法得SKIPIF1<0,再結(jié)合二次函數(shù)值域求解即可.12.(2023·海南??凇ば?寄M預(yù)測(cè))已知函數(shù)SKIPIF1<0的圖象與函數(shù)SKIPIF1<0和SKIPIF1<0的圖象分別交于點(diǎn)SKIPIF1<0,則SKIPIF1<0________.【答案】SKIPIF1<0【分析】確定SKIPIF1<0,SKIPIF1<0,設(shè)SKIPIF1<0,根據(jù)函數(shù)單調(diào)遞增得到SKIPIF1<0,得到答案.【詳解】SKIPIF1<0,則SKIPIF1<0;SKIPIF1<0,即SKIPIF1<0,設(shè)SKIPIF1<0,函數(shù)在SKIPIF1<0上單調(diào)遞增,SKIPIF1<0,則SKIPIF1<0,即SKIPIF1<0.故答案為:SKIPIF1<0.四、解答題13.(2023春·全國(guó)·高三校聯(lián)考開(kāi)學(xué)考試)已知函數(shù)SKIPIF1<0的最小值為0.(1)求實(shí)數(shù)a的值;(2)設(shè)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,判斷SKIPIF1<0,SKIPIF1<0,SKIPIF1<0的大?。敬鸢浮?1)SKIPIF1<0(2)SKIPIF1<0【分析】(1)求出函數(shù)的導(dǎo)函數(shù),分SKIPIF1<0、SKIPIF1<0兩種情況討論,分別求出函數(shù)的單調(diào)區(qū)間,即可得到函數(shù)的最小值為SKIPIF1<0,從而得到SKIPIF1<0,再令SKIPIF1<0,利用導(dǎo)數(shù)說(shuō)明函數(shù)的單調(diào)性,即可得到SKIPIF1<0值,從而得解;(2)由(1)可得SKIPIF1<0,當(dāng)SKIPIF1<0時(shí)兩邊取對(duì)數(shù)得到SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),設(shè)SKIPIF1<0,根據(jù)函數(shù)值的情況判斷SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),設(shè)SKIPIF1<0,即可判斷SKIPIF1<0,從而得解.【詳解】(1)解:由題意得SKIPIF1<0.當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0單調(diào)遞增,無(wú)最小值,不滿足題意.當(dāng)SKIPIF1<0時(shí),令SKIPIF1<0,得SKIPIF1<0.當(dāng)SKIPIF1<0時(shí),SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0.所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增.所以SKIPIF1<0的最小值為SKIPIF1<0,即SKIPIF1<0.設(shè)SKIPIF1<0,則SKIPIF1<0.令SKIPIF1<0,得SKIPIF1<0.當(dāng)SKIPIF1<0時(shí),SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增,即SKIPIF1<0.故SKIPIF1<0的解只有SKIPIF1<0,綜上所述,SKIPIF1<0.(2)解:由(1)可得SKIPIF1<0,所以SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時(shí)等號(hào)成立.當(dāng)SKIPIF1<0時(shí),不等式兩邊取對(duì)數(shù),得SKIPIF1<0,所以SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時(shí)等號(hào)成立.當(dāng)SKIPIF1<0時(shí),設(shè)SKIPIF1<0,則SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時(shí),等號(hào)成立.因?yàn)镾KIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0.當(dāng)SKIPIF1<0時(shí),設(shè)SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0.故SKIPIF1<0,所以SKIPIF1<0.綜上所述,SKIPIF1<0.【C組

在創(chuàng)新中考查思維】一、解答題1.(2023·河北邢臺(tái)·校聯(lián)考模擬預(yù)測(cè))已知SKIPIF1<0,證明:(1)SKIPIF1<0;(2)SKIPIF1<0.【答案】(1)證明見(jiàn)解析(2)證明見(jiàn)解析【分析】(1)利用導(dǎo)數(shù)研究函數(shù)SKIPIF1<0的單調(diào)性可得SKIPIF1<0,即證SKIPIF1<0,進(jìn)而SKIPIF1<0,即證SKIPIF1<0,原不等式即可證明;(2)易知SKIPIF1<0時(shí)不等式成立;當(dāng)SKIPIF1<0時(shí),利用二階導(dǎo)數(shù)研究函數(shù)SKIPIF1<0的單調(diào)性可得SKIPIF1<0,即SKIPIF1<0(SKIPIF1<0),變形即可證明.【詳解】(1)令SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0單調(diào)遞減;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0單調(diào)遞增,所以SKIPIF1<0,等號(hào)僅當(dāng)SKIPIF1<0時(shí)成立,即SKIPIF1<0,從而SKIPIF1<0,所以SKIPIF1<0.綜上,SKIPIF1<0.(2)顯然SKIPIF1<0時(shí),SKIPIF1<0,即SKIPIF1<0成立.令SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0單調(diào)遞增;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0單調(diào)遞減,所以SKIPIF1<0,等號(hào)僅當(dāng)SKIPIF1<0時(shí)成立,從而可得SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0和SKIPIF1<0上單調(diào)遞減.由(1)知,SKIPIF1<0時(shí),SKIPIF1<0;SKIPIF1<0時(shí),SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0.又當(dāng)SKIPIF1<0且SKIPIF1<0時(shí),SKIPIF1<0,所以SKIPIF1<0.故SKIPIF1<0時(shí),SKIPIF1<0.【點(diǎn)睛】在解決類似的問(wèn)題時(shí),要熟練應(yīng)用導(dǎo)數(shù)研究函數(shù)的單調(diào)性與最值,善于培養(yǎng)轉(zhuǎn)化的數(shù)學(xué)思想,學(xué)會(huì)構(gòu)造新函數(shù),利用導(dǎo)數(shù)或二階求導(dǎo)研究新函數(shù)的性質(zhì)即可解決問(wèn)題.二、單選題2.(2023·全國(guó)·高三專題練習(xí))已知SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【分析】根據(jù)對(duì)數(shù)的運(yùn)算,計(jì)算可得SKIPIF1<0,則SKIPIF1<0.構(gòu)造函數(shù)SKIPIF1<0,根據(jù)導(dǎo)函數(shù)得到函數(shù)的單調(diào)性,即可得出SKIPIF1<0,根據(jù)對(duì)數(shù)函數(shù)的單調(diào)性即可得出SKIPIF1<0;先證明當(dāng)SKIPIF1<0時(shí),SKIPIF1<0.然后根據(jù)二倍角公式以及不等式的性質(zhì),推得SKIPIF1<0.【詳解】因?yàn)镾KIPIF1<0,所以,SKIPIF1<0.令SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,所以SKIPIF1<0,所以SKIPIF1<0.因?yàn)镾KIPIF1<0在SKIPIF1<0上單調(diào)遞增,所以SKIPIF1<0;令SKIPIF1<0,則SKIPIF1<0恒成立,所以,SKIPIF1<0在R上單調(diào)遞減,所以,當(dāng)SKIPIF1<0時(shí),有SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0.因?yàn)镾KIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0.所以SKIPIF1<0.故選:B.【點(diǎn)睛】方法點(diǎn)睛:對(duì)SKIPIF1<0變形后,作差構(gòu)造函數(shù),根據(jù)導(dǎo)函數(shù)得到函數(shù)的單調(diào)性,即可得出值的大小關(guān)系.3.(2023·全國(guó)·高三專題練習(xí))設(shè)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【分析】利用正切函數(shù)單調(diào)性借助1比較b,c大小;根據(jù)對(duì)數(shù)結(jié)構(gòu)構(gòu)造函數(shù)SKIPIF1<0比較a,b大小,即可解答.【詳解】因?yàn)镾KIPIF1<0在SKIPIF1<0上單調(diào)遞增,于是SKIPIF1<0,即SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,所以SKIPIF1<0,即SKIPIF1<0,取SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0.故選:A4.(2023·陜西寶雞·??寄M預(yù)測(cè))已知函數(shù)SKIPIF1<0,若函數(shù)SKIPIF1<0有6個(gè)不同的零點(diǎn),且最小的零點(diǎn)為SKIPIF1<0,則SKIPIF1<0(

).A.6 B.SKIPIF1<0 C.2 D.SKIPIF1<0【答案】B【分析】根據(jù)函數(shù)圖象變換,畫(huà)出圖像,找到對(duì)稱軸,進(jìn)而數(shù)形結(jié)合求解即可.【詳解】由函數(shù)SKIPIF1<0的圖象,經(jīng)過(guò)翻折變換,可得函數(shù)SKIPIF1<0的圖象,再經(jīng)過(guò)向右平移1個(gè)單位,可得SKIPIF1<0的圖象,最終經(jīng)過(guò)翻折變換,可得SKIPIF1<0的圖象,如下圖:則函數(shù)SKIPIF1<0的圖象關(guān)于直線SKIPIF1<0對(duì)稱,令SKIPIF1<0因?yàn)楹瘮?shù)SKIPIF1<0最小的零點(diǎn)為SKIPIF1<0,且SKIPIF1<0,故當(dāng)SKIPIF1<0時(shí),方程SKIPIF1<0有4個(gè)零點(diǎn),所以,要使函數(shù)SKIPIF1<0有6個(gè)不同的零點(diǎn),且最小的零點(diǎn)為SKIPIF1<0,則SKIPIF1<0,或SKIPIF1<

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論