2021-2022學年西藏林芝地區(qū)第二中學高考數(shù)學必刷試卷含解析_第1頁
2021-2022學年西藏林芝地區(qū)第二中學高考數(shù)學必刷試卷含解析_第2頁
2021-2022學年西藏林芝地區(qū)第二中學高考數(shù)學必刷試卷含解析_第3頁
2021-2022學年西藏林芝地區(qū)第二中學高考數(shù)學必刷試卷含解析_第4頁
2021-2022學年西藏林芝地區(qū)第二中學高考數(shù)學必刷試卷含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2021-2022高考數(shù)學模擬試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.的展開式中,含項的系數(shù)為()A. B. C. D.2.執(zhí)行如圖所示的程序框圖,若輸出的,則①處應填寫()A. B. C. D.3.是平面上的一定點,是平面上不共線的三點,動點滿足,,則動點的軌跡一定經過的()A.重心 B.垂心 C.外心 D.內心4.已知,是橢圓的左、右焦點,過的直線交橢圓于兩點.若依次構成等差數(shù)列,且,則橢圓的離心率為A. B. C. D.5.已知將函數(shù)(,)的圖象向右平移個單位長度后得到函數(shù)的圖象,若和的圖象都關于對稱,則下述四個結論:①②③④點為函數(shù)的一個對稱中心其中所有正確結論的編號是()A.①②③ B.①③④ C.①②④ D.②③④6.設、分別是定義在上的奇函數(shù)和偶函數(shù),且,則()A. B.0 C.1 D.37.若函數(shù)的圖象向右平移個單位長度得到函數(shù)的圖象,若函數(shù)在區(qū)間上單調遞增,則的最大值為().A. B. C. D.8.已知雙曲線(,)的左、右頂點分別為,,虛軸的兩個端點分別為,,若四邊形的內切圓面積為,則雙曲線焦距的最小值為()A.8 B.16 C. D.9.“”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件10.已知斜率為k的直線l與拋物線交于A,B兩點,線段AB的中點為,則斜率k的取值范圍是()A. B. C. D.11.如圖,在平面四邊形中,滿足,且,沿著把折起,使點到達點的位置,且使,則三棱錐體積的最大值為()A.12 B. C. D.12.已知,,,則()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若,則__________.14.在平面直角坐標系中,已知圓及點,設點是圓上的動點,在中,若的角平分線與相交于點,則的取值范圍是_______.15.已知復數(shù)(為虛數(shù)單位),則的共軛復數(shù)是_____,_____.16.記Sk=1k+2k+3k+……+nk,當k=1,2,3,……時,觀察下列等式:S1n2n,S2n3n2n,S3n4n3n2,……S5=An6n5n4+Bn2,…可以推測,A﹣B=_____.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知等差數(shù)列{an}的各項均為正數(shù),Sn為等差數(shù)列{an}的前n項和,.(1)求數(shù)列{an}的通項an;(2)設bn=an?3n,求數(shù)列{bn}的前n項和Tn.18.(12分)在直角坐標系中,以為極點,軸正半軸為極軸建立極坐標系.曲線的極坐標方程為:,曲線的參數(shù)方程為其中,為參數(shù),為常數(shù).(1)寫出與的直角坐標方程;(2)在什么范圍內取值時,與有交點.19.(12分)設函數(shù),,其中,為正實數(shù).(1)若的圖象總在函數(shù)的圖象的下方,求實數(shù)的取值范圍;(2)設,證明:對任意,都有.20.(12分)如圖,已知橢圓的右焦點為,,為橢圓上的兩個動點,周長的最大值為8.(Ⅰ)求橢圓的標準方程;(Ⅱ)直線經過,交橢圓于點,,直線與直線的傾斜角互補,且交橢圓于點,,,求證:直線與直線的交點在定直線上.21.(12分)平面直角坐標系中,曲線的參數(shù)方程為(為參數(shù)),以原點為極點,軸的非負半軸為極軸,取相同的單位長度建立極坐標系,曲線的極坐標方程為,直線的極坐標方程為,點.(1)求曲線的極坐標方程與直線的直角坐標方程;(2)若直線與曲線交于點,曲線與曲線交于點,求的面積.22.(10分)在平面直角坐標系xOy中,曲線的參數(shù)方程為(,為參數(shù)),在以O為極點,x軸的正半軸為極軸的極坐標系中,曲線是圓心在極軸上,且經過極點的圓.已知曲線上的點M對應的參數(shù),射線與曲線交于點.(1)求曲線,的直角坐標方程;(2)若點A,B為曲線上的兩個點且,求的值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.B【解析】

在二項展開式的通項公式中,令的冪指數(shù)等于,求出的值,即可求得含項的系數(shù).【詳解】的展開式通項為,令,得,可得含項的系數(shù)為.故選:B.【點睛】本題主要考查二項式定理的應用,二項展開式的通項公式,二項式系數(shù)的性質,屬于基礎題.2.B【解析】

模擬程序框圖運行分析即得解.【詳解】;;.所以①處應填寫“”故選:B【點睛】本題主要考查程序框圖,意在考查學生對這些知識的理解掌握水平.3.B【解析】

解出,計算并化簡可得出結論.【詳解】λ(),∴,∴,即點P在BC邊的高上,即點P的軌跡經過△ABC的垂心.故選B.【點睛】本題考查了平面向量的數(shù)量積運算在幾何中的應用,根據(jù)條件中的角計算是關鍵.4.D【解析】

如圖所示,設依次構成等差數(shù)列,其公差為.根據(jù)橢圓定義得,又,則,解得,.所以,,,.在和中,由余弦定理得,整理解得.故選D.5.B【解析】

首先根據(jù)三角函數(shù)的平移規(guī)則表示出,再根據(jù)對稱性求出、,即可求出的解析式,從而驗證可得;【詳解】解:由題意可得,又∵和的圖象都關于對稱,∴,∴解得,即,又∵,∴,,∴,∴,,∴①③④正確,②錯誤.故選:B【點睛】本題考查三角函數(shù)的性質的應用,三角函數(shù)的變換規(guī)則,屬于基礎題.6.C【解析】

先根據(jù)奇偶性,求出的解析式,令,即可求出?!驹斀狻恳驗椤⒎謩e是定義在上的奇函數(shù)和偶函數(shù),,用替換,得,化簡得,即令,所以,故選C?!军c睛】本題主要考查函數(shù)性質奇偶性的應用。7.C【解析】

由題意利用函數(shù)的圖象變換規(guī)律,正弦函數(shù)的單調性,求出的最大值.【詳解】解:把函數(shù)的圖象向右平移個單位長度得到函數(shù)的圖象,若函數(shù)在區(qū)間,上單調遞增,在區(qū)間,上,,,則當最大時,,求得,故選:C.【點睛】本題主要考查函數(shù)的圖象變換規(guī)律,正弦函數(shù)的單調性,屬于基礎題.8.D【解析】

根據(jù)題意畫出幾何關系,由四邊形的內切圓面積求得半徑,結合四邊形面積關系求得與等量關系,再根據(jù)基本不等式求得的取值范圍,即可確定雙曲線焦距的最小值.【詳解】根據(jù)題意,畫出幾何關系如下圖所示:設四邊形的內切圓半徑為,雙曲線半焦距為,則所以,四邊形的內切圓面積為,則,解得,則,即故由基本不等式可得,即,當且僅當時等號成立.故焦距的最小值為.故選:D【點睛】本題考查了雙曲線的定義及其性質的簡單應用,圓錐曲線與基本不等式綜合應用,屬于中檔題.9.B【解析】

或,從而明確充分性與必要性.【詳解】,由可得:或,即能推出,但推不出∴“”是“”的必要不充分條件故選【點睛】本題考查充分性與必要性,簡單三角方程的解法,屬于基礎題.10.C【解析】

設,,,,設直線的方程為:,與拋物線方程聯(lián)立,由△得,利用韋達定理結合已知條件得,,代入上式即可求出的取值范圍.【詳解】設直線的方程為:,,,,,聯(lián)立方程,消去得:,△,,且,,,線段的中點為,,,,,,,,把代入,得,,,故選:【點睛】本題主要考查了直線與拋物線的位置關系,考查了韋達定理的應用,屬于中檔題.11.C【解析】

過作于,連接,易知,,從而可證平面,進而可知,當最大時,取得最大值,取的中點,可得,再由,求出的最大值即可.【詳解】在和中,,所以,則,過作于,連接,顯然,則,且,又因為,所以平面,所以,當最大時,取得最大值,取的中點,則,所以,因為,所以點在以為焦點的橢圓上(不在左右頂點),其中長軸長為10,焦距長為8,所以的最大值為橢圓的短軸長的一半,故最大值為,所以最大值為,故的最大值為.故選:C.【點睛】本題考查三棱錐體積的最大值,考查學生的空間想象能力與計算求解能力,屬于中檔題.12.B【解析】

利用指數(shù)函數(shù)和對數(shù)函數(shù)的單調性,將數(shù)據(jù)和做對比,即可判斷.【詳解】由于,,故.故選:B.【點睛】本題考查利用指數(shù)函數(shù)和對數(shù)函數(shù)的單調性比較大小,屬基礎題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】

由已知利用兩角差的正弦函數(shù)公式可得,兩邊平方,由同角三角函數(shù)基本關系式,二倍角的正弦函數(shù)公式即可計算得解.【詳解】,得,在等式兩邊平方得,解得.故答案為:.【點睛】本題主要考查了兩角差的正弦函數(shù)公式,同角三角函數(shù)基本關系式,二倍角的正弦函數(shù)公式在三角函數(shù)化簡求值中的應用,考查了轉化思想,屬于基礎題.14.【解析】

由角平分線成比例定理推理可得,進而設點表示向量構建方程組表示點P坐標,代入圓C方程即可表示動點Q的軌跡方程,再由將所求視為該圓上的點與原點間的距離,所以其最值為圓心到原點的距離加減半徑.【詳解】由題可構建如圖所示的圖形,因為AQ是的角平分線,由角平分線成比例定理可知,所以.設點,點,即,則,所以.又因為點是圓上的動點,則,故點Q的運功軌跡是以為圓心為半徑的圓,又即為該圓上的點與原點間的距離,因為,所以故答案為:【點睛】本題考查與圓有關的距離的最值問題,常常轉化到圓心的距離加減半徑,還考查了求動點的軌跡方程,屬于中檔題.15.【解析】

直接利用復數(shù)的乘法運算化簡,從而得到復數(shù)的共軛復數(shù)和的模.【詳解】,則復數(shù)的共軛復數(shù)為,且.故答案為:;.【點睛】本題考查了復數(shù)代數(shù)形式的乘除運算,考查了復數(shù)的基本概念,是基礎的計算題.16.【解析】

觀察知各等式右邊各項的系數(shù)和為1,最高次項的系數(shù)為該項次數(shù)的倒數(shù),據(jù)此計算得到答案.【詳解】根據(jù)所給的已知等式得到:各等式右邊各項的系數(shù)和為1,最高次項的系數(shù)為該項次數(shù)的倒數(shù),∴A,A1,解得B,所以A﹣B.故答案為:.【點睛】本題考查了歸納推理,意在考查學生的推理能力.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1).(2)【解析】

(1)先設等差數(shù)列{an}的公差為d(d>0),然后根據(jù)等差數(shù)列的通項公式及已知條件可列出關于d的方程,解出d的值,即可得到數(shù)列{an}的通項an;(2)先根據(jù)第(1)題的結果計算出數(shù)列{bn}的通項公式,然后運用錯位相減法計算前n項和Tn.【詳解】(1)由題意,設等差數(shù)列{an}的公差為d(d>0),則a4a5=(1+3d)(1+4d)=11,整理,得12d2+7d﹣10=0,解得d(舍去),或d,∴an=1(n﹣1),n∈N*.(2)由(1)知,bn=an?3n?3n=(2n+1)?3n﹣1,∴Tn=b1+b2+b3+…+bn=3×1+5×31+7×32+…+(2n+1)?3n﹣1,∴3Tn=3×31+5×32+…+(2n﹣1)?3n﹣1+(2n+1)?3n,兩式相減,可得:﹣2Tn=3×1+2×31+2×32+…+2?3n﹣1﹣(2n+1)?3n=3+2×(31+32+…+3n﹣1)﹣(2n+1)?3n=3+2(2n+1)?3n=﹣2n?3n,∴Tn=n?3n.【點睛】本題主要考查等差數(shù)列基本量的計算,以及運用錯位相減法計算前n項和.考查了轉化與化歸思想,方程思想,錯位相減法的運用,以及邏輯思維能力和數(shù)學運算能力.屬于中檔題.18.(1),.(2)【解析】

(1)利用,代入可求;消參可得直角坐標方程.(2)將的參數(shù)方程代入的直角坐標方程,與有交點,可得,解不等式即可求解.【詳解】(1)(2)將的參數(shù)方程代入的直角坐標方程得:與有交點,即【點睛】本題考查了極坐標方程與普通方程的轉化、參數(shù)方程與普通方程的轉化、直線與圓的位置關系的判斷,屬于基礎題.19.(1)(2)證明見解析【解析】

(1)據(jù)題意可得在區(qū)間上恒成立,利用導數(shù)討論函數(shù)的單調性,從而求出滿足不等式的的取值范圍;(2)不等式整理為,由(1)可知當時,,利用導數(shù)判斷函數(shù)的單調性從而證明在區(qū)間上成立,從而證明對任意,都有.【詳解】(1)解:因為函數(shù)的圖象恒在的圖象的下方,所以在區(qū)間上恒成立.設,其中,所以,其中,.①當,即時,,所以函數(shù)在上單調遞增,,故成立,滿足題意.②當,即時,設,則圖象的對稱軸,,,所以在上存在唯一實根,設為,則,,,所以在上單調遞減,此時,不合題意.綜上可得,實數(shù)的取值范圍是.(2)證明:由題意得,因為當時,,,所以.令,則,所以在上單調遞增,,即,所以,從而.由(1)知當時,在上恒成立,整理得.令,則要證,只需證.因為,所以在上單調遞增,所以,即在上恒成立.綜上可得,對任意,都有成立.【點睛】本題考查導數(shù)在研究函數(shù)中的作用,利用導數(shù)判斷函數(shù)單調性與求函數(shù)最值,利用導數(shù)證明不等式,屬于難題.20.(Ⅰ);(Ⅱ)詳見解析.【解析】

(Ⅰ)由橢圓的定義可得,周長取最大值時,線段過點,可求出,從而求出橢圓的標準方程;(Ⅱ)設直線,直線,,,,.把直線與直線的方程分別代入橢圓的方程,利用韋達定理和弦長公式求出和,根據(jù)求出的值.最后直線與直線的方程聯(lián)立,求兩直線的交點即得結論.【詳解】(Ⅰ)設的周長為,則,當且僅當線段過點時“”成立.,,又,,橢圓的標準方程為.(Ⅱ)若直線的斜率不存在,則直線的斜率也不存在,這與直線與直線相交于點矛盾,所以直線的斜率存在.設,,,,,.將直線的方程代入橢圓方程得:.,,.同理,.由得,此

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論