新高考數(shù)學(xué)一輪復(fù)習(xí) 第8章 立體幾何(綜合檢測(cè))(含解析)_第1頁
新高考數(shù)學(xué)一輪復(fù)習(xí) 第8章 立體幾何(綜合檢測(cè))(含解析)_第2頁
新高考數(shù)學(xué)一輪復(fù)習(xí) 第8章 立體幾何(綜合檢測(cè))(含解析)_第3頁
新高考數(shù)學(xué)一輪復(fù)習(xí) 第8章 立體幾何(綜合檢測(cè))(含解析)_第4頁
新高考數(shù)學(xué)一輪復(fù)習(xí) 第8章 立體幾何(綜合檢測(cè))(含解析)_第5頁
已閱讀5頁,還剩25頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

第八章立體幾何章末檢測(cè)(考試時(shí)間:120分鐘試卷滿分:150分)注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)等填寫在答題卡和試卷指定位置上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑。如需改動(dòng),用橡皮擦干凈后,再選涂其他答案標(biāo)號(hào)?;卮鸱沁x擇題時(shí),將答案寫在答題卡上。寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。第Ⅰ卷一、單項(xiàng)選擇題:本題共8小題,每小題5分,共40分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求.1.若SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0,SKIPIF1<0的夾角的余弦值為SKIPIF1<0,則SKIPIF1<0等于(

)A.2 B.SKIPIF1<0 C.SKIPIF1<0或SKIPIF1<0 D.2或SKIPIF1<0【答案】C【分析】根據(jù)SKIPIF1<0,解得即可得出答案.【詳解】解:因?yàn)镾KIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,解得:SKIPIF1<0SKIPIF1<0或SKIPIF1<0.故選:C.2.已知空間兩不同直線SKIPIF1<0、SKIPIF1<0,兩不同平面SKIPIF1<0,SKIPIF1<0,下列命題正確的是(

)A.若SKIPIF1<0且SKIPIF1<0,則SKIPIF1<0B.若SKIPIF1<0且SKIPIF1<0,則SKIPIF1<0C.若SKIPIF1<0且SKIPIF1<0,則SKIPIF1<0D.若SKIPIF1<0不垂直于SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0不垂直于SKIPIF1<0【答案】C【分析】A選項(xiàng),SKIPIF1<0與SKIPIF1<0可能平行、相交或異面,B選項(xiàng),有SKIPIF1<0或SKIPIF1<0,C選項(xiàng),由面面垂直的判定定理可知正確.D選項(xiàng),SKIPIF1<0與SKIPIF1<0有可能垂直.【詳解】對(duì)于A選項(xiàng),若SKIPIF1<0且SKIPIF1<0,則SKIPIF1<0與SKIPIF1<0可能平行、相交或異面,故A錯(cuò)誤.對(duì)于B選項(xiàng),若SKIPIF1<0且SKIPIF1<0,則SKIPIF1<0或SKIPIF1<0,故B錯(cuò)誤.對(duì)于C選項(xiàng),因?yàn)镾KIPIF1<0,所以由線面平行的性質(zhì)可得SKIPIF1<0內(nèi)至少存在一條直線SKIPIF1<0,使得SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0,由面面垂直的判定定理可知SKIPIF1<0,故C正確.對(duì)于D選項(xiàng),若SKIPIF1<0不垂直于SKIPIF1<0,且SKIPIF1<0,SKIPIF1<0與SKIPIF1<0有可能垂直,故D錯(cuò)誤.故選:C.3.在馬致遠(yuǎn)的《漢宮秋》楔子中寫道:“氈帳秋風(fēng)迷宿草,穹廬夜月聽悲笳.”氈帳是古代北方游牧民族以為居室、氈制帷幔.如圖所示,某氈帳可視作一個(gè)圓錐與圓柱的組合體,圓錐的高為4,側(cè)面積為SKIPIF1<0,圓柱的側(cè)面積為SKIPIF1<0,則該氈帳的體積為(

A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【分析】直接利用圓錐側(cè)面積公式以及母線、底面半徑和高的關(guān)系得到方程組即可解出圓錐底面半徑,再利用圓柱側(cè)面積公式即可求圓柱的高,最后再根據(jù)相關(guān)體積公式即可得到答案.【詳解】設(shè)圓柱的底面半徑為SKIPIF1<0,高為SKIPIF1<0,圓錐的母線長(zhǎng)為SKIPIF1<0,因?yàn)閳A錐的側(cè)面積為SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0.因?yàn)镾KIPIF1<0,所以聯(lián)立解得SKIPIF1<0(負(fù)舍).因?yàn)閳A柱的側(cè)面積為SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0,所以該氈帳的體積為SKIPIF1<0.故選:A.4.如圖,SKIPIF1<0是直三棱柱,SKIPIF1<0,點(diǎn)SKIPIF1<0,SKIPIF1<0分別是SKIPIF1<0,SKIPIF1<0的中點(diǎn),若SKIPIF1<0,則SKIPIF1<0與SKIPIF1<0所成角的余弦值是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【分析】以SKIPIF1<0為原點(diǎn),建立空間直角坐標(biāo)系,然后坐標(biāo)運(yùn)算即可.【詳解】以SKIPIF1<0為原點(diǎn),建立如圖所示空間直角坐標(biāo)系,設(shè)SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,可得SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,此時(shí),SKIPIF1<0與SKIPIF1<0所成角的余弦值是SKIPIF1<0.故選:A5.如圖,在正四棱臺(tái)SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0、SKIPIF1<0分別為棱SKIPIF1<0、SKIPIF1<0的中點(diǎn),則下列結(jié)論中一定不成立的是(

A.SKIPIF1<0平面SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0平面SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】利用線面平行的性質(zhì)可判斷A選項(xiàng);利用線面垂直的性質(zhì)可判斷B選項(xiàng);取棱SKIPIF1<0的中點(diǎn)SKIPIF1<0,連接SKIPIF1<0、SKIPIF1<0,推導(dǎo)出SKIPIF1<0、SKIPIF1<0相交,可判斷C選項(xiàng);利用平面向量數(shù)量積的坐標(biāo)運(yùn)算可判斷D選項(xiàng).【詳解】對(duì)于A選項(xiàng),連接SKIPIF1<0,如下圖所示:

在正四棱臺(tái)SKIPIF1<0中,SKIPIF1<0,則SKIPIF1<0且SKIPIF1<0,因?yàn)镾KIPIF1<0為SKIPIF1<0的中點(diǎn),則SKIPIF1<0且SKIPIF1<0,所以,四邊形SKIPIF1<0為平行四邊形,則SKIPIF1<0,因?yàn)镾KIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,所以,SKIPIF1<0平面SKIPIF1<0,由正四棱臺(tái)的幾何性質(zhì)可知,四邊形SKIPIF1<0為正方形,則SKIPIF1<0,因?yàn)镾KIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,所以,SKIPIF1<0平面SKIPIF1<0,因?yàn)镾KIPIF1<0,SKIPIF1<0、SKIPIF1<0平面SKIPIF1<0,則平面SKIPIF1<0平面SKIPIF1<0,因?yàn)镾KIPIF1<0平面SKIPIF1<0,所以,SKIPIF1<0平面SKIPIF1<0,A對(duì);對(duì)于B選項(xiàng),將正四棱臺(tái)SKIPIF1<0補(bǔ)成正四棱錐SKIPIF1<0,連接SKIPIF1<0交SKIPIF1<0于點(diǎn)SKIPIF1<0,則SKIPIF1<0為SKIPIF1<0的中點(diǎn),連接SKIPIF1<0,

因?yàn)镾KIPIF1<0,SKIPIF1<0為SKIPIF1<0的中點(diǎn),則SKIPIF1<0,又因?yàn)樗倪呅蜸KIPIF1<0為正方形,則SKIPIF1<0,因?yàn)镾KIPIF1<0,SKIPIF1<0、SKIPIF1<0平面SKIPIF1<0,所以,SKIPIF1<0平面SKIPIF1<0,因?yàn)镾KIPIF1<0平面SKIPIF1<0,故SKIPIF1<0,B對(duì);對(duì)于C選項(xiàng),取棱SKIPIF1<0的中點(diǎn)SKIPIF1<0,連接SKIPIF1<0、SKIPIF1<0,

在梯形SKIPIF1<0中,SKIPIF1<0且SKIPIF1<0,因?yàn)镾KIPIF1<0、SKIPIF1<0分別為SKIPIF1<0、SKIPIF1<0的中點(diǎn),所以,SKIPIF1<0且SKIPIF1<0,因?yàn)镾KIPIF1<0且SKIPIF1<0,故SKIPIF1<0且SKIPIF1<0,故四邊形SKIPIF1<0為梯形,且SKIPIF1<0、SKIPIF1<0為兩腰,則SKIPIF1<0、SKIPIF1<0相交,又因?yàn)镾KIPIF1<0平面SKIPIF1<0,從而直線SKIPIF1<0與平面SKIPIF1<0有公共點(diǎn),即SKIPIF1<0與平面SKIPIF1<0不平行,C錯(cuò);對(duì)于D選項(xiàng),連接SKIPIF1<0,如下圖所示:

因?yàn)镾KIPIF1<0,SKIPIF1<0,SKIPIF1<0為SKIPIF1<0的中點(diǎn),則SKIPIF1<0且SKIPIF1<0,因?yàn)镾KIPIF1<0且SKIPIF1<0,所以,SKIPIF1<0且SKIPIF1<0,故四邊形SKIPIF1<0為平行四邊形,所以,SKIPIF1<0,若SKIPIF1<0,則SKIPIF1<0,不妨設(shè)SKIPIF1<0,SKIPIF1<0,在平面SKIPIF1<0內(nèi),以點(diǎn)SKIPIF1<0為坐標(biāo)原點(diǎn),SKIPIF1<0為SKIPIF1<0軸,過點(diǎn)SKIPIF1<0且垂直于SKIPIF1<0的直線為SKIPIF1<0軸建立如圖所示的平面直角坐標(biāo)系,

設(shè)點(diǎn)SKIPIF1<0到直線SKIPIF1<0的距離為SKIPIF1<0,則SKIPIF1<0、SKIPIF1<0、SKIPIF1<0、SKIPIF1<0、SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,解得SKIPIF1<0,即當(dāng)點(diǎn)SKIPIF1<0到直線SKIPIF1<0的距離為SKIPIF1<0時(shí),SKIPIF1<0,D對(duì).故選:C.6.圓錐的高為1,體積為SKIPIF1<0,則過該圓錐頂點(diǎn)的平面截此圓錐所得截面面積的最大值為(

)A.2 B.SKIPIF1<0 C.SKIPIF1<0 D.1【答案】A【分析】首先根據(jù)題意,確定出圓錐的底面圓半徑和母線長(zhǎng),從而確定出軸截面的頂角,結(jié)合三角形的面積公式可確定其為直角三角形時(shí)面積最大.【詳解】圓錐的高為1,體積為SKIPIF1<0,則底面圓的半徑為SKIPIF1<0,母線長(zhǎng)為2,軸截面的頂角為SKIPIF1<0,當(dāng)截面為直角三角形時(shí),過該圓錐頂點(diǎn)的平面截此圓錐所得截面面積最大,最大值為SKIPIF1<0,故選:A.【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:該題考查的是有關(guān)過圓錐定點(diǎn)截面面積的最值問題,正確解題的關(guān)鍵是要明確圓錐軸截面頂角的大小以及三角形面積公式.7.在SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,將SKIPIF1<0繞AB旋轉(zhuǎn)至SKIPIF1<0處,使平面SKIPIF1<0平面ABC,則在旋轉(zhuǎn)的過程中,點(diǎn)C的運(yùn)動(dòng)軌跡長(zhǎng)度至少為(

A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【分析】根據(jù)題意,將三棱錐正方體中,結(jié)合條件可得點(diǎn)C的運(yùn)動(dòng)軌跡四分之一圓,即可得到結(jié)果.【詳解】

如圖所示,將三棱錐SKIPIF1<0放到正方體模型中,因?yàn)镾KIPIF1<0,SKIPIF1<0,SKIPIF1<0,則正方體的棱長(zhǎng)為2,在旋轉(zhuǎn)過程中,C點(diǎn)的軌跡是以D點(diǎn)為圓心,DC為半徑的圓的四分之一,其長(zhǎng)度為SKIPIF1<0.故選:A.8.四棱錐SKIPIF1<0中,底面ABCD為邊長(zhǎng)為4的正方形,SKIPIF1<0,SKIPIF1<0,Q為正方形ABCD內(nèi)一動(dòng)點(diǎn)且滿足SKIPIF1<0,若SKIPIF1<0,則三棱錐SKIPIF1<0的體積的最小值為(

)A.3 B.SKIPIF1<0 C.SKIPIF1<0 D.2【答案】B【分析】判斷三角形全等,從而推出SKIPIF1<0,通過線面垂直得到SKIPIF1<0,確定點(diǎn)SKIPIF1<0在以SKIPIF1<0為直徑的半圓上,從而確定當(dāng)點(diǎn)SKIPIF1<0是正方形SKIPIF1<0的中心時(shí),三棱錐SKIPIF1<0的體積最小,從而利用三棱錐的體積公式計(jì)算即可.【詳解】因?yàn)镾KIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,又因?yàn)镾KIPIF1<0,所以SKIPIF1<0平面SKIPIF1<0.SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0,故點(diǎn)SKIPIF1<0在以SKIPIF1<0為直徑的半圓上,所以當(dāng)點(diǎn)SKIPIF1<0是正方形SKIPIF1<0的中心時(shí),三棱錐SKIPIF1<0的體積最小,即三棱錐SKIPIF1<0的體積的最小值為SKIPIF1<0.故選:B二、多項(xiàng)選擇題:本題共4小題,每小題5分,共20分.在每小題給出的選項(xiàng)中,有多項(xiàng)符合題目要求.全部選對(duì)的得5分,部分選對(duì)的得2分,有選錯(cuò)的得0分.9.已知向量SKIPIF1<0則下列命題中,正確的是(

)A.若SKIPIF1<0⊥SKIPIF1<0,SKIPIF1<0⊥SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0 B.以SKIPIF1<0,SKIPIF1<0為鄰邊的平行四邊形的面積是SKIPIF1<0C.若SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0之間的夾角為鈍角 D.若SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0之間的夾角為銳角【答案】BD【分析】利用空間向量的垂直的坐標(biāo)表示可判斷A,利用平行四邊形的面積與向量之間的關(guān)系可求面積判斷B,根據(jù)向量的夾角與數(shù)量積之間的關(guān)系可判斷CD.【詳解】選項(xiàng)A,設(shè)SKIPIF1<0,由SKIPIF1<0⊥SKIPIF1<0,SKIPIF1<0⊥SKIPIF1<0,得SKIPIF1<0,化簡(jiǎn)得SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0或SKIPIF1<0,即A錯(cuò)誤;選項(xiàng)B,由SKIPIF1<0,SKIPIF1<0,知SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,所以以SKIPIF1<0,SKIPIF1<0為鄰邊的平行四邊形的面積SKIPIF1<0,即B正確;選項(xiàng)C,若SKIPIF1<0,則SKIPIF1<0SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0共線反向,故C錯(cuò)誤;選項(xiàng)D,若SKIPIF1<0,則SKIPIF1<0,此時(shí)SKIPIF1<0,SKIPIF1<0之間的夾角為銳角,故D正確,故選:BD.10.如圖,在正方體SKIPIF1<0中,P是正方形SKIPIF1<0的中心,E是PC的中點(diǎn),則以下結(jié)論(

)A.SKIPIF1<0平面BDE B.平面SKIPIF1<0平面BDEC.SKIPIF1<0 D.異面直線PC與AB所成的角為SKIPIF1<0【答案】ABC【分析】利用線面平行判定定理即可證得選項(xiàng)A正確;利用面面垂直判定定理即可證得選項(xiàng)B正確;利用線面垂直性質(zhì)定理即可證得選項(xiàng)C正確;求得異面直線PC與AB所成的角判斷選項(xiàng)D.【詳解】選項(xiàng)A:設(shè)AC與BD交于點(diǎn)SKIPIF1<0,連接OE,則SKIPIF1<0,又SKIPIF1<0平面BDE,SKIPIF1<0平面BDE,所以SKIPIF1<0平面BDE,故A正確;選項(xiàng)B:連接PO,因?yàn)镾KIPIF1<0平面ABCD,所以SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0平面PAC,又SKIPIF1<0平面BDE,所以平面SKIPIF1<0平面BDE,故B正確;選項(xiàng)C:因?yàn)镾KIPIF1<0平面PAC,SKIPIF1<0平面PAC,所以SKIPIF1<0,故C正確;選項(xiàng)D:因?yàn)镾KIPIF1<0,所以異面直線PC與AB所成的角為SKIPIF1<0或其補(bǔ)角,設(shè)正方體的棱長(zhǎng)為1,連接PD,則SKIPIF1<0,SKIPIF1<0,在SKIPIF1<0中,SKIPIF1<0,所以異面直線PC與AB所成的角不等于SKIPIF1<0,故D錯(cuò)誤.故選:ABC.11.如圖,在直三棱柱SKIPIF1<0中,底面是邊長(zhǎng)為2的正三角形,SKIPIF1<0,點(diǎn)M在SKIPIF1<0上,且SKIPIF1<0,P為線段SKIPIF1<0上的點(diǎn),則(

)A.SKIPIF1<0平面SKIPIF1<0B.當(dāng)P為SKIPIF1<0的中點(diǎn)時(shí),直線AP與平面ABC所成角的正切值為SKIPIF1<0C.存在點(diǎn)P,使得SKIPIF1<0D.存在點(diǎn)P,使得三棱錐SKIPIF1<0的體積為SKIPIF1<0【答案】BD【分析】A:假設(shè)SKIPIF1<0平面SKIPIF1<0,則可得AC⊥平面SKIPIF1<0,∠ACB=90°與已知矛盾,從而判斷假設(shè)不成立;B:取BC中點(diǎn)為N,可證PN⊥平面ABC,∠PAN為AP與平面ABC所成角,解△ANP即可;C:假設(shè)CP⊥AM,可得CP⊥平面AMN,CP⊥MN,幾何圖形即可判斷假設(shè)不成立;D:假設(shè)SKIPIF1<0SKIPIF1<0=SKIPIF1<0,求出△CPM的面積,判斷△CPM面積是否小于或等于△SKIPIF1<0面積即可.【詳解】對(duì)于A,假設(shè)SKIPIF1<0平面SKIPIF1<0,則SKIPIF1<0AC,易知SKIPIF1<0⊥AC,SKIPIF1<0∩SKIPIF1<0,故AC⊥平面SKIPIF1<0,故AC⊥BC,這與∠ACB=60°矛盾,故假設(shè)不成立,故A錯(cuò)誤;對(duì)于B,當(dāng)P為SKIPIF1<0的中點(diǎn)時(shí),取BC中點(diǎn)為N,連接PN、AN,易知PN∥SKIPIF1<0,SKIPIF1<0⊥平面ABC,則PN⊥平面ABC,故∠PAN即為AP與平面ABC所成角,則tan∠PAN=SKIPIF1<0,故B正確;對(duì)于C,取BC中點(diǎn)為N,連接AN、NM,由AN⊥BC,AN⊥SKIPIF1<0知AN⊥平面SKIPIF1<0,故AN⊥CP,若SKIPIF1<0,∵AN∩AM=A,則CP⊥平面AMN,則CP⊥MN,過C作CG∥MN交SKIPIF1<0于G,則CP⊥CG,即∠PCG=90°,易知∠PCG不可能為90°,故不存在P使得SKIPIF1<0,故C錯(cuò)誤;對(duì)于D,取BC中點(diǎn)為N,連接AN,易知AN⊥平面SKIPIF1<0,AN=SKIPIF1<0,若三棱錐SKIPIF1<0的體積為SKIPIF1<0,則SKIPIF1<0,∵SKIPIF1<0SKIPIF1<0,故存在P使SKIPIF1<0時(shí),三棱錐SKIPIF1<0的體積為SKIPIF1<0,故D正確.故選:BD.【點(diǎn)睛】本題充分考察空間里面的點(diǎn)線面位置關(guān)系,判斷選項(xiàng)ACD時(shí)都可以采用假設(shè)存在P點(diǎn)滿足條件,然后結(jié)合幾何關(guān)系推出與已知條件矛盾或不矛盾的結(jié)論,從而作出判斷;選項(xiàng)B考察空間里面直線和平面的夾角,根據(jù)幾何關(guān)系可作出輔助線解決問題即可.12.如圖,在棱長(zhǎng)為a的正方體SKIPIF1<0中,M,N分別是AB,AD的中點(diǎn),P為線段SKIPIF1<0上的動(dòng)點(diǎn)(不含端點(diǎn)),則下列結(jié)論中正確的是(

)A.三棱錐SKIPIF1<0的體積為定值B.異面直線BC與MP所成的最大角為45°C.不存在點(diǎn)P使得SKIPIF1<0D.當(dāng)點(diǎn)P為SKIPIF1<0中點(diǎn)時(shí),過M、N、P三點(diǎn)的平面截正方體所得截面面積為SKIPIF1<0【答案】AD【分析】對(duì)于A,點(diǎn)SKIPIF1<0到平面SKIPIF1<0的距離為SKIPIF1<0為定值,利用體積公式即可判斷;對(duì)于B,利用異面直線所成角的求法即可判斷;對(duì)于C,利用線面垂直證明線線垂直即可判斷;對(duì)于D,先做出截面,再求其面積即可.【詳解】點(diǎn)SKIPIF1<0到平面SKIPIF1<0的距離為SKIPIF1<0為定值,又SKIPIF1<0,所以SKIPIF1<0,即三棱錐SKIPIF1<0的體積為定值,故SKIPIF1<0正確;設(shè)SKIPIF1<0中點(diǎn)為SKIPIF1<0,連接SKIPIF1<0,則SKIPIF1<0即為異面直線SKIPIF1<0與SKIPIF1<0所成的角在SKIPIF1<0中,SKIPIF1<0所以異面直線SKIPIF1<0與SKIPIF1<0所成的最小角為45°,故SKIPIF1<0不正確;若SKIPIF1<0為SKIPIF1<0中點(diǎn),則SKIPIF1<0,所以SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,所以SKIPIF1<0,故SKIPIF1<0不正確;取SKIPIF1<0的中點(diǎn)SKIPIF1<0,SKIPIF1<0的中點(diǎn)SKIPIF1<0,SKIPIF1<0的中點(diǎn)SKIPIF1<0,連接SKIPIF1<0、SKIPIF1<0、SKIPIF1<0、SKIPIF1<0、SKIPIF1<0,所以過SKIPIF1<0、SKIPIF1<0、SKIPIF1<0三點(diǎn)的平面截正方體所得截面為正六邊形,面積為SKIPIF1<0,故SKIPIF1<0正確.故選:SKIPIF1<0.第Ⅱ卷三、填空題:本題共4小題,每小題5分,共20分13.《九章算術(shù)》中將正四梭臺(tái)(上?下底面均為正方形)稱為“方亭”.現(xiàn)有一方亭,高為2,上底面邊長(zhǎng)為2,下底面邊長(zhǎng)為4,則此方亭的表面積為.【答案】SKIPIF1<0【分析】先利用勾股定理求出正四棱臺(tái)側(cè)面的高,再根據(jù)多面體的表面積公式即可得解.【詳解】如圖所示,SKIPIF1<0分別是正四梭臺(tái)不相鄰兩個(gè)側(cè)面的高,SKIPIF1<0,則SKIPIF1<0即為正四梭臺(tái)的高,SKIPIF1<0,由SKIPIF1<0,得SKIPIF1<0,所以此方亭的表面積為SKIPIF1<0.故答案為:SKIPIF1<0.

14.在棱長(zhǎng)為1的正方體SKIPIF1<0中,點(diǎn)Q為側(cè)面SKIPIF1<0內(nèi)一動(dòng)點(diǎn)(含邊界),若SKIPIF1<0,則點(diǎn)Q的軌跡長(zhǎng)度為.【答案】SKIPIF1<0【分析】根據(jù)題設(shè)描述確定Q的軌跡,即可求其長(zhǎng)度.【詳解】由題意,SKIPIF1<0在面SKIPIF1<0的軌跡是以SKIPIF1<0為圓心,半徑為SKIPIF1<0的四分之一圓弧,

所以軌跡長(zhǎng)度為SKIPIF1<0.故答案為:SKIPIF1<015.已知三棱錐,若,,兩兩垂直,且,,則三棱錐的內(nèi)切球半徑為.【答案】SKIPIF1<0【詳解】試題分析:由題意,設(shè)三棱錐SKIPIF1<0的內(nèi)切球的半徑為SKIPIF1<0,球心為SKIPIF1<0,則由等體積SKIPIF1<0可得SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0,∴SKIPIF1<0.考點(diǎn):1.球的體積和表面積;2.棱錐的結(jié)構(gòu)特征.16.如圖,在棱長(zhǎng)為2的正方體SKIPIF1<0中,SKIPIF1<0分別是棱SKIPIF1<0的中點(diǎn),點(diǎn)SKIPIF1<0在SKIPIF1<0上,點(diǎn)SKIPIF1<0在SKIPIF1<0上,且SKIPIF1<0,點(diǎn)SKIPIF1<0在線段SKIPIF1<0上運(yùn)動(dòng),給出下列四個(gè)結(jié)論:

①當(dāng)點(diǎn)SKIPIF1<0是SKIPIF1<0中點(diǎn)時(shí),直線SKIPIF1<0平面SKIPIF1<0;②平面SKIPIF1<0截正方體SKIPIF1<0所得的截面圖形是六邊形;③SKIPIF1<0不可能為直角三角形;④SKIPIF1<0面積的最小值是SKIPIF1<0.其中所有正確結(jié)論的序號(hào)是.【答案】①④【分析】根據(jù)中位線的性質(zhì)證線線平行后可得線面平行來判定①,利用平面的性質(zhì)構(gòu)造相交線可判定②,建立合適的空間直角坐標(biāo)系,利用空間向量的數(shù)量積可判定③,利用空間中點(diǎn)到直線的距離可判定④【詳解】對(duì)①,如圖所示,因?yàn)镾KIPIF1<0是SKIPIF1<0中點(diǎn),SKIPIF1<0,連接SKIPIF1<0,顯然SKIPIF1<0也是SKIPIF1<0的中點(diǎn),連接SKIPIF1<0,

所以SKIPIF1<0,而SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,所以直線SKIPIF1<0平面SKIPIF1<0,①正確;對(duì)②,如圖直線SKIPIF1<0與SKIPIF1<0的延長(zhǎng)線分別交于SKIPIF1<0連接SKIPIF1<0,分別交SKIPIF1<0于SKIPIF1<0,連接SKIPIF1<0,則五邊形SKIPIF1<0即為所得的截面圖形,故②錯(cuò)誤;

以SKIPIF1<0為原點(diǎn),建立如圖所示空間直角坐標(biāo)系,則SKIPIF1<0,

對(duì)③,設(shè)SKIPIF1<0,則SKIPIF1<0,則SKIPIF1<0,若SKIPIF1<0,則SKIPIF1<0得SKIPIF1<0,由SKIPIF1<0,故存在點(diǎn)SKIPIF1<0,使得SKIPIF1<0,故SKIPIF1<0可能為直角三角形,③錯(cuò)誤;對(duì)④,由③得SKIPIF1<0到SKIPIF1<0的投影為SKIPIF1<0,故SKIPIF1<0到SKIPIF1<0的距離SKIPIF1<0,SKIPIF1<0面積為SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0取得最小值為SKIPIF1<0,④正確.故答案為:①④.四、解答題:本小題共6小題,共70分,其中第17題10分,18~22題12分。解答應(yīng)寫出文字說明、證明過程或演算步驟.17.在四棱錐SKIPIF1<0中,SKIPIF1<0平面SKIPIF1<0,四邊形SKIPIF1<0是矩形,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0分別是棱SKIPIF1<0,SKIPIF1<0,SKIPIF1<0的中點(diǎn).(1)求證:SKIPIF1<0平面SKIPIF1<0;(2)若SKIPIF1<0,SKIPIF1<0,求點(diǎn)SKIPIF1<0到平面SKIPIF1<0的距離.【答案】(1)證明見解析;(2)SKIPIF1<0【分析】(1)連接SKIPIF1<0,證明平面SKIPIF1<0平面SKIPIF1<0,即可說明SKIPIF1<0平面SKIPIF1<0;(2)先計(jì)算出SKIPIF1<0,再利用等體積法SKIPIF1<0,即可求出點(diǎn)SKIPIF1<0到平面SKIPIF1<0的距離.【詳解】(1)證明:連接SKIPIF1<0,∵在矩形SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0分別是SKIPIF1<0,SKIPIF1<0中點(diǎn),∴SKIPIF1<0,SKIPIF1<0,∴四邊形SKIPIF1<0是平行四邊形,∴SKIPIF1<0.∵SKIPIF1<0是SKIPIF1<0的中點(diǎn),∴SKIPIF1<0.∵SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,∴SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0.∵SKIPIF1<0,∴平面SKIPIF1<0平面SKIPIF1<0.∵SKIPIF1<0平面SKIPIF1<0,∴SKIPIF1<0平面SKIPIF1<0.(2)解:法一:∵SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0平面SKIPIF1<0.過SKIPIF1<0在平面SKIPIF1<0內(nèi),作SKIPIF1<0,垂足為SKIPIF1<0,則SKIPIF1<0.∵SKIPIF1<0,∴SKIPIF1<0平面SKIPIF1<0,∴SKIPIF1<0長(zhǎng)是點(diǎn)SKIPIF1<0到平面SKIPIF1<0的距離.在矩形SKIPIF1<0中,SKIPIF1<0是SKIPIF1<0中點(diǎn),SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.∴SKIPIF1<0.∵SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,即點(diǎn)SKIPIF1<0到平面SKIPIF1<0的距離為SKIPIF1<0.法二:設(shè)SKIPIF1<0到平面SKIPIF1<0的距離為SKIPIF1<0,在矩形SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0.∵SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0的面積為SKIPIF1<0.∵SKIPIF1<0的面積為SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,即點(diǎn)SKIPIF1<0到平面SKIPIF1<0的距離為SKIPIF1<0.【點(diǎn)睛】本題考查利用面面平行的性質(zhì)定理證明線面平行、利用等體積法求點(diǎn)到平面的距離,屬于基礎(chǔ)題.18.如圖,正三棱柱SKIPIF1<0中,SKIPIF1<0是側(cè)棱SKIPIF1<0上一點(diǎn),設(shè)平面SKIPIF1<0平面SKIPIF1<0.(1)證明:SKIPIF1<0;(2)當(dāng)SKIPIF1<0為SKIPIF1<0的中點(diǎn)時(shí),平面SKIPIF1<0與平面SKIPIF1<0所成的銳二面角的大小為30°,求直線SKIPIF1<0與平面SKIPIF1<0所成角的正弦值.【答案】(1)證明見解析(2)SKIPIF1<0【分析】(1)先根據(jù)正三棱柱的結(jié)構(gòu)特征得到SKIPIF1<0,進(jìn)而得SKIPIF1<0平面SKIPIF1<0,然后利用線面平行的性質(zhì)定理即可得證;(2)先尋找垂直關(guān)系建立空間直角坐標(biāo)系,然后根據(jù)平面SKIPIF1<0與平面SKIPIF1<0所成的銳二面角的大小為30°,求得三棱柱的底面邊長(zhǎng)和側(cè)棱長(zhǎng)之間的關(guān)系,最后求解線面角的正弦值即可.【詳解】(1)解:(1)在正三棱柱SKIPIF1<0中,易知SKIPIF1<0,因?yàn)镾KIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,所以SKIPIF1<0平面SKIPIF1<0.因?yàn)镾KIPIF1<0平面SKIPIF1<0,平面SKIPIF1<0平面SKIPIF1<0,所以SKIPIF1<0.(2)(2)取SKIPIF1<0的中點(diǎn)SKIPIF1<0,連接SKIPIF1<0,易知SKIPIF1<0是正三角形,所以SKIPIF1<0.又三棱柱SKIPIF1<0是正三棱柱,所以SKIPIF1<0平面SKIPIF1<0,所以以SKIPIF1<0為坐標(biāo)原點(diǎn),過點(diǎn)SKIPIF1<0與SKIPIF1<0平行的直線為SKIPIF1<0軸,SKIPIF1<0,SKIPIF1<0所在直線分別為SKIPIF1<0軸?SKIPIF1<0軸建立如圖所示的空間直角坐標(biāo)系.設(shè)SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0.設(shè)平面SKIPIF1<0的法向量為SKIPIF1<0,則SKIPIF1<0,即SKIPIF1<0,則SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0,易知平面SKIPIF1<0的一個(gè)法向量SKIPIF1<0,所以SKIPIF1<0.因?yàn)槠矫鍿KIPIF1<0與平面SKIPIF1<0所成的銳二面角的大小為30°,所以SKIPIF1<0,整理得SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,設(shè)直線SKIPIF1<0與平面SKIPIF1<0所成角的大小為SKIPIF1<0,則SKIPIF1<0.19.如圖,在四棱錐SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.(1)證明:SKIPIF1<0平面SKIPIF1<0;(2)在線段SKIPIF1<0上是否存在一點(diǎn)F,使直線CF與平面PBC所成角的正弦值等于SKIPIF1<0?【答案】(1)證明見解析(2)存在【分析】(1)利用勾股定理證得SKIPIF1<0,結(jié)合線面垂直的判定定理即可證得結(jié)論;(2)以A為原點(diǎn)建立空間直角坐標(biāo)系,設(shè)點(diǎn)SKIPIF1<0,SKIPIF1<0,求得平面SKIPIF1<0的法向量SKIPIF1<0,利用已知條件建立關(guān)于SKIPIF1<0的方程,進(jìn)而得解.【詳解】(1)取SKIPIF1<0中點(diǎn)為SKIPIF1<0,連接SKIPIF1<0,在SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0,而SKIPIF1<0,所以SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0(2)存在點(diǎn)F是SKIPIF1<0的中點(diǎn),使直線CF與平面PBC所成角的正弦值等于SKIPIF1<0.以A為坐標(biāo)原點(diǎn),以SKIPIF1<0為x軸,SKIPIF1<0為y軸,SKIPIF1<0為z軸建立空間直角坐標(biāo)系,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,設(shè)點(diǎn)SKIPIF1<0,因?yàn)辄c(diǎn)F在線段SKIPIF1<0上,設(shè)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,設(shè)平面SKIPIF1<0的法向量為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0則SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0設(shè)直線CF與平面SKIPIF1<0所成角為SKIPIF1<0,SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0(舍去),SKIPIF1<0,此時(shí)點(diǎn)F是SKIPIF1<0的中點(diǎn),所以存在點(diǎn)F.20.如圖1,已知矩形ABCD,其中SKIPIF1<0,SKIPIF1<0,線段AD,BC的中點(diǎn)分別為點(diǎn)E,F(xiàn),現(xiàn)將SKIPIF1<0沿著BE折疊,使點(diǎn)A到達(dá)點(diǎn)P,得到四棱錐SKIPIF1<0,如圖2.(1)求證:SKIPIF1<0;(2)當(dāng)四棱錐SKIPIF1<0體積最大時(shí),求二面角SKIPIF1<0的大小.【答案】(1)證明見解析(2)SKIPIF1<0【分析】(1)要證明線線垂直,需先證明線面垂直,首先作輔助線,取BE的中點(diǎn)O,連接PO,OF,證明SKIPIF1<0平面PFO;(2)首先確定點(diǎn)SKIPIF1<0的位置,法一,利用坐標(biāo)法,求二面角;法二,幾何法,根據(jù)二面角的定義,得二面角SKIPIF1<0的平面角就是SKIPIF1<0,即可求解.【詳解】(1)取BE的中點(diǎn)O,連接PO,OF,因?yàn)镾KIPIF1<0,SKIPIF1<0,線段AD,BC的中點(diǎn)分別為點(diǎn)E,F(xiàn),所以SKIPIF1<0,SKIPIF1<0,又因?yàn)镾KIPIF1<0,所以SKIPIF1<0,在等腰直角SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0平面PFO,因?yàn)镾KIPIF1<0平面PFO,所以SKIPIF1<0.(2)當(dāng)四棱錐SKIPIF1<0體積最大時(shí),點(diǎn)P在平面BCDE的射影即為點(diǎn)O,即SKIPIF1<0平面BCDE.法一:以O(shè)B,OF,OP方向?yàn)閤軸,y軸和z軸分別建立空間直角坐標(biāo)系SKIPIF1<0.如圖3.則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0設(shè)平面PEC的法向量為SKIPIF1<0,則SKIPIF1<0取SKIPIF1<0,可得SKIPIF1<0易得平面ECB的一個(gè)法向量SKIPIF1<0所以SKIPIF1<0因?yàn)槎娼荢KIPIF1<0是銳角,所以二面角SKIPIF1<0的大小為SKIPIF1<0.法二:在SKIPIF1<0中,因?yàn)镾KIPIF1<0,SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0.在SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0.由二面角的定義可知,二面角SKIPIF1<0的平面角就是SKIPIF1<0.所以二面角SKIPIF1<0的大小為SKIPIF1<0.21.如圖,在四棱錐SKIPIF1<0中,底面是邊長(zhǎng)為SKIPIF1<0的菱形,SKIPIF1<0,SKIPIF1<0為SKIPIF1<0的中點(diǎn),SKIPIF1<0.SKIPIF1<0為SKIPIF1<0上的一點(diǎn),且SKIPIF1<0與平面SKIPIF1<0所成角的正弦值為SKIPIF1<0.(1)證明:平面SKIPIF1<0平面SKIPIF1<0;(2)試確定SKIPIF1<0的值,并求出平面SKIPIF1<0與平面SKIPIF1<0所成二面角的正弦值.【答案】(1)證明見解析(2)SKIPIF1<0;平面SKIPIF1<0與平面SKIPIF1<0所成二面角的正弦值為SKIPIF1<0【分析】(1)取SKIPIF1<0中點(diǎn)SKIPIF1<0,利用等腰三角形

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論