IRENA-巴拿馬能源部門:適應(yīng)氣候變化的挑戰(zhàn)_第1頁
IRENA-巴拿馬能源部門:適應(yīng)氣候變化的挑戰(zhàn)_第2頁
IRENA-巴拿馬能源部門:適應(yīng)氣候變化的挑戰(zhàn)_第3頁
IRENA-巴拿馬能源部門:適應(yīng)氣候變化的挑戰(zhàn)_第4頁
IRENA-巴拿馬能源部門:適應(yīng)氣候變化的挑戰(zhàn)_第5頁
已閱讀5頁,還剩205頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

THEENERGYSECTOROFPANAMA

CLIMATECHANGE

ADAPTATIONCHALLENGES

?IRENA2024

Unlessotherwisestated,materialinthispublicationmaybefreelyused,shared,copied,reproduced,printedand/orstored,providedthatappropriateacknowledgementisgivenofIRENAasthesourceandcopyrightholder.Materialinthispublicationthatisattributedtothirdpartiesmaybesubjecttoseparatetermsofuseandrestrictions,andappropriatepermissionsfromthesethirdpartiesmayneedtobesecuredbeforeanyuseofsuchmaterial.

ISBN:978-92-9260-610-7

Citation:IRENA(2024),TheenergysectorofPanama:Climatechangeadaptationchallenges,InternationalRenewableEnergyAgency,AbuDhabi.

AboutIRENA

TheInternationalRenewableEnergyAgency(IRENA)servesastheprincipalplatformforinternationalco-operation;acentreofexcellence;arepositoryofpolicy,technology,resource,andfinancialknowledge;andadriverofactiononthegroundtoadvancethetransformationoftheglobalenergysystem.Aglobalintergovernmentalorganisationestablishedin2011,IRENApromotesthewidespreadadoptionandsustainableuseofallformsofrenewableenergy,includingbioenergyandgeothermal,hydropower,ocean,solarandwindenergy,inthepursuitofsustainabledevelopment,energyaccess,energysecurity,andlow-carboneconomicgrowthandprosperity.

Acknowledgements

ThisreportwasdevelopedundertheguidanceofGürbüzGonül(Director,CountryEngagementandPartnerships,IRENA)andBinuParthan.

ThedocumentwasauthoredbyJoséTorón,CamiloRamírez(IRENA)andFernandoAnaya(Consultant).

ValuableinputsandcommentswereofferedbyIRENAexperts,RebeccaBisangwa,InesJacob,PaulKomor,SultanMollovandGayathriNair.ThereportbenefitedfromtheparticipationandcontributionofrepresentativesfromPanama’sInstitutions,theNationalEnergySecretariat(SNE)andtheMinistryoftheEnvironment.

PublicationandeditorialsupportwereprovidedbyFrancisField,StephanieClarkeandManuelaStefanides.Thereportwascopy-editedbyFayreMakeig,withgraphicdesignprovidedbyPhoenixDesignAid.

Disclaimer

Thispublicationandthematerialhereinareprovided“asis”.AllreasonableprecautionshavebeentakenbyIRENAtoverifythereliabilityofthematerialinthispublication.However,neitherIRENAnoranyofitsofficials,agents,data,orotherthird-partycontentprovidersprovidesawarrantyofanykind,eitherexpressedorimplied,andtheyacceptnoresponsibilityorliabilityforanyconsequenceofuseofthepublicationormaterialherein.

TheinformationcontainedhereindoesnotnecessarilyrepresenttheviewsofallMembersofIRENA.ThementionofspecificcompaniesorcertainprojectsorproductsdoesnotimplythattheyareendorsedorrecommendedbyIRENAinpreferencetoothersofasimilarnaturethatarenotmentioned.ThedesignationsemployedandthepresentationofmaterialhereindonotimplytheexpressionofanyopiniononthepartofIRENAconcerningthelegalstatusofanyregion,country,territory,city,orareaorofitsauthorities,orconcerningthedelimitationoffrontiersorboundaries.

CONTENTS

1.INTRODUCTION 6

2.METHODOLOGY 8

2.1Methodologypart1:Analysisofchangesinclimatevariables 8

2.2Methodologypart2:Analysisofinfrastructureatriskfromextremeweatherevents 11

3.ENERGYINFRASTRUCTURE 15

3.1Generation 15

3.2Transmission 18

3.3Distribution 20

3.4Conventionalfueldistributionterminals 21

3.5Accessroutestoenergyinfrastructure 22

4.RATIONALEFORQUANTIFYINGTHEIMPACTOFEXTREMEWEATHEREVENTSON

THEENERGYSECTOR 23

4.1Extremerainfallandfloods 24

4.2Droughts 25

4.3Heatwaves 26

4.4Sealevelrise 27

5.ESTIMATINGEXPOSURETOCLIMATERISK 28

5.1Climatehazard 29

5.2Exposureofinfrastructuretoclimatehazards 34

5.3Infrastructureunderclimaterisk 45

6.IMPLICATIONSOFCHANGESINRAINFALLANDTEMPERATUREON

ELECTRICITYGENERATIONINPANAMA 52

6.1Precipitationandtemperaturechanges 53

6.2Impactsontheelectricityinfrastructure 56

7.CLIMATECHANGERESILIENCEMEASURES 65

7.1Existinginfrastructure 65

7.2Plannedinfrastructure 72

8.CONCLUSIONSANDRECOMMENDATIONS 73

8.1Finalremarks 74

9.REFERENCES 76

3

THEENERGYSECTOROFPANAMA:CLIMATECHANGEADAPTATIONCHALLENGES

4

ANNEXES 83

Annex1.Georeferencedexistinginfrastructure 83

Annex2.Georeferencedplannedinfrastructure 89

Annex3.Exposureofexistinginfrastructuretoclimatehazard 93

Annex4.Plannedinfrastructureexposuretoclimatehazard 98

Annex5.Climaterisk–existinginfrastructure 102

Annex6.Climaterisk–plannedinfrastructure 107

FIGURES

Figure1Methodologicalsequence1–electricalinfrastructure 9

Figure2Methodologicalsequence2–electricalinfrastructure 11

Figure3Capacitydistributionbytechnology 16

Figure4Distributionofpowergenerationplants 16

Figure5Distributionofplannedpowergenerationplants 17

Figure6Distributionofisolatedelectricitygenerationsystems 17

Figure7Powertransmissionlines 18

Figure8Distributionoftransmissionsubstations 19

Figure9Concessionareasoftheelectricitydistributionnetwork 20

Figure10Lengthofdistributionlines,2019 21

Figure11Fueldistributionterminals 21

Figure12AccessroutestoPanama’senergyinfrastructure 22

Figure13Floodthreatfromextremerainfall,2050 29

Figure14Droughtthreat,2050 30

Figure15DryanddegradedlandinPanama 31

Figure16Threatofextremeheat,2050 32

Figure17Threatduetosealevelrise,2050 33

Figure18Exposureofenergyinfrastructuretoflooding,2050 34

Figure19Exposureofplannedenergyinfrastructuretoflooding,2050 35

Figure20Exposureoftheinstalledgenerationinfrastructuretodrought,2050 36

Figure21Exposureofplannedgenerationinfrastructuretodrought,2050 36

Figure22Exposureofinstalledgenerationinfrastructuretoextremeheat,2050 37

Figure23Exposureofplannedgenerationinfrastructuretoextremeheat,2050 37

Figure24Exposureofhydrocarbonsubstationsandterminalstoflooding,2050 38

Figure25Exposureofhydrocarbonsubstationsandterminalstodrought,2050 38

Figure26Exposureofhydrocarbonsubstationsandterminalstoextremeheat,2050 39

Figure27Exposureoftransmissioninfrastructuretofloodingfromextremerainfall,2050 39

5

Figure28Transmissioninfrastructureexposuretodrought,2050 40

Figure29Exposureoftransmissioninfrastructuretoextremeheat,2050 41

Figure30Exposureofroadinfrastructuretoextremerainfallflooding,2050 42

Figure31Exposureofhydrocarbonterminalportstosealevelrise,2050 43

Figure32Roadwayexposuretothethreatofsealevelrise,2050 44

Figure33Thermoelectricpowerplantsinstalledunderextremeheatrisk,2050 45

Figure34Installedhydropowerplantsunderriskoffloodingfromextremerainfall,2050 46

Figure35Installedwindpowerplantsunderextremeheatrisk,2050 46

Figure36Installedsolarpowerplantsunderextremeheatrisk,2050 47

Figure37Plannedsolarpowerplantsunderextremeheatrisk,2050 47

Figure38Existingtransmissionlinesunderextremeheatrisk,2050 48

Figure39Existingtransmissionlinesunderriskoffloodingfromextremerainfall,2050 48

Figure40Substationsatriskoffloodingduetoextremerainfall,2050 49

Figure41Substationsunderextremeheatrisk,2050 49

Figure42Hydrocarbonterminalportsatriskofsealevelrise,2050 50

Figure43Roadinfrastructureatriskoffloodingfromextremerainfallevents,2050 51

Figure44Precipitationandmaximumreferencetemperatureattheprovinciallevel,1991-2020 53

Figure45Estimatedaveragechangesinprecipitationwithrespecttothereferencescenario 54

Figure46MaximumtemperatureforscenariosSSP1-2.6andSSP5-8.5andprojectionto2050

and2070 55

Figure47Estimatedaveragechangesofmaximumtemperaturewithrespecttothereference

scenario 56

TABLES

Table1Sensitivityofinfrastructuretoclimatehazards 13

Table2Climateriskclassificationcategories 14

Table3Characteristicsofhydrocarbonterminals 22

Table4Impactofrainfallchangeoninstalledhydropowergenerationcapacity 57

Table5Impactofincreasingmaximumtemperaturesoninstalledsolarphotovoltaic

generationcapacity 59

Table6Impactofincreasingmaximumtemperaturesoninstalledwindgenerationcapacity 61

Table7Impactofincreasingmaximumtemperaturesontransmissioncapacity 61

Table8Levelsofenergylossesoftheelectricitytransmissionsystemunderthechange

scenariosanalysed 63

Table9Installedandpowergenerationcapacitycompromisedunderanalysedscenarios 64

Table10Mainclimatechangeimpactsandadaptationmeasuresforinstalledinfrastructure 66

6

1.INTRODUCTION

EnergyinfrastructuredevelopmentinPanama,asintherestofLatinAmerica,wasconceivedunderassumptionsofclimatestability,anticipatingminimalorevennochangesinclimatebehaviouroverthelongterm.However,inthepastdecade,Panama’sclimatepatternshavechangedsignificantly(MinisteriodeAmbientePanama,2021).Itisimportanttoassessthepotentialimpactofthesechangesonexistingandplannedenergyinfrastructure,amongotheraspects.Withoutmeasurestoincreasetheenergysector’sresiliencetoclimatechange,1infrastructureforenergyproductionandtransportwillbeleftvulnerabletoclimaticphenomena—athigheconomicandsocialcoststothecountry.Totakeoneexample,risingtemperaturescoulddecreasetheefficiencyofthermalconversioninPanama.Also,extremedroughtscoulddecreasewateravailability,impactingtheplants’coolingandoperatingsystemsandcausinginterruptionsinpowersupply.Changesinhydrologicalpatternsandextremerainfallcouldalsoaffecthydropowergeneration(WEC,2014),whichrepresentsahighshareofPanama’senergymatrixandisthereforeessentialtoguaranteethecountry’selectricitysupply.Whileadecreaseinprecipitationandanincreaseintemperaturewouldhampergenerationcapacityormakegenerationirregular,extremerainfalleventswouldbringfloodsthatjeopardisetheinfrastructureandoperationofhydroelectricplants.Atthesametime,energyinfrastructureincoastalareaswouldbeathighriskofrisingsealevels(EbingerandVergara,2011),whichcouldcausedamageandinterruptionsinenergygeneration,andreceptionanddistributionoperations.

1Resilientinfrastructureisinfrastructurethat,havingsufferedanaturaloranthropogenicfailureevent,iscapableofsustainingaminimumlevelofserviceandrecoveringitsoriginalperformancewithinareasonabletimeframeandcost(Weikert,2021).

1.INTRODUCTION

Climatechangealsohasasignificantimpactontheroadinfrastructureusedtotransportfuels,makingtheirdistributioninefficientandlesssafe.Thisinfrastructureisparticularlysusceptibletotheeffectsofclimatechange,includingsealevelriseandincreasedprecipitationandflooding.Incoastalareas,sealevelriseandincreasedseverityofstormscantriggerstormsurgesandmorefrequentflooding,damagingland-basedcommunicationroutes,suchasroadsandbridges.Ininlandareas,heavyrainscanresultinfloodingandlandslides,causingdamagetoinfrastructure(EPA,2022),andpotentiallydisruptingthedistributionofessentialfuelsbyroad.Thismayinturnlimitfuelavailabilityatservicestationsandotherdistributionpoints.

InthecontextofclimatechangeandtheenergyinfrastructureinPanama,accountingforclimateresilienceinthedesignandimplementationofenergyinfrastructureinvestmentswouldnotonlyhelpmitigatetheimpactsofclimatechange,butalsocomplementthecost-effectivenessandqualityofenergyservices.Severalstudieshaveshownthatinvestinginresilientinfrastructureisacost-effectiveandrobustoption:foreverydollarinvested,itispossibletosaveuptosixdollarsinfutureassetlosses(WEC,2014;WorldBank,2019;UNCTAD,2020;Weikert,2021).Therefore,long-termdecisionsonenergyinfrastructuremustprioritiseclimateresilience(Hallegatteetal.,2019).ThisreportidentifieskeystepstohelpmitigatepotentialdamagestoPanama’senergyinfrastructureandincreaseitsresilience.Measuresareidentifiedbasedonanassessmentofclimaterisk,aswellastheimplicationsoflong-termchangesinprecipitationandtemperature.

C

7

8

2.METHODOLOGY

Twomethodologieswereappliedinparalleltoidentifyenergyresiliencemeasures.Themethodologydetailedunder“Methodologypart1”takesasthemaininputsdataontemperatureandprecipitationvariationsprovidedbytheMinistryofEnvironmentofPanama.Theothermethodology,detailedunder“Methodologypart2”,usesdatafromtheWorldBank’smodellingoftheoccurrenceofextremeclimatehazards.Exceptforsealevelrise,theresultsobtainedfromtheanalysisweretreatedindependently,butbothmethodologiesconvergeinthesectiononclimateresiliencemeasures.Eachmethodologyisdetailedbelow.

2.1METHODOLOGYPART1:ANALYSISOFCHANGESINCLIMATEVARIABLES

Thismethodologyusedhistoricalandcurrentrecordsoftemperature,precipitationandsealevelrisevariationscompiledbyPanama’sMinistryofEnvironmenttoconstructprojectionsofpotentialvariationsupto2050and2070,fortheministry’supdateofclimatechangescenariosforPanama.ThisinformationwasusedtogeneratesectionIIIontheimplicationsofvariationsinprecipitationandtemperatureforenergyinfrastructure.Sealevelrisewasintegratedintothehazardanalysis,giventhatitsvariationisconsideredtorepresentathreatthatcandirectlyimpacttheintegrityofinfrastructure.Figure1outlinesthemethodologicalsequenceusedtoanalysechangesinthevariablesmonitoredbytheMinistryofEnvironment.

9

2.METHODOLOGY

Effectsontechnologiesandnaturalresources

Figure1Methodologicalsequence1–electricalinfrastructure

Climatevariation

Climatevariationmaps

Implicationsforenergyinfrastructure

Energyinfrastructureresiliencemeasures

Climatevariationmaps

ThemagnitudeofchangesinPanamawascalculatedusingthe“mapalgebra”toolofthegeographicinformationsystem(GIS).ThecalculationutilisedthebaselinedataandtheSharedSocio-economicPathway(SSP)1-2.6andSSP5-8.5scenariosprojectedfortheyears2050and2070providedbytheMinistryofEnvironment.Thereferencemapsweregeneratedfirst,followedbytheestimationofvariationsusingtheprecipitationandtemperaturemapsfortheprojectedscenariosfor2050and2070.

Followingthisprocedure,outputvaluesrepresentingthemagnitudeofchangesintheclimatevariablesareobtained.Itisimportanttonotethatnegativevaluesindicateadecreaseinthemagnitudeofthevariables,whereaspositivevaluesindicateanincrease.

Obtainingexchangevalues

ArcGISsoftwarewasusedfortheproceduretoobtainthevaluesofchangesinprecipitationandmaximumtemperaturethatwillaffecttheenergyinfrastructureunderanalysis.Thesoftwarewasusedasfollows:

Fortheelectricitygenerationinfrastructure(hydro,solarandwind),theGIStool“extraction”wasused.Aspecificcommandwasusedtoextracttheprojectedprecipitationandmaximumtemperaturevaluesforthedifferentscenarios;thegeographiclocationofindividualgenerationinfrastructurewasusedasthereference.Thisresultedinthegenerationofoutputtablesshowingthenameofthegenerationinfrastructureandthevalueofchangeforthevariableanalysed.

Fortransmissioninfrastructure,adifferentapproachwastakentoobtaintemperaturechangeinformation.ThedigitaltemperaturemapswerereclassifiedandtransformedintovectorformatusingtheGIS“conversion”tool.Fromthisconversion,aninterceptwasmadebetweenthevectortemperaturemapsforthedifferentscenariosandprojectionsandthedistributionmapofthetransmissionnetworks.Thisresultedincross-referencedtablesthatprovidedtheaveragevaluesoftemperaturechangeforeachtransmissionlinesection.

THEENERGYSECTOROFPANAMA:CLIMATECHANGEADAPTATIONCHALLENGES

10

Infrastructureimplications

TheimpactofchangesinthemagnitudeofaverageannualrainfallandmaximumtemperatureontheinstalledenergyinfrastructureinPanamawasassessed.Toassesstheassociatedimpacts,electricitygenerationplantsbasedonthermal,hydroelectric,solarandwindpowertechnology,aswellasthetransmissioninfrastructure,wereconsidered.Estimatesconsidertheprojecteddeclineinoperatingefficiencyofthegenerationandtransmissionsystemstowards2050and2070,aswellastheinstalledcapacityandthevolumeofenergygenerationthatcouldbecompromisedundervariousscenariosofanalysis.

Forhydroelectricgeneration,theimpactofreducedrainfallwasassessedinrelationtothereductioninflowsfeedingthecountry’shydroelectricpowerplantbasins.Thereductioninflowstothehydroelectricbasinswasestimatedbasedonthemagnitudeofrainfalldecrease(millimetres[mm]),thecontributingareaofeachbasin(squarekilometres[km2])andassuminganaveragerun-offcoefficientof60%,accordingtotheUnitedNationsEducational,ScientificandCulturalOrganization(UNESCO,2008).

Subsequently,thevolumeofenergyandtheinstalledcapacity2compromisedforhydroelectricpowerplantswasestimatedfortheyears2050and2070foreachanalysedscenariobasedontheinflowresultingfromthedeclineinprecipitationandassuminganaverageinflowpowerratioof15.49gigawatthours[GWh]/year/cubicmetres/second[m3/s].3

Toassesstheimpactsonsolarandwindgeneration,theexpectedtemperatureincreaseforindividualplantswasdeterminedanditseffectontheoperationalefficiencyofthegenerationsystemswasestimated.Thisestimatewasusedtocalculatethereductionintheoperatingefficiencyofthesolarandwindpowerplants.Theconversionfactorsforindividualtechnologieswereconsideredandthedecreaseinpowergenerationcapacityduetotemperatureincreasewasestimated.4Forsolarpowerplants,a0.5%reductionintransmissionefficiencyperdegreeCelsiusriseintemperaturewasconsidered(Dwivedietal.,2020),whileforwindgeneration,anefficiencyfactorof1.64x10-3%perdegreeCelsius(/°C)wasassumed(Rodríguezetal.,2020).

Asimilarprocedurewasfollowedtoassesstheimpactonthetransmissioninfrastructure.Theeffectofthetemperatureincreaseontransmissionlineswasanalysed,consideringtheirloadcarryingcapacityandthepossiblereductioninoperationalefficiency.Thismadeitpossibletoidentifytheareasofthetransmissioninfrastructurethatcouldbeaffectedandtoquantifytheimpactonelectricitytransmissioncapacityunderthedifferentclimatescenariosanalysed.Specifically,a1.2%reductioninelectricitytransmissioncapacityonaverageforeachdegreeCelsiusriseintemperaturewasassumed,consideringconductoroperatingtemperaturesbetween50%and100%(Castellanos,2014).

Theseestimatesmadeitpossibletoassesstheimpactofchangesinprecipitationandmaximumtemperaturesontheelectricityinfrastructureandtodeterminetheinstalledcapacityandtransmissioncapacitythatcouldbeaffectedunderthedifferentclimatescenariosconsidered.

2Assuminganaveragecapacityfactorof60%.

3EstimatedbasedonthewaterbalancesforPanama’smainreservoirs–Boyano,ForturaandChanguinola(IMHPA,2024).

4Anaveragecapacityfactorof20%forsolarphotovoltaicgenerationand35%forwindgenerationwasassumed.

2.METHODOLOGY

11

2.2METHODOLOGYPART2:ANALYSISOFINFRASTRUCTUREATRISKFROMEXTREMEWEATHEREVENTS

Themethodologyusedtoidentifyresilience-buildingadaptationmeasuresforPanama’senergyinfrastructurebeginswithaclimateriskassessment.5Theprocessinvolvesassessingexistingelectricitygenerationandtransmissioninfrastructure,6aswellastheinfrastructureplannedforthenexttenyears(ETESA,2022),alongwithfuelterminalportsandroadsprovidingaccesstothemainpowergenerationcentres.

Riskisassessedbyconsideringclimatehazard,exposureandvulnerability,asoutlinedinthemethodologyoftheIntergovernmentalPanelonClimateChange(IPCC,2014).Thisapproachmakesitpossibletoidentifyareasofgreatestriskand,consequently,todevelopadaptationmeasuresfocusedonmitigatingpotentialdamagesandmakingPanama’senergyinfrastructuremoreresilienttotheimpactsofclimatechange.Figure2outlinesthemethodologicalsequenceusedtoachievetheproposedobjective.

<

Vulnerabilityofinfrastructuretothreat

Figure2Methodologicalsequence2–electricalinfrastructure

Climatethreat

Exposureofinfrastructuretothreat

Climateriskonenergyinfrastructure

Energyinfrastructureresiliencemeasures

Climatethreat

Theclimateriskassessmentconsidersthedangersposedtoasystembythemanifestationofextremeweatherevents(LopezandMontoya,2019).Thespatialoccurrencepotentialoffloodingeventstriggeredbyrainfall,droughts,extremeheatandsealevelrisewasassessedbasedontheWorldBankmodellingdescribedbelowandgeostatisticalinterpolationobtainedfromtheArcGISprogramme(ArcMap10.8),7projectedtotheyear2050and2070.

5Linkedtoslowprogressevents,suchastemperaturechanges,changesinprecipitationpatterns(drought,heavyrains),sealevelrise,amongothers,whichshouldbeconsideredwhilestructuringnewpublicandprivateinvestmentprojects,aswellasinadaptationmeasures.

6Substations.

7Characterisationlinkedtothefrequencyorintensityoftheweathereventsanalysedisexcluded.

THEENERGYSECTOROFPANAMA:CLIMATECHANGEADAPTATIONCHALLENGES

12

Theassumptionsandinformationsourcesusedfortheclimatehazardanalysisaresummarisedbelow:

?Inputdata.Datatodeterminethethreatoffloods,droughtsandextremeheatwereobtainedfromtheWorldBank’sClimateChangeKnowledgePortal(WorldBank,2024a).Specifically,province-leveldatawereusedforaverageclimateprojectionsunderthesixthversionoftheIPCC’sCommonInformationManagementProtocol(PCMDI,2019),andunderthemultipleensembleclimateprojectionmodel.8Fortheseprojections,theWorldBankproposesfivescenariosrepresentingpossiblesocialandeconomicdevelopmentpathways(SSP).TheSSP1-1.9scenarioisthemostoptimisticandenvisagesavisionoftheclimateresponsethatcouldreflecttheParisAgreementtarget.TheSSP1-2.6scenariosuggestsatransitiontosustainabilitywithadrasticreductioninglobalemissionsandachievingcarbonneutralityafter2050.Ontheotherhand,SSP2-4.5representsanintermediatescenario,inwhichemissionsaremaintainedatcurrentlevelsbutbegintodeclinetowardsmid-century,withoutreachingzeroby2100.SSP3-7.0describesafutureinwhichcountriesbecomeincreasinglycompetitive,leadingtoasignificantincreaseinemissions,whichdoubleby2100fromtoday.Bycontrast,SSP5-8.5isbasedonintensifiedexploitationofconventionalfuelresourcesandrepresentsafutureinwhichgreenhousegasemissionsincreasesignificantly(WorldBank,2024a).

Theintermediatescenario(SSP2-4.5)9wasselectedasthebasisforthestudy,sinceitisalignedwiththecountries’currentCO2emissionreductioncommitments.Toassesstheimpactsofclimatechange,threeclimatevariableswereused:(1)cumulativeprecipitationonverywetdays(mm),10whichisrelatedtotheoccurrenceoffloods;(2)maximumnumberofconsecutivedrydays,11whichisassociatedwithdroughtevents;and(3)averagenumberofdaysonwhichthemaximumtemperatureexceeds35°C,whichreflectstheoccurrenceofextremeheatspells.Finally,toanalysethethreatofsealevelrise,cartographicinformationindigitalformatprovidedbytheNationalEnvironmentalInformationSystem(SINIA)ofthePanamanianMinistryoftheEnvironment(SINIA,2020)wasaccessed.Specifically,theanalysisusedthemapofcoastalfloodingresultingfromextremeeventsin2050(50-yearreturnperiodandscenarioSSP2-4.512).

?Threatmapping.Floodhazardmapsforrainfall,droughtandextremeheatweregeneratedusingGIS.13Pointdataforprovince-levelclimaticvariablesobtainedfromtheWorldBank(describedintheprevioussection)wereusedtoconstruct14alongsidegeostatisticalinterpolationmethodstoobtainhazardmapsordigitalsurfacesforthecountry15Thesedigitalsurfaceswereeditedandcataloguedonathreatscalerangingfromhightolow,representedbycolourpalettesappropriatetoeachcase(maps).

Exposureofenergyinfrastructuretotheclimatethreat

Forthepurposesofthisreport,exposureisdefinedasthepresenceofinfrastructureand/oreconomic,socialorculturalassetsinareasthatcouldbeadverselyaffectedbyaclimatehazard(UNDRR,2022).

Thelevelofexposurewasassessedbyanalysingthegeographicallocationofgiveninfrastructure(georeferencing16)inrelationtothepreviouslymappedclimatichazards.Thedataandmappingresultsaredescribedbelow:

8Itprojectsthechangeinclimatevariablesovertimeasanaverageofdifferentmodels(CANESM5,CNRM-ESM2-1,GFDL_ESM4,MRI-ESM2and

UKESM1-0-II).990thpercentile.

10Exceedingthe95thpercentileofdailyprecipitationintensity.

11Nosignificantrainfall(<1mm).1295thpercentile.

13Thebasecartography(boundaries,hydrography,waterbodies)wasobtainedfromtheSTRIGISDataPortaloftheRepublicofPanama(

https://

)

.

14Imagesarerepresentedinregularpixels(cells),containingavalueinamatrixofrowsandcolumns.

15Interpolationpredictsvalue

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論