




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
THEENERGYSECTOROFPANAMA
CLIMATECHANGE
ADAPTATIONCHALLENGES
?IRENA2024
Unlessotherwisestated,materialinthispublicationmaybefreelyused,shared,copied,reproduced,printedand/orstored,providedthatappropriateacknowledgementisgivenofIRENAasthesourceandcopyrightholder.Materialinthispublicationthatisattributedtothirdpartiesmaybesubjecttoseparatetermsofuseandrestrictions,andappropriatepermissionsfromthesethirdpartiesmayneedtobesecuredbeforeanyuseofsuchmaterial.
ISBN:978-92-9260-610-7
Citation:IRENA(2024),TheenergysectorofPanama:Climatechangeadaptationchallenges,InternationalRenewableEnergyAgency,AbuDhabi.
AboutIRENA
TheInternationalRenewableEnergyAgency(IRENA)servesastheprincipalplatformforinternationalco-operation;acentreofexcellence;arepositoryofpolicy,technology,resource,andfinancialknowledge;andadriverofactiononthegroundtoadvancethetransformationoftheglobalenergysystem.Aglobalintergovernmentalorganisationestablishedin2011,IRENApromotesthewidespreadadoptionandsustainableuseofallformsofrenewableenergy,includingbioenergyandgeothermal,hydropower,ocean,solarandwindenergy,inthepursuitofsustainabledevelopment,energyaccess,energysecurity,andlow-carboneconomicgrowthandprosperity.
Acknowledgements
ThisreportwasdevelopedundertheguidanceofGürbüzGonül(Director,CountryEngagementandPartnerships,IRENA)andBinuParthan.
ThedocumentwasauthoredbyJoséTorón,CamiloRamírez(IRENA)andFernandoAnaya(Consultant).
ValuableinputsandcommentswereofferedbyIRENAexperts,RebeccaBisangwa,InesJacob,PaulKomor,SultanMollovandGayathriNair.ThereportbenefitedfromtheparticipationandcontributionofrepresentativesfromPanama’sInstitutions,theNationalEnergySecretariat(SNE)andtheMinistryoftheEnvironment.
PublicationandeditorialsupportwereprovidedbyFrancisField,StephanieClarkeandManuelaStefanides.Thereportwascopy-editedbyFayreMakeig,withgraphicdesignprovidedbyPhoenixDesignAid.
Disclaimer
Thispublicationandthematerialhereinareprovided“asis”.AllreasonableprecautionshavebeentakenbyIRENAtoverifythereliabilityofthematerialinthispublication.However,neitherIRENAnoranyofitsofficials,agents,data,orotherthird-partycontentprovidersprovidesawarrantyofanykind,eitherexpressedorimplied,andtheyacceptnoresponsibilityorliabilityforanyconsequenceofuseofthepublicationormaterialherein.
TheinformationcontainedhereindoesnotnecessarilyrepresenttheviewsofallMembersofIRENA.ThementionofspecificcompaniesorcertainprojectsorproductsdoesnotimplythattheyareendorsedorrecommendedbyIRENAinpreferencetoothersofasimilarnaturethatarenotmentioned.ThedesignationsemployedandthepresentationofmaterialhereindonotimplytheexpressionofanyopiniononthepartofIRENAconcerningthelegalstatusofanyregion,country,territory,city,orareaorofitsauthorities,orconcerningthedelimitationoffrontiersorboundaries.
CONTENTS
1.INTRODUCTION 6
2.METHODOLOGY 8
2.1Methodologypart1:Analysisofchangesinclimatevariables 8
2.2Methodologypart2:Analysisofinfrastructureatriskfromextremeweatherevents 11
3.ENERGYINFRASTRUCTURE 15
3.1Generation 15
3.2Transmission 18
3.3Distribution 20
3.4Conventionalfueldistributionterminals 21
3.5Accessroutestoenergyinfrastructure 22
4.RATIONALEFORQUANTIFYINGTHEIMPACTOFEXTREMEWEATHEREVENTSON
THEENERGYSECTOR 23
4.1Extremerainfallandfloods 24
4.2Droughts 25
4.3Heatwaves 26
4.4Sealevelrise 27
5.ESTIMATINGEXPOSURETOCLIMATERISK 28
5.1Climatehazard 29
5.2Exposureofinfrastructuretoclimatehazards 34
5.3Infrastructureunderclimaterisk 45
6.IMPLICATIONSOFCHANGESINRAINFALLANDTEMPERATUREON
ELECTRICITYGENERATIONINPANAMA 52
6.1Precipitationandtemperaturechanges 53
6.2Impactsontheelectricityinfrastructure 56
7.CLIMATECHANGERESILIENCEMEASURES 65
7.1Existinginfrastructure 65
7.2Plannedinfrastructure 72
8.CONCLUSIONSANDRECOMMENDATIONS 73
8.1Finalremarks 74
9.REFERENCES 76
3
THEENERGYSECTOROFPANAMA:CLIMATECHANGEADAPTATIONCHALLENGES
4
ANNEXES 83
Annex1.Georeferencedexistinginfrastructure 83
Annex2.Georeferencedplannedinfrastructure 89
Annex3.Exposureofexistinginfrastructuretoclimatehazard 93
Annex4.Plannedinfrastructureexposuretoclimatehazard 98
Annex5.Climaterisk–existinginfrastructure 102
Annex6.Climaterisk–plannedinfrastructure 107
FIGURES
Figure1Methodologicalsequence1–electricalinfrastructure 9
Figure2Methodologicalsequence2–electricalinfrastructure 11
Figure3Capacitydistributionbytechnology 16
Figure4Distributionofpowergenerationplants 16
Figure5Distributionofplannedpowergenerationplants 17
Figure6Distributionofisolatedelectricitygenerationsystems 17
Figure7Powertransmissionlines 18
Figure8Distributionoftransmissionsubstations 19
Figure9Concessionareasoftheelectricitydistributionnetwork 20
Figure10Lengthofdistributionlines,2019 21
Figure11Fueldistributionterminals 21
Figure12AccessroutestoPanama’senergyinfrastructure 22
Figure13Floodthreatfromextremerainfall,2050 29
Figure14Droughtthreat,2050 30
Figure15DryanddegradedlandinPanama 31
Figure16Threatofextremeheat,2050 32
Figure17Threatduetosealevelrise,2050 33
Figure18Exposureofenergyinfrastructuretoflooding,2050 34
Figure19Exposureofplannedenergyinfrastructuretoflooding,2050 35
Figure20Exposureoftheinstalledgenerationinfrastructuretodrought,2050 36
Figure21Exposureofplannedgenerationinfrastructuretodrought,2050 36
Figure22Exposureofinstalledgenerationinfrastructuretoextremeheat,2050 37
Figure23Exposureofplannedgenerationinfrastructuretoextremeheat,2050 37
Figure24Exposureofhydrocarbonsubstationsandterminalstoflooding,2050 38
Figure25Exposureofhydrocarbonsubstationsandterminalstodrought,2050 38
Figure26Exposureofhydrocarbonsubstationsandterminalstoextremeheat,2050 39
Figure27Exposureoftransmissioninfrastructuretofloodingfromextremerainfall,2050 39
5
Figure28Transmissioninfrastructureexposuretodrought,2050 40
Figure29Exposureoftransmissioninfrastructuretoextremeheat,2050 41
Figure30Exposureofroadinfrastructuretoextremerainfallflooding,2050 42
Figure31Exposureofhydrocarbonterminalportstosealevelrise,2050 43
Figure32Roadwayexposuretothethreatofsealevelrise,2050 44
Figure33Thermoelectricpowerplantsinstalledunderextremeheatrisk,2050 45
Figure34Installedhydropowerplantsunderriskoffloodingfromextremerainfall,2050 46
Figure35Installedwindpowerplantsunderextremeheatrisk,2050 46
Figure36Installedsolarpowerplantsunderextremeheatrisk,2050 47
Figure37Plannedsolarpowerplantsunderextremeheatrisk,2050 47
Figure38Existingtransmissionlinesunderextremeheatrisk,2050 48
Figure39Existingtransmissionlinesunderriskoffloodingfromextremerainfall,2050 48
Figure40Substationsatriskoffloodingduetoextremerainfall,2050 49
Figure41Substationsunderextremeheatrisk,2050 49
Figure42Hydrocarbonterminalportsatriskofsealevelrise,2050 50
Figure43Roadinfrastructureatriskoffloodingfromextremerainfallevents,2050 51
Figure44Precipitationandmaximumreferencetemperatureattheprovinciallevel,1991-2020 53
Figure45Estimatedaveragechangesinprecipitationwithrespecttothereferencescenario 54
Figure46MaximumtemperatureforscenariosSSP1-2.6andSSP5-8.5andprojectionto2050
and2070 55
Figure47Estimatedaveragechangesofmaximumtemperaturewithrespecttothereference
scenario 56
TABLES
Table1Sensitivityofinfrastructuretoclimatehazards 13
Table2Climateriskclassificationcategories 14
Table3Characteristicsofhydrocarbonterminals 22
Table4Impactofrainfallchangeoninstalledhydropowergenerationcapacity 57
Table5Impactofincreasingmaximumtemperaturesoninstalledsolarphotovoltaic
generationcapacity 59
Table6Impactofincreasingmaximumtemperaturesoninstalledwindgenerationcapacity 61
Table7Impactofincreasingmaximumtemperaturesontransmissioncapacity 61
Table8Levelsofenergylossesoftheelectricitytransmissionsystemunderthechange
scenariosanalysed 63
Table9Installedandpowergenerationcapacitycompromisedunderanalysedscenarios 64
Table10Mainclimatechangeimpactsandadaptationmeasuresforinstalledinfrastructure 66
6
1.INTRODUCTION
EnergyinfrastructuredevelopmentinPanama,asintherestofLatinAmerica,wasconceivedunderassumptionsofclimatestability,anticipatingminimalorevennochangesinclimatebehaviouroverthelongterm.However,inthepastdecade,Panama’sclimatepatternshavechangedsignificantly(MinisteriodeAmbientePanama,2021).Itisimportanttoassessthepotentialimpactofthesechangesonexistingandplannedenergyinfrastructure,amongotheraspects.Withoutmeasurestoincreasetheenergysector’sresiliencetoclimatechange,1infrastructureforenergyproductionandtransportwillbeleftvulnerabletoclimaticphenomena—athigheconomicandsocialcoststothecountry.Totakeoneexample,risingtemperaturescoulddecreasetheefficiencyofthermalconversioninPanama.Also,extremedroughtscoulddecreasewateravailability,impactingtheplants’coolingandoperatingsystemsandcausinginterruptionsinpowersupply.Changesinhydrologicalpatternsandextremerainfallcouldalsoaffecthydropowergeneration(WEC,2014),whichrepresentsahighshareofPanama’senergymatrixandisthereforeessentialtoguaranteethecountry’selectricitysupply.Whileadecreaseinprecipitationandanincreaseintemperaturewouldhampergenerationcapacityormakegenerationirregular,extremerainfalleventswouldbringfloodsthatjeopardisetheinfrastructureandoperationofhydroelectricplants.Atthesametime,energyinfrastructureincoastalareaswouldbeathighriskofrisingsealevels(EbingerandVergara,2011),whichcouldcausedamageandinterruptionsinenergygeneration,andreceptionanddistributionoperations.
1Resilientinfrastructureisinfrastructurethat,havingsufferedanaturaloranthropogenicfailureevent,iscapableofsustainingaminimumlevelofserviceandrecoveringitsoriginalperformancewithinareasonabletimeframeandcost(Weikert,2021).
1.INTRODUCTION
Climatechangealsohasasignificantimpactontheroadinfrastructureusedtotransportfuels,makingtheirdistributioninefficientandlesssafe.Thisinfrastructureisparticularlysusceptibletotheeffectsofclimatechange,includingsealevelriseandincreasedprecipitationandflooding.Incoastalareas,sealevelriseandincreasedseverityofstormscantriggerstormsurgesandmorefrequentflooding,damagingland-basedcommunicationroutes,suchasroadsandbridges.Ininlandareas,heavyrainscanresultinfloodingandlandslides,causingdamagetoinfrastructure(EPA,2022),andpotentiallydisruptingthedistributionofessentialfuelsbyroad.Thismayinturnlimitfuelavailabilityatservicestationsandotherdistributionpoints.
InthecontextofclimatechangeandtheenergyinfrastructureinPanama,accountingforclimateresilienceinthedesignandimplementationofenergyinfrastructureinvestmentswouldnotonlyhelpmitigatetheimpactsofclimatechange,butalsocomplementthecost-effectivenessandqualityofenergyservices.Severalstudieshaveshownthatinvestinginresilientinfrastructureisacost-effectiveandrobustoption:foreverydollarinvested,itispossibletosaveuptosixdollarsinfutureassetlosses(WEC,2014;WorldBank,2019;UNCTAD,2020;Weikert,2021).Therefore,long-termdecisionsonenergyinfrastructuremustprioritiseclimateresilience(Hallegatteetal.,2019).ThisreportidentifieskeystepstohelpmitigatepotentialdamagestoPanama’senergyinfrastructureandincreaseitsresilience.Measuresareidentifiedbasedonanassessmentofclimaterisk,aswellastheimplicationsoflong-termchangesinprecipitationandtemperature.
C
7
8
2.METHODOLOGY
Twomethodologieswereappliedinparalleltoidentifyenergyresiliencemeasures.Themethodologydetailedunder“Methodologypart1”takesasthemaininputsdataontemperatureandprecipitationvariationsprovidedbytheMinistryofEnvironmentofPanama.Theothermethodology,detailedunder“Methodologypart2”,usesdatafromtheWorldBank’smodellingoftheoccurrenceofextremeclimatehazards.Exceptforsealevelrise,theresultsobtainedfromtheanalysisweretreatedindependently,butbothmethodologiesconvergeinthesectiononclimateresiliencemeasures.Eachmethodologyisdetailedbelow.
2.1METHODOLOGYPART1:ANALYSISOFCHANGESINCLIMATEVARIABLES
Thismethodologyusedhistoricalandcurrentrecordsoftemperature,precipitationandsealevelrisevariationscompiledbyPanama’sMinistryofEnvironmenttoconstructprojectionsofpotentialvariationsupto2050and2070,fortheministry’supdateofclimatechangescenariosforPanama.ThisinformationwasusedtogeneratesectionIIIontheimplicationsofvariationsinprecipitationandtemperatureforenergyinfrastructure.Sealevelrisewasintegratedintothehazardanalysis,giventhatitsvariationisconsideredtorepresentathreatthatcandirectlyimpacttheintegrityofinfrastructure.Figure1outlinesthemethodologicalsequenceusedtoanalysechangesinthevariablesmonitoredbytheMinistryofEnvironment.
9
2.METHODOLOGY
Effectsontechnologiesandnaturalresources
Figure1Methodologicalsequence1–electricalinfrastructure
Climatevariation
Climatevariationmaps
Implicationsforenergyinfrastructure
Energyinfrastructureresiliencemeasures
Climatevariationmaps
ThemagnitudeofchangesinPanamawascalculatedusingthe“mapalgebra”toolofthegeographicinformationsystem(GIS).ThecalculationutilisedthebaselinedataandtheSharedSocio-economicPathway(SSP)1-2.6andSSP5-8.5scenariosprojectedfortheyears2050and2070providedbytheMinistryofEnvironment.Thereferencemapsweregeneratedfirst,followedbytheestimationofvariationsusingtheprecipitationandtemperaturemapsfortheprojectedscenariosfor2050and2070.
Followingthisprocedure,outputvaluesrepresentingthemagnitudeofchangesintheclimatevariablesareobtained.Itisimportanttonotethatnegativevaluesindicateadecreaseinthemagnitudeofthevariables,whereaspositivevaluesindicateanincrease.
Obtainingexchangevalues
ArcGISsoftwarewasusedfortheproceduretoobtainthevaluesofchangesinprecipitationandmaximumtemperaturethatwillaffecttheenergyinfrastructureunderanalysis.Thesoftwarewasusedasfollows:
Fortheelectricitygenerationinfrastructure(hydro,solarandwind),theGIStool“extraction”wasused.Aspecificcommandwasusedtoextracttheprojectedprecipitationandmaximumtemperaturevaluesforthedifferentscenarios;thegeographiclocationofindividualgenerationinfrastructurewasusedasthereference.Thisresultedinthegenerationofoutputtablesshowingthenameofthegenerationinfrastructureandthevalueofchangeforthevariableanalysed.
Fortransmissioninfrastructure,adifferentapproachwastakentoobtaintemperaturechangeinformation.ThedigitaltemperaturemapswerereclassifiedandtransformedintovectorformatusingtheGIS“conversion”tool.Fromthisconversion,aninterceptwasmadebetweenthevectortemperaturemapsforthedifferentscenariosandprojectionsandthedistributionmapofthetransmissionnetworks.Thisresultedincross-referencedtablesthatprovidedtheaveragevaluesoftemperaturechangeforeachtransmissionlinesection.
THEENERGYSECTOROFPANAMA:CLIMATECHANGEADAPTATIONCHALLENGES
10
Infrastructureimplications
TheimpactofchangesinthemagnitudeofaverageannualrainfallandmaximumtemperatureontheinstalledenergyinfrastructureinPanamawasassessed.Toassesstheassociatedimpacts,electricitygenerationplantsbasedonthermal,hydroelectric,solarandwindpowertechnology,aswellasthetransmissioninfrastructure,wereconsidered.Estimatesconsidertheprojecteddeclineinoperatingefficiencyofthegenerationandtransmissionsystemstowards2050and2070,aswellastheinstalledcapacityandthevolumeofenergygenerationthatcouldbecompromisedundervariousscenariosofanalysis.
Forhydroelectricgeneration,theimpactofreducedrainfallwasassessedinrelationtothereductioninflowsfeedingthecountry’shydroelectricpowerplantbasins.Thereductioninflowstothehydroelectricbasinswasestimatedbasedonthemagnitudeofrainfalldecrease(millimetres[mm]),thecontributingareaofeachbasin(squarekilometres[km2])andassuminganaveragerun-offcoefficientof60%,accordingtotheUnitedNationsEducational,ScientificandCulturalOrganization(UNESCO,2008).
Subsequently,thevolumeofenergyandtheinstalledcapacity2compromisedforhydroelectricpowerplantswasestimatedfortheyears2050and2070foreachanalysedscenariobasedontheinflowresultingfromthedeclineinprecipitationandassuminganaverageinflowpowerratioof15.49gigawatthours[GWh]/year/cubicmetres/second[m3/s].3
Toassesstheimpactsonsolarandwindgeneration,theexpectedtemperatureincreaseforindividualplantswasdeterminedanditseffectontheoperationalefficiencyofthegenerationsystemswasestimated.Thisestimatewasusedtocalculatethereductionintheoperatingefficiencyofthesolarandwindpowerplants.Theconversionfactorsforindividualtechnologieswereconsideredandthedecreaseinpowergenerationcapacityduetotemperatureincreasewasestimated.4Forsolarpowerplants,a0.5%reductionintransmissionefficiencyperdegreeCelsiusriseintemperaturewasconsidered(Dwivedietal.,2020),whileforwindgeneration,anefficiencyfactorof1.64x10-3%perdegreeCelsius(/°C)wasassumed(Rodríguezetal.,2020).
Asimilarprocedurewasfollowedtoassesstheimpactonthetransmissioninfrastructure.Theeffectofthetemperatureincreaseontransmissionlineswasanalysed,consideringtheirloadcarryingcapacityandthepossiblereductioninoperationalefficiency.Thismadeitpossibletoidentifytheareasofthetransmissioninfrastructurethatcouldbeaffectedandtoquantifytheimpactonelectricitytransmissioncapacityunderthedifferentclimatescenariosanalysed.Specifically,a1.2%reductioninelectricitytransmissioncapacityonaverageforeachdegreeCelsiusriseintemperaturewasassumed,consideringconductoroperatingtemperaturesbetween50%and100%(Castellanos,2014).
Theseestimatesmadeitpossibletoassesstheimpactofchangesinprecipitationandmaximumtemperaturesontheelectricityinfrastructureandtodeterminetheinstalledcapacityandtransmissioncapacitythatcouldbeaffectedunderthedifferentclimatescenariosconsidered.
2Assuminganaveragecapacityfactorof60%.
3EstimatedbasedonthewaterbalancesforPanama’smainreservoirs–Boyano,ForturaandChanguinola(IMHPA,2024).
4Anaveragecapacityfactorof20%forsolarphotovoltaicgenerationand35%forwindgenerationwasassumed.
2.METHODOLOGY
11
2.2METHODOLOGYPART2:ANALYSISOFINFRASTRUCTUREATRISKFROMEXTREMEWEATHEREVENTS
Themethodologyusedtoidentifyresilience-buildingadaptationmeasuresforPanama’senergyinfrastructurebeginswithaclimateriskassessment.5Theprocessinvolvesassessingexistingelectricitygenerationandtransmissioninfrastructure,6aswellastheinfrastructureplannedforthenexttenyears(ETESA,2022),alongwithfuelterminalportsandroadsprovidingaccesstothemainpowergenerationcentres.
Riskisassessedbyconsideringclimatehazard,exposureandvulnerability,asoutlinedinthemethodologyoftheIntergovernmentalPanelonClimateChange(IPCC,2014).Thisapproachmakesitpossibletoidentifyareasofgreatestriskand,consequently,todevelopadaptationmeasuresfocusedonmitigatingpotentialdamagesandmakingPanama’senergyinfrastructuremoreresilienttotheimpactsofclimatechange.Figure2outlinesthemethodologicalsequenceusedtoachievetheproposedobjective.
<
Vulnerabilityofinfrastructuretothreat
Figure2Methodologicalsequence2–electricalinfrastructure
Climatethreat
Exposureofinfrastructuretothreat
Climateriskonenergyinfrastructure
Energyinfrastructureresiliencemeasures
Climatethreat
Theclimateriskassessmentconsidersthedangersposedtoasystembythemanifestationofextremeweatherevents(LopezandMontoya,2019).Thespatialoccurrencepotentialoffloodingeventstriggeredbyrainfall,droughts,extremeheatandsealevelrisewasassessedbasedontheWorldBankmodellingdescribedbelowandgeostatisticalinterpolationobtainedfromtheArcGISprogramme(ArcMap10.8),7projectedtotheyear2050and2070.
5Linkedtoslowprogressevents,suchastemperaturechanges,changesinprecipitationpatterns(drought,heavyrains),sealevelrise,amongothers,whichshouldbeconsideredwhilestructuringnewpublicandprivateinvestmentprojects,aswellasinadaptationmeasures.
6Substations.
7Characterisationlinkedtothefrequencyorintensityoftheweathereventsanalysedisexcluded.
THEENERGYSECTOROFPANAMA:CLIMATECHANGEADAPTATIONCHALLENGES
12
Theassumptionsandinformationsourcesusedfortheclimatehazardanalysisaresummarisedbelow:
?Inputdata.Datatodeterminethethreatoffloods,droughtsandextremeheatwereobtainedfromtheWorldBank’sClimateChangeKnowledgePortal(WorldBank,2024a).Specifically,province-leveldatawereusedforaverageclimateprojectionsunderthesixthversionoftheIPCC’sCommonInformationManagementProtocol(PCMDI,2019),andunderthemultipleensembleclimateprojectionmodel.8Fortheseprojections,theWorldBankproposesfivescenariosrepresentingpossiblesocialandeconomicdevelopmentpathways(SSP).TheSSP1-1.9scenarioisthemostoptimisticandenvisagesavisionoftheclimateresponsethatcouldreflecttheParisAgreementtarget.TheSSP1-2.6scenariosuggestsatransitiontosustainabilitywithadrasticreductioninglobalemissionsandachievingcarbonneutralityafter2050.Ontheotherhand,SSP2-4.5representsanintermediatescenario,inwhichemissionsaremaintainedatcurrentlevelsbutbegintodeclinetowardsmid-century,withoutreachingzeroby2100.SSP3-7.0describesafutureinwhichcountriesbecomeincreasinglycompetitive,leadingtoasignificantincreaseinemissions,whichdoubleby2100fromtoday.Bycontrast,SSP5-8.5isbasedonintensifiedexploitationofconventionalfuelresourcesandrepresentsafutureinwhichgreenhousegasemissionsincreasesignificantly(WorldBank,2024a).
Theintermediatescenario(SSP2-4.5)9wasselectedasthebasisforthestudy,sinceitisalignedwiththecountries’currentCO2emissionreductioncommitments.Toassesstheimpactsofclimatechange,threeclimatevariableswereused:(1)cumulativeprecipitationonverywetdays(mm),10whichisrelatedtotheoccurrenceoffloods;(2)maximumnumberofconsecutivedrydays,11whichisassociatedwithdroughtevents;and(3)averagenumberofdaysonwhichthemaximumtemperatureexceeds35°C,whichreflectstheoccurrenceofextremeheatspells.Finally,toanalysethethreatofsealevelrise,cartographicinformationindigitalformatprovidedbytheNationalEnvironmentalInformationSystem(SINIA)ofthePanamanianMinistryoftheEnvironment(SINIA,2020)wasaccessed.Specifically,theanalysisusedthemapofcoastalfloodingresultingfromextremeeventsin2050(50-yearreturnperiodandscenarioSSP2-4.512).
?Threatmapping.Floodhazardmapsforrainfall,droughtandextremeheatweregeneratedusingGIS.13Pointdataforprovince-levelclimaticvariablesobtainedfromtheWorldBank(describedintheprevioussection)wereusedtoconstruct14alongsidegeostatisticalinterpolationmethodstoobtainhazardmapsordigitalsurfacesforthecountry15Thesedigitalsurfaceswereeditedandcataloguedonathreatscalerangingfromhightolow,representedbycolourpalettesappropriatetoeachcase(maps).
Exposureofenergyinfrastructuretotheclimatethreat
Forthepurposesofthisreport,exposureisdefinedasthepresenceofinfrastructureand/oreconomic,socialorculturalassetsinareasthatcouldbeadverselyaffectedbyaclimatehazard(UNDRR,2022).
Thelevelofexposurewasassessedbyanalysingthegeographicallocationofgiveninfrastructure(georeferencing16)inrelationtothepreviouslymappedclimatichazards.Thedataandmappingresultsaredescribedbelow:
8Itprojectsthechangeinclimatevariablesovertimeasanaverageofdifferentmodels(CANESM5,CNRM-ESM2-1,GFDL_ESM4,MRI-ESM2and
UKESM1-0-II).990thpercentile.
10Exceedingthe95thpercentileofdailyprecipitationintensity.
11Nosignificantrainfall(<1mm).1295thpercentile.
13Thebasecartography(boundaries,hydrography,waterbodies)wasobtainedfromtheSTRIGISDataPortaloftheRepublicofPanama(
https://
)
.
14Imagesarerepresentedinregularpixels(cells),containingavalueinamatrixofrowsandcolumns.
15Interpolationpredictsvalue
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 公司入股農(nóng)民合同范本
- 合伙店鋪協(xié)議合同范本
- 磚廠訂貨合同范本模板
- 合同范本蓋章標(biāo)準(zhǔn)樣本
- 橋梁安全事故
- 2025年春一年級(jí)語文上冊(cè) 語文園地三(公開課一等獎(jiǎng)創(chuàng)新教案++素材)
- 2025年春一年級(jí)語文上冊(cè) 19 咕咚(公開課一等獎(jiǎng)創(chuàng)新教案++素材)
- 預(yù)防心理障礙的策略與方法
- 青年創(chuàng)新創(chuàng)業(yè)事跡
- 2019年應(yīng)用化工技術(shù)專業(yè)單招考試大綱知識(shí)考試樣卷
- 2024屆浙江省名校新高考研究聯(lián)盟高三第三次聯(lián)考英語試題含答案
- 混凝土外加劑試驗(yàn)原始記錄
- 華為5G認(rèn)證考試(H35-460)題庫及答案
- (正式版)JBT 14932-2024 機(jī)械式停車設(shè)備 停放客車通-用技術(shù)規(guī)范
- 第6課 學(xué)書有法 課件-2023-2024學(xué)年高中美術(shù)人教版(2019)選擇性必修2 中國(guó)書畫
- 貴州省初中《體育》學(xué)業(yè)水平考試參考題庫(含答案)
- 2024年天津?qū)I居?jì)算機(jī)考試真題試卷及答案
- 合同的變更和解除條款
- 青島版數(shù)學(xué)五年級(jí)下冊(cè)第二單元《分?jǐn)?shù)的意義和性質(zhì)》教學(xué)評(píng)一致性的單元整體備課
- 2023年6月新高考天津卷英語試題真題及答案解析(精校打印版)
- 《鐵路法》培訓(xùn)試卷及答案
評(píng)論
0/150
提交評(píng)論