版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2021-2022高考數(shù)學(xué)模擬試卷注意事項(xiàng)1.考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回.2.答題前,請(qǐng)務(wù)必將自己的姓名、準(zhǔn)考證號(hào)用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請(qǐng)認(rèn)真核對(duì)監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號(hào)與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對(duì)應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動(dòng),請(qǐng)用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無(wú)效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號(hào)等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.復(fù)數(shù)(為虛數(shù)單位),則等于()A.3 B.C.2 D.2.已知集合,,則A. B. C. D.3.函數(shù)f(x)=lnA. B. C. D.4.為得到y(tǒng)=sin(2x-πA.向左平移π3個(gè)單位B.向左平移πC.向右平移π3個(gè)單位D.向右平移π5.定義運(yùn)算,則函數(shù)的圖象是().A. B.C. D.6.已知為實(shí)數(shù)集,,,則()A. B. C. D.7.已知直線:與橢圓交于、兩點(diǎn),與圓:交于、兩點(diǎn).若存在,使得,則橢圓的離心率的取值范圍為()A. B. C. D.8.某四棱錐的三視圖如圖所示,該幾何體的體積是()A.8 B. C.4 D.9.已知平面向量,,,則實(shí)數(shù)x的值等于()A.6 B.1 C. D.10.劉徽(約公元225年-295年),魏晉期間偉大的數(shù)學(xué)家,中國(guó)古典數(shù)學(xué)理論的奠基人之一他在割圓術(shù)中提出的,“割之彌細(xì),所失彌少,割之又割,以至于不可割,則與圓周合體而無(wú)所失矣”,這可視為中國(guó)古代極限觀念的佳作,割圓術(shù)的核心思想是將一個(gè)圓的內(nèi)接正n邊形等分成n個(gè)等腰三角形(如圖所示),當(dāng)n變得很大時(shí),這n個(gè)等腰三角形的面積之和近似等于圓的面積,運(yùn)用割圓術(shù)的思想,得到的近似值為()A. B. C. D.11.已知數(shù)列為等比數(shù)列,若,且,則()A. B.或 C. D.12.從集合中隨機(jī)選取一個(gè)數(shù)記為,從集合中隨機(jī)選取一個(gè)數(shù)記為,則在方程表示雙曲線的條件下,方程表示焦點(diǎn)在軸上的雙曲線的概率為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.的展開(kāi)式中的系數(shù)為_(kāi)_______________.14.在等差數(shù)列()中,若,,則的值是______.15.在中,角,,的對(duì)邊分別為,,,若,且,則面積的最大值為_(kāi)_______.16.圓關(guān)于直線的對(duì)稱圓的方程為_(kāi)____.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知曲線的極坐標(biāo)方程為,直線的參數(shù)方程為(為參數(shù)).(1)求曲線的直角坐標(biāo)方程與直線的普通方程;(2)已知點(diǎn),直線與曲線交于、兩點(diǎn),求.18.(12分)設(shè)點(diǎn),分別是橢圓的左、右焦點(diǎn),為橢圓上任意一點(diǎn),且的最小值為1.(1)求橢圓的方程;(2)如圖,動(dòng)直線與橢圓有且僅有一個(gè)公共點(diǎn),點(diǎn),是直線上的兩點(diǎn),且,,求四邊形面積的最大值.19.(12分)如圖,在等腰梯形中,AD∥BC,,,,,分別為,,的中點(diǎn),以為折痕將折起,使點(diǎn)到達(dá)點(diǎn)位置(平面).(1)若為直線上任意一點(diǎn),證明:MH∥平面;(2)若直線與直線所成角為,求二面角的余弦值.20.(12分)已知滿足,且,求的值及的面積.(從①,②,③這三個(gè)條件中選一個(gè),補(bǔ)充到上面問(wèn)題中,并完成解答.)21.(12分)已知,,求證:(1);(2).22.(10分)在中,角的對(duì)邊分別為.已知,.(1)若,求;(2)求的面積的最大值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.D【解析】
利用復(fù)數(shù)代數(shù)形式的乘除運(yùn)算化簡(jiǎn),從而求得,然后直接利用復(fù)數(shù)模的公式求解.【詳解】,所以,,故選:D.【點(diǎn)睛】該題考查的是有關(guān)復(fù)數(shù)的問(wèn)題,涉及到的知識(shí)點(diǎn)有復(fù)數(shù)的乘除運(yùn)算,復(fù)數(shù)的共軛復(fù)數(shù),復(fù)數(shù)的模,屬于基礎(chǔ)題目.2.C【解析】分析:根據(jù)集合可直接求解.詳解:,,故選C點(diǎn)睛:集合題也是每年高考的必考內(nèi)容,一般以客觀題形式出現(xiàn),一般解決此類問(wèn)題時(shí)要先將參與運(yùn)算的集合化為最簡(jiǎn)形式,如果是“離散型”集合可采用Venn圖法解決,若是“連續(xù)型”集合則可借助不等式進(jìn)行運(yùn)算.3.C【解析】因?yàn)閒x=lnx2-4x+4x-23=4.D【解析】試題分析:因?yàn)椋詾榈玫統(tǒng)=sin(2x-π3)的圖象,只需要將考點(diǎn):三角函數(shù)的圖像變換.5.A【解析】
由已知新運(yùn)算的意義就是取得中的最小值,因此函數(shù),只有選項(xiàng)中的圖象符合要求,故選A.6.C【解析】
求出集合,,,由此能求出.【詳解】為實(shí)數(shù)集,,,或,.故選:.【點(diǎn)睛】本題考查交集、補(bǔ)集的求法,考查交集、補(bǔ)集的性質(zhì)等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,是基礎(chǔ)題.7.A【解析】
由題意可知直線過(guò)定點(diǎn)即為圓心,由此得到坐標(biāo)的關(guān)系,再根據(jù)點(diǎn)差法得到直線的斜率與坐標(biāo)的關(guān)系,由此化簡(jiǎn)并求解出離心率的取值范圍.【詳解】設(shè),且線過(guò)定點(diǎn)即為的圓心,因?yàn)椋?,又因?yàn)?,所以,所以,所以,所以,所以,所以,所?故選:A.【點(diǎn)睛】本題考查橢圓與圓的綜合應(yīng)用,著重考查了橢圓離心率求解以及點(diǎn)差法的運(yùn)用,難度一般.通過(guò)運(yùn)用點(diǎn)差法達(dá)到“設(shè)而不求”的目的,大大簡(jiǎn)化運(yùn)算.8.D【解析】
根據(jù)三視圖知,該幾何體是一條垂直于底面的側(cè)棱為2的四棱錐,畫出圖形,結(jié)合圖形求出底面積代入體積公式求它的體積.【詳解】根據(jù)三視圖知,該幾何體是側(cè)棱底面的四棱錐,如圖所示:結(jié)合圖中數(shù)據(jù)知,該四棱錐底面為對(duì)角線為2的正方形,高為PA=2,∴四棱錐的體積為.故選:D.【點(diǎn)睛】本題考查由三視圖求幾何體體積,由三視圖正確復(fù)原幾何體是解題的關(guān)鍵,考查空間想象能力.屬于中等題.9.A【解析】
根據(jù)向量平行的坐標(biāo)表示即可求解.【詳解】,,,,即,故選:A【點(diǎn)睛】本題主要考查了向量平行的坐標(biāo)運(yùn)算,屬于容易題.10.A【解析】
設(shè)圓的半徑為,每個(gè)等腰三角形的頂角為,則每個(gè)等腰三角形的面積為,由割圓術(shù)可得圓的面積為,整理可得,當(dāng)時(shí)即可為所求.【詳解】由割圓術(shù)可知當(dāng)n變得很大時(shí),這n個(gè)等腰三角形的面積之和近似等于圓的面積,設(shè)圓的半徑為,每個(gè)等腰三角形的頂角為,所以每個(gè)等腰三角形的面積為,所以圓的面積為,即,所以當(dāng)時(shí),可得,故選:A【點(diǎn)睛】本題考查三角形面積公式的應(yīng)用,考查閱讀分析能力.11.A【解析】
根據(jù)等比數(shù)列的性質(zhì)可得,通分化簡(jiǎn)即可.【詳解】由題意,數(shù)列為等比數(shù)列,則,又,即,所以,,.故選:A.【點(diǎn)睛】本題考查了等比數(shù)列的性質(zhì),考查了推理能力與運(yùn)算能力,屬于基礎(chǔ)題.12.A【解析】
設(shè)事件A為“方程表示雙曲線”,事件B為“方程表示焦點(diǎn)在軸上的雙曲線”,分別計(jì)算出,再利用公式計(jì)算即可.【詳解】設(shè)事件A為“方程表示雙曲線”,事件B為“方程表示焦點(diǎn)在軸上的雙曲線”,由題意,,,則所求的概率為.故選:A.【點(diǎn)睛】本題考查利用定義計(jì)算條件概率的問(wèn)題,涉及到雙曲線的定義,是一道容易題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
在二項(xiàng)展開(kāi)式的通項(xiàng)中令的指數(shù)為,求出參數(shù)值,然后代入通項(xiàng)可得出結(jié)果.【詳解】的展開(kāi)式的通項(xiàng)為,令,因此,的展開(kāi)式中的系數(shù)為.故答案為:.【點(diǎn)睛】本題考查二項(xiàng)展開(kāi)式中指定項(xiàng)系數(shù)的求解,涉及二項(xiàng)展開(kāi)式通項(xiàng)的應(yīng)用,考查計(jì)算能力,屬于基礎(chǔ)題.14.-15【解析】
是等差數(shù)列,則有,可得的值,再由可得,計(jì)算即得.【詳解】數(shù)列是等差數(shù)列,,又,,,故.故答案為:【點(diǎn)睛】本題考查等差數(shù)列的性質(zhì),也可以由已知條件求出和公差,再計(jì)算.15.【解析】
利用正弦定理將角化邊得到,再由余弦定理得到,根據(jù)同角三角函數(shù)的基本關(guān)系表示出,最后利用面積公式得到,由基本不等式求出的取值范圍,即可得到面積的最值;【詳解】解:∵在中,,∴,∴,∴,∴.∵,即,當(dāng)且僅當(dāng)時(shí)等號(hào)成立,∴,∴面積的最大值為.故答案為:【點(diǎn)睛】本題考查正弦定理、余弦定理解三角形,三角形面積公式的應(yīng)用,以及基本不等式的應(yīng)用,屬于中檔題.16.【解析】
求出圓心關(guān)于直線的對(duì)稱點(diǎn),即可得解.【詳解】的圓心為,關(guān)于對(duì)稱點(diǎn)設(shè)為,則有:,解得,所以對(duì)稱后的圓心為,故所求圓的方程為.故答案為:【點(diǎn)睛】此題考查求圓關(guān)于直線的對(duì)稱圓方程,關(guān)鍵在于準(zhǔn)確求出圓心關(guān)于直線的對(duì)稱點(diǎn)坐標(biāo).三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(1).(2)【解析】
(1)根據(jù)極坐標(biāo)與直角坐標(biāo)互化公式,以及消去參數(shù),即可求解;(2)設(shè)兩點(diǎn)對(duì)應(yīng)的參數(shù)分別為,,將直線的參數(shù)方程代入曲線方程,結(jié)合根與系數(shù)的關(guān)系,即可求解.【詳解】(1)對(duì)于曲線的極坐標(biāo)方程為,可得,又由,可得,即,所以曲線的普通方程為.由直線的參數(shù)方程為(為參數(shù)),消去參數(shù)可得,即直線的方程為,即.(2)設(shè)兩點(diǎn)對(duì)應(yīng)的參數(shù)分別為,,將直線的參數(shù)方程(為參數(shù))代入曲線中,可得.化簡(jiǎn)得:,則.所以.【點(diǎn)睛】本題主要考查了參數(shù)方程與普通方程,極坐標(biāo)方程與直角坐標(biāo)方程的互化,以及直線的參數(shù)方程的應(yīng)用,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題.18.(1);(2)2.【解析】
(1)利用的最小值為1,可得,,即可求橢圓的方程;(2)將直線的方程代入橢圓的方程中,得到關(guān)于的一元二次方程,由直線與橢圓僅有一個(gè)公共點(diǎn)知,即可得到,的關(guān)系式,利用點(diǎn)到直線的距離公式即可得到,.當(dāng)時(shí),設(shè)直線的傾斜角為,則,即可得到四邊形面積的表達(dá)式,利用基本不等式的性質(zhì),結(jié)合當(dāng)時(shí),四邊形是矩形,即可得出的最大值.【詳解】(1)設(shè),則,,,,由題意得,,橢圓的方程為;
(2)將直線的方程代入橢圓的方程中,得.
由直線與橢圓僅有一個(gè)公共點(diǎn)知,,化簡(jiǎn)得:.
設(shè),,當(dāng)時(shí),設(shè)直線的傾斜角為,則,,,,∴當(dāng)時(shí),,,.當(dāng)時(shí),四邊形是矩形,.
所以四邊形面積的最大值為2.【點(diǎn)睛】本題主要考查橢圓的方程與性質(zhì)、直線方程、直線與橢圓的位置關(guān)系、向量知識(shí)、二次函數(shù)的單調(diào)性、基本不等式的性質(zhì)等基礎(chǔ)知識(shí),考查運(yùn)算能力、推理論證以及分析問(wèn)題、解決問(wèn)題的能力,考查數(shù)形結(jié)合、化歸與轉(zhuǎn)化思想.19.(1)見(jiàn)解析(2)【解析】
(1)根據(jù)中位線證明平面平面,即可證明MH∥平面;(2)以,,為,,軸建立空間直角坐標(biāo)系,找到點(diǎn)的坐標(biāo)代入公式即可計(jì)算二面角的余弦值.【詳解】(1)證明:連接,∵,,分別為,,的中點(diǎn),∴,又∵平面,平面,∴平面,同理,平面,∵平面,平面,,∴平面平面,∵平面,∴平面.(2)連接,在和中,由余弦定理可得,,由與互補(bǔ),,,可解得,于是,∴,,∵,直線與直線所成角為,∴,又,∴,即,∴平面,∴平面平面,∵為中點(diǎn),,∴平面,如圖所示,分別以,,為,,軸建立空間直角坐標(biāo)系,則,,,,.設(shè)平面的法向量為,∴,即.令,則,,可得平面的一個(gè)法向量為.又平面的一個(gè)法向量為,∴,∴二面角的余弦值為.【點(diǎn)睛】此題考查線面平行,建系通過(guò)坐標(biāo)求二面角等知識(shí)點(diǎn),屬于一般性題目.20.見(jiàn)解析【解析】
選擇①時(shí):,,計(jì)算,根據(jù)正弦定理得到,計(jì)算面積得到答案;選擇②時(shí),,,故,為鈍角,故無(wú)解;選擇③時(shí),,根據(jù)正弦定理解得,,根據(jù)正弦定理得到,計(jì)算面積得到答案.【詳解】選擇①時(shí):,,故.根據(jù)正弦定理:,故,故.選擇②時(shí),,,故,為鈍角,故無(wú)解.選擇③時(shí),,根據(jù)正弦定理:,故,解得,.根據(jù)正弦定理:,故,故.【點(diǎn)睛】本題考查了三角恒等變換,正弦定理,面積公式,意在考查學(xué)生的計(jì)算能力和綜合應(yīng)用能力.21.(1)見(jiàn)解析;(2)見(jiàn)解析.【解析】
(1)結(jié)合基本不等式可證明;(2)利用基本不等式得,即,同理得其他兩個(gè)式子,三式相加可證結(jié)論.【詳解】(1)∵,∴,當(dāng)且僅當(dāng)a=b=c等號(hào)成立,∴;(2)由基本不
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 勞務(wù)合同樣本2024年
- 電子加工承攬合同樣本
- 總包商分包支付委托保證(參考)
- 建筑公司用工勞動(dòng)合同
- 二手設(shè)備出售合同范本
- 買賣居間服務(wù)合同模板2024年
- 中外合作經(jīng)營(yíng)合同書示例
- 二手機(jī)動(dòng)車買賣協(xié)議范本
- 公私合營(yíng)學(xué)校創(chuàng)辦協(xié)議
- 購(gòu)房合同范本標(biāo)準(zhǔn)匯編
- 肺結(jié)節(jié)介紹課件
- 山西陸合集團(tuán)恒泰南莊煤業(yè)有限公司礦山礦產(chǎn)資源開(kāi)發(fā)、地質(zhì)環(huán)境保護(hù)與土地復(fù)墾方案
- 酒店賬單-水單-住宿
- 2023年山東春季高考數(shù)學(xué)試題word版(含答案解析)
- 我的連衣裙【經(jīng)典繪本】
- 中國(guó)石油化工集團(tuán)公司職工違紀(jì)違規(guī)行為處分規(guī)定
- 深圳市某河道排澇工程監(jiān)理規(guī)劃
- 課堂教學(xué)評(píng)價(jià)標(biāo)準(zhǔn)
- 2021年中國(guó)環(huán)衛(wèi)行業(yè)及環(huán)衛(wèi)設(shè)備(環(huán)衛(wèi)裝備)行業(yè)現(xiàn)狀及趨勢(shì)分析
- YS/T 1113-2016鋅及鋅合金棒材和型材
- FZ/T 82006-2018機(jī)織配飾品
評(píng)論
0/150
提交評(píng)論