![2022-2023學年天津市塘沽濱海中學數(shù)學高三第一學期期末經(jīng)典試題含解析_第1頁](http://file4.renrendoc.com/view12/M08/06/14/wKhkGWa3_FOALXl7AAHnDzqEBRk393.jpg)
![2022-2023學年天津市塘沽濱海中學數(shù)學高三第一學期期末經(jīng)典試題含解析_第2頁](http://file4.renrendoc.com/view12/M08/06/14/wKhkGWa3_FOALXl7AAHnDzqEBRk3932.jpg)
![2022-2023學年天津市塘沽濱海中學數(shù)學高三第一學期期末經(jīng)典試題含解析_第3頁](http://file4.renrendoc.com/view12/M08/06/14/wKhkGWa3_FOALXl7AAHnDzqEBRk3933.jpg)
![2022-2023學年天津市塘沽濱海中學數(shù)學高三第一學期期末經(jīng)典試題含解析_第4頁](http://file4.renrendoc.com/view12/M08/06/14/wKhkGWa3_FOALXl7AAHnDzqEBRk3934.jpg)
![2022-2023學年天津市塘沽濱海中學數(shù)學高三第一學期期末經(jīng)典試題含解析_第5頁](http://file4.renrendoc.com/view12/M08/06/14/wKhkGWa3_FOALXl7AAHnDzqEBRk3935.jpg)
版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2022-2023學年高三上數(shù)學期末模擬試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知函數(shù),則不等式的解集為()A. B. C. D.2.集合的子集的個數(shù)是()A.2 B.3 C.4 D.83.阿波羅尼斯(約公元前262~190年)證明過這樣的命題:平面內(nèi)到兩定點距離之比為常數(shù)的點的軌跡是圓.后人將這個圓稱為阿氏圓.若平面內(nèi)兩定點,間的距離為2,動點與,的距離之比為,當,,不共線時,的面積的最大值是()A. B. C. D.4.已知角的終邊經(jīng)過點,則的值是A.1或 B.或 C.1或 D.或5.設α,β為兩個平面,則α∥β的充要條件是A.α內(nèi)有無數(shù)條直線與β平行B.α內(nèi)有兩條相交直線與β平行C.α,β平行于同一條直線D.α,β垂直于同一平面6.已知,滿足條件(為常數(shù)),若目標函數(shù)的最大值為9,則()A. B. C. D.7.下列函數(shù)中,圖象關于軸對稱的為()A. B.,C. D.8.若兩個非零向量、滿足,且,則與夾角的余弦值為()A. B. C. D.9.設是虛數(shù)單位,若復數(shù),則()A. B. C. D.10.已知某口袋中有3個白球和個黑球(),現(xiàn)從中隨機取出一球,再換回一個不同顏色的球(即若取出的是白球,則放回一個黑球;若取出的是黑球,則放回一個白球),記換好球后袋中白球的個數(shù)是.若,則=()A. B.1 C. D.211.網(wǎng)絡是一種先進的高頻傳輸技術,我國的技術發(fā)展迅速,已位居世界前列.華為公司2019年8月初推出了一款手機,現(xiàn)調查得到該款手機上市時間和市場占有率(單位:%)的幾組相關對應數(shù)據(jù).如圖所示的折線圖中,橫軸1代表2019年8月,2代表2019年9月……,5代表2019年12月,根據(jù)數(shù)據(jù)得出關于的線性回歸方程為.若用此方程分析并預測該款手機市場占有率的變化趨勢,則最早何時該款手機市場占有率能超過0.5%(精確到月)()A.2020年6月 B.2020年7月 C.2020年8月 D.2020年9月12.如圖所示的程序框圖,當其運行結果為31時,則圖中判斷框①處應填入的是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知雙曲線的右準線與漸近線的交點在拋物線上,則實數(shù)的值為___________.14.已知(且)有最小值,且最小值不小于1,則的取值范圍為__________.15.在的二項展開式中,所有項的二項式系數(shù)之和為256,則_______,項的系數(shù)等于________.16.曲線在點處的切線方程為________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù),.(1)討論的單調性;(2)當時,證明:.18.(12分)在平面直角坐標系xOy中,橢圓C:x2a2(1)求橢圓C的方程;(2)假設直線l:y=kx+m與橢圓C交于A,B兩點.①若A為橢圓的上頂點,M為線段AB中點,連接OM并延長交橢圓C于N,并且ON=62OM,求OB的長;②若原點O到直線l的距離為1,并且19.(12分)在平面直角坐標系中,曲線C的參數(shù)方程為(為參數(shù)).以原點為極點,x軸的非負半軸為極軸,建立極坐標系.(1)求曲線C的極坐標方程;(2)直線(t為參數(shù))與曲線C交于A,B兩點,求最大時,直線l的直角坐標方程.20.(12分)已知橢圓的左右焦點分別為,焦距為4,且橢圓過點,過點且不平行于坐標軸的直線交橢圓與兩點,點關于軸的對稱點為,直線交軸于點.(1)求的周長;(2)求面積的最大值.21.(12分)已知橢圓E:()的離心率為,且短軸的一個端點B與兩焦點A,C組成的三角形面積為.(Ⅰ)求橢圓E的方程;(Ⅱ)若點P為橢圓E上的一點,過點P作橢圓E的切線交圓O:于不同的兩點M,N(其中M在N的右側),求四邊形面積的最大值.22.(10分)如圖,已知橢圓經(jīng)過點,且離心率,過右焦點且不與坐標軸垂直的直線與橢圓相交于兩點.(1)求橢圓的標準方程;(2)設橢圓的右頂點為,線段的中點為,記直線的斜率分別為,求證:為定值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】
先判斷函數(shù)的奇偶性和單調性,得到,且,解不等式得解.【詳解】由題得函數(shù)的定義域為.因為,所以為上的偶函數(shù),因為函數(shù)都是在上單調遞減.所以函數(shù)在上單調遞減.因為,所以,且,解得.故選:D【點睛】本題主要考查函數(shù)的奇偶性和單調性的判斷,考查函數(shù)的奇偶性和單調性的應用,意在考查學生對這些知識的理解掌握水平.2、D【解析】
先確定集合中元素的個數(shù),再得子集個數(shù).【詳解】由題意,有三個元素,其子集有8個.故選:D.【點睛】本題考查子集的個數(shù)問題,含有個元素的集合其子集有個,其中真子集有個.3、A【解析】
根據(jù)平面內(nèi)兩定點,間的距離為2,動點與,的距離之比為,利用直接法求得軌跡,然后利用數(shù)形結合求解.【詳解】如圖所示:設,,,則,化簡得,當點到(軸)距離最大時,的面積最大,∴面積的最大值是.故選:A.【點睛】本題主要考查軌跡的求法和圓的應用,還考查了數(shù)形結合的思想和運算求解的能力,屬于中檔題.4、B【解析】
根據(jù)三角函數(shù)的定義求得后可得結論.【詳解】由題意得點與原點間的距離.①當時,,∴,∴.②當時,,∴,∴.綜上可得的值是或.故選B.【點睛】利用三角函數(shù)的定義求一個角的三角函數(shù)值時需確定三個量:角的終邊上任意一個異于原點的點的橫坐標x,縱坐標y,該點到原點的距離r,然后再根據(jù)三角函數(shù)的定義求解即可.5、B【解析】
本題考查了空間兩個平面的判定與性質及充要條件,滲透直觀想象、邏輯推理素養(yǎng),利用面面平行的判定定理與性質定理即可作出判斷.【詳解】由面面平行的判定定理知:內(nèi)兩條相交直線都與平行是的充分條件,由面面平行性質定理知,若,則內(nèi)任意一條直線都與平行,所以內(nèi)兩條相交直線都與平行是的必要條件,故選B.【點睛】面面平行的判定問題要緊扣面面平行判定定理,最容易犯的錯誤為定理記不住,憑主觀臆斷,如:“若,則”此類的錯誤.6、B【解析】
由目標函數(shù)的最大值為9,我們可以畫出滿足條件件為常數(shù))的可行域,根據(jù)目標函數(shù)的解析式形式,分析取得最優(yōu)解的點的坐標,然后根據(jù)分析列出一個含參數(shù)的方程組,消參后即可得到的取值.【詳解】畫出,滿足的為常數(shù))可行域如下圖:由于目標函數(shù)的最大值為9,可得直線與直線的交點,使目標函數(shù)取得最大值,將,代入得:.故選:.【點睛】如果約束條件中含有參數(shù),我們可以先畫出不含參數(shù)的幾個不等式對應的平面區(qū)域,分析取得最優(yōu)解是哪兩條直線的交點,然后得到一個含有參數(shù)的方程(組,代入另一條直線方程,消去,后,即可求出參數(shù)的值.7、D【解析】
圖象關于軸對稱的函數(shù)為偶函數(shù),用偶函數(shù)的定義及性質對選項進行判斷可解.【詳解】圖象關于軸對稱的函數(shù)為偶函數(shù);A中,,,故為奇函數(shù);B中,的定義域為,不關于原點對稱,故為非奇非偶函數(shù);C中,由正弦函數(shù)性質可知,為奇函數(shù);D中,且,,故為偶函數(shù).故選:D.【點睛】本題考查判斷函數(shù)奇偶性.判斷函數(shù)奇偶性的兩種方法:(1)定義法:對于函數(shù)的定義域內(nèi)任意一個都有,則函數(shù)是奇函數(shù);都有,則函數(shù)是偶函數(shù)(2)圖象法:函數(shù)是奇(偶)函數(shù)函數(shù)圖象關于原點(軸)對稱.8、A【解析】
設平面向量與的夾角為,由已知條件得出,在等式兩邊平方,利用平面向量數(shù)量積的運算律可求得的值,即為所求.【詳解】設平面向量與的夾角為,,可得,在等式兩邊平方得,化簡得.故選:A.【點睛】本題考查利用平面向量的模求夾角的余弦值,考查平面向量數(shù)量積的運算性質的應用,考查計算能力,屬于中等題.9、A【解析】
結合復數(shù)的除法運算和模長公式求解即可【詳解】∵復數(shù),∴,,則,故選:A.【點睛】本題考查復數(shù)的除法、模長、平方運算,屬于基礎題10、B【解析】由題意或4,則,故選B.11、C【解析】
根據(jù)圖形,計算出,然后解不等式即可.【詳解】解:,點在直線上,令因為橫軸1代表2019年8月,所以橫軸13代表2020年8月,故選:C【點睛】考查如何確定線性回歸直線中的系數(shù)以及線性回歸方程的實際應用,基礎題.12、C【解析】
根據(jù)程序框圖的運行,循環(huán)算出當時,結束運行,總結分析即可得出答案.【詳解】由題可知,程序框圖的運行結果為31,當時,;當時,;當時,;當時,;當時,.此時輸出.故選:C.【點睛】本題考查根據(jù)程序框圖的循環(huán)結構,已知輸出結果求條件框,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
求出雙曲線的漸近線方程,右準線方程,得到交點坐標代入拋物線方程求解即可.【詳解】解:雙曲線的右準線,漸近線,雙曲線的右準線與漸近線的交點,交點在拋物線上,可得:,解得.故答案為.【點睛】本題考查雙曲線的簡單性質以及拋物線的簡單性質的應用,是基本知識的考查,屬于基礎題.14、【解析】
真數(shù)有最小值,根據(jù)已知可得的范圍,求出函數(shù)的最小值,建立關于的不等量關系,求解即可.【詳解】,且(且)有最小值,,的取值范圍為.故答案為:.【點睛】本題考查對數(shù)型復合函數(shù)的性質,熟練掌握基本初等函數(shù)的性質是解題關鍵,屬于基礎題.15、81【解析】
根據(jù)二項式系數(shù)和的性質可得n,再利用展開式的通項公式求含項的系數(shù)即可.【詳解】由于所有項的二項式系數(shù)之和為,,故的二項展開式的通項公式為,令,求得,可得含x項的系數(shù)等于,故答案為:8;1.【點睛】本題主要考查二項式定理的應用,二項式系數(shù)的性質,二項式展開式的通項公式,屬于中檔題.16、【解析】
求導,得到和,利用點斜式即可求得結果.【詳解】由于,,所以,由點斜式可得切線方程為.故答案為:.【點睛】本題考查利用導數(shù)的幾何意義求切線方程,屬基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)見解析;(2)見解析【解析】
(1)求導得,分類討論和,利用導數(shù)研究含參數(shù)的函數(shù)單調性;(2)根據(jù)(1)中求得的的單調性,得出在處取得最大值為,構造函數(shù),利用導數(shù),推出,即可證明不等式.【詳解】解:(1)由于,得,當時,,此時在上遞增;當時,由,解得,若,則,若,,此時在遞增,在上遞減.(2)由(1)知在處取得最大值為:,設,則,令,則,則在單調遞減,∴,即,則在單調遞減∴,∴,∴.【點睛】本題考查利用導數(shù)研究函數(shù)的單調性和最值,涉及分類討論和構造新函數(shù),通過導數(shù)證明不等式,考查轉化思想和計算能力.18、(1)x22+y2【解析】
(1)根據(jù)橢圓的幾何性質可得到a2,b2;(2)聯(lián)立直線和橢圓,利用弦長公式可求得弦長AB,利用點到直線的距離公式求得原點到直線l的距離,從而可求得三角形面積,再用單調性求最值可得值域.【詳解】(1)因為兩焦點與短軸的一個頂點的連線構成等腰直角三角形,所以a=2又由右準線方程為x=2,得到a2解得a=2,c=1,所以所以,橢圓C的方程為x2(2)①設B(x1,y1∵ON=6因為點B,N都在橢圓上,所以x122+y12所以OB=x②由原點O到直線l的距離為1,得|m|1+k2聯(lián)立直線l的方程與橢圓C的方程:y=kx+mx2設A(x1,y1OA=(1+k2)所以k△OAB的面積S==1因為S=2λ(1-λ)在[并且當λ=45時,S=225所以△OAB的面積S的范圍為[10【點睛】圓錐曲線中最值與范圍問題的常見求法:(1)幾何法:若題目的條件和結論能明顯體現(xiàn)幾何特征和意義,則考慮利用圖形性質來解決;(2)代數(shù)法:若題目的條件和結論能體現(xiàn)一種明確的函數(shù)關系,則可首先建立目標函數(shù),再求這個函數(shù)的最值.在利用代數(shù)法解決最值與范圍問題時常從以下幾個方面考慮:①利用判別式來構造不等關系,從而確定參數(shù)的取值范圍;②利用隱含或已知的不等關系建立不等式,從而求出參數(shù)的取值范圍;③利用基本不等式求出參數(shù)的取值范圍;④利用函數(shù)的值域的求法,確定參數(shù)的取值范圍.19、(1);(2).【解析】
(1)利用消去參數(shù),得到曲線的普通方程,再將,代入普通方程,即可求出結論;(2)由(1)得曲線表示圓,直線曲線C交于A,B兩點,最大值為圓的直徑,直線過圓心,即可求出直線的方程.【詳解】(1)由曲線C的參數(shù)方程(為參數(shù)),可得曲線C的普通方程為,因為,所以曲線C的極坐標方程為,即.(2)因為直線(t為參數(shù))表示的是過點的直線,曲線C的普通方程為,所以當最大時,直線l經(jīng)過圓心.直線l的斜率為,方程為,所以直線l的直角坐標方程為.【點睛】本題考查參數(shù)方程與普通方程互化、直角坐標方程與極坐標方程互化、直線與曲線的位置關系,考查化歸和轉化思想,屬于中檔題.20、(1)12(2)【解析】
(1)根據(jù)焦距得焦點坐標,結合橢圓上的點的坐標,根據(jù)定義;(2)求出橢圓的標準方程,設,聯(lián)立直線和橢圓,結合韋達定理表示出面積,即可求解最大值.【詳解】(1)設橢園的焦距為,則,故.則橢圓過點,由橢圓定義知:,故,因此,的周長;(2)由(1)知:,橢圓方程為:設,則,,,,,當且僅當在短軸頂點處取等,故面積的最大值為.【點睛】此題考查根據(jù)橢圓的焦點和橢圓上的點的坐標求橢圓的標準方程,根據(jù)直線與橢圓的交點關系求三角形面積的最值,涉及韋達定理的使用,綜合性強,計算量大.21、(Ⅰ);(Ⅱ)4.【解析】
(Ⅰ)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度物資訂購策劃管理協(xié)議
- 2025年企業(yè)員工購物券福利采購合同范本
- 魚塘綜合利用承包經(jīng)營合同2025
- 2025年度企業(yè)職業(yè)素養(yǎng)提升策略協(xié)議
- 2025年寫字樓租賃權益協(xié)議
- 2025年企業(yè)郵箱租賃合同樣本
- 2025年中期企業(yè)合作口頭借款協(xié)議書
- 2025年股權投資與合作策劃協(xié)議樣本
- 2025年雙邊商業(yè)合作協(xié)議
- 2025年兄弟共有財產(chǎn)分配轉讓協(xié)議書
- 中國銀行(香港)有限公司招聘筆試真題2023
- 15萬噸水廠安裝工程施工組織設計方案
- 超級蘆竹種植項目可行性研究報告-具有高經(jīng)濟價值和廣泛應用前景
- 自動體外除顫器項目創(chuàng)業(yè)計劃書
- 養(yǎng)老機構績效考核及獎勵制度
- 2024年越南煤礦設備再制造行業(yè)現(xiàn)狀及前景分析2024-2030
- 長塘水庫工程環(huán)評報告書
- 病案管理質量控制指標檢查要點
- DL-T5001-2014火力發(fā)電廠工程測量技術規(guī)程
- 平行四邊形的判定(27張)-完整課件
- 居民住宅小區(qū)電力配置規(guī)范
評論
0/150
提交評論