2022屆天津市大良中學(xué)高考數(shù)學(xué)三模試卷含解析_第1頁(yè)
2022屆天津市大良中學(xué)高考數(shù)學(xué)三模試卷含解析_第2頁(yè)
2022屆天津市大良中學(xué)高考數(shù)學(xué)三模試卷含解析_第3頁(yè)
2022屆天津市大良中學(xué)高考數(shù)學(xué)三模試卷含解析_第4頁(yè)
2022屆天津市大良中學(xué)高考數(shù)學(xué)三模試卷含解析_第5頁(yè)
已閱讀5頁(yè),還剩15頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2021-2022高考數(shù)學(xué)模擬試卷注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請(qǐng)按照題號(hào)順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.復(fù)數(shù)的虛部為()A.—1 B.—3 C.1 D.22.設(shè)是雙曲線的左、右焦點(diǎn),若雙曲線右支上存在一點(diǎn),使(為坐標(biāo)原點(diǎn)),且,則雙曲線的離心率為()A. B. C. D.3.已知雙曲線滿足以下條件:①雙曲線E的右焦點(diǎn)與拋物線的焦點(diǎn)F重合;②雙曲線E與過點(diǎn)的冪函數(shù)的圖象交于點(diǎn)Q,且該冪函數(shù)在點(diǎn)Q處的切線過點(diǎn)F關(guān)于原點(diǎn)的對(duì)稱點(diǎn).則雙曲線的離心率是()A. B. C. D.4.函數(shù)的部分圖象如圖所示,則()A.6 B.5 C.4 D.35.已知函數(shù),不等式對(duì)恒成立,則的取值范圍為()A. B. C. D.6.己知拋物線的焦點(diǎn)為,準(zhǔn)線為,點(diǎn)分別在拋物線上,且,直線交于點(diǎn),,垂足為,若的面積為,則到的距離為()A. B. C.8 D.67.某三棱錐的三視圖如圖所示,網(wǎng)格紙上小正方形的邊長(zhǎng)為,則該三棱錐外接球的表面積為()A. B. C. D.8.若,則實(shí)數(shù)的大小關(guān)系為()A. B. C. D.9.已知雙曲線的一條漸近線的傾斜角為,且,則該雙曲線的離心率為()A. B. C.2 D.410.設(shè)命題函數(shù)在上遞增,命題在中,,下列為真命題的是()A. B. C. D.11.已知拋物線:,點(diǎn)為上一點(diǎn),過點(diǎn)作軸于點(diǎn),又知點(diǎn),則的最小值為()A. B. C.3 D.512.如圖,在圓錐SO中,AB,CD為底面圓的兩條直徑,AB∩CD=O,且AB⊥CD,SO=OB=3,SE.,異面直線SC與OE所成角的正切值為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若,則的最小值是______.14.在正奇數(shù)非減數(shù)列中,每個(gè)正奇數(shù)出現(xiàn)次.已知存在整數(shù)、、,對(duì)所有的整數(shù)滿足,其中表示不超過的最大整數(shù).則等于______.15.若滿足,則目標(biāo)函數(shù)的最大值為______.16.函數(shù)f(x)=x2﹣xlnx的圖象在x=1處的切線方程為_____.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù).(1)若,,求函數(shù)的單調(diào)區(qū)間;(2)時(shí),若對(duì)一切恒成立,求a的取值范圍.18.(12分)已知函數(shù)(1)求函數(shù)的單調(diào)遞增區(qū)間(2)記函數(shù)的圖象為曲線,設(shè)點(diǎn)是曲線上不同兩點(diǎn),如果在曲線上存在點(diǎn),使得①;②曲線在點(diǎn)M處的切線平行于直線AB,則稱函數(shù)存在“中值和諧切線”,當(dāng)時(shí),函數(shù)是否存在“中值和諧切線”請(qǐng)說明理由19.(12分)已知滿足,且,求的值及的面積.(從①,②,③這三個(gè)條件中選一個(gè),補(bǔ)充到上面問題中,并完成解答.)20.(12分)某百貨商店今年春節(jié)期間舉行促銷活動(dòng),規(guī)定消費(fèi)達(dá)到一定標(biāo)準(zhǔn)的顧客可進(jìn)行一次抽獎(jiǎng)活動(dòng),隨著抽獎(jiǎng)活動(dòng)的有效開展,參與抽獎(jiǎng)活動(dòng)的人數(shù)越來越多,該商店經(jīng)理對(duì)春節(jié)前天參加抽獎(jiǎng)活動(dòng)的人數(shù)進(jìn)行統(tǒng)計(jì),表示第天參加抽獎(jiǎng)活動(dòng)的人數(shù),得到統(tǒng)計(jì)表格如下:123456758810141517(1)經(jīng)過進(jìn)一步統(tǒng)計(jì)分析,發(fā)現(xiàn)與具有線性相關(guān)關(guān)系.請(qǐng)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關(guān)于的線性回歸方程;(2)該商店規(guī)定:若抽中“一等獎(jiǎng)”,可領(lǐng)取600元購(gòu)物券;抽中“二等獎(jiǎng)”可領(lǐng)取300元購(gòu)物券;抽中“謝謝惠顧”,則沒有購(gòu)物券.已知一次抽獎(jiǎng)活動(dòng)獲得“一等獎(jiǎng)”的概率為,獲得“二等獎(jiǎng)”的概率為.現(xiàn)有張、王兩位先生參與了本次活動(dòng),且他們是否中獎(jiǎng)相互獨(dú)立,求此二人所獲購(gòu)物券總金額的分布列及數(shù)學(xué)期望.參考公式:,,,.21.(12分)在直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),以軸正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.(1)寫出直線的普通方程和曲線的直角坐標(biāo)方程;(2)設(shè)直線與曲線相交于兩點(diǎn),的頂點(diǎn)也在曲線上運(yùn)動(dòng),求面積的最大值.22.(10分)如圖,在四棱錐中,是邊長(zhǎng)為的正方形的中心,平面,為的中點(diǎn).(Ⅰ)求證:平面平面;(Ⅱ)若,求二面角的余弦值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.B【解析】

對(duì)復(fù)數(shù)進(jìn)行化簡(jiǎn)計(jì)算,得到答案.【詳解】所以的虛部為故選B項(xiàng).【點(diǎn)睛】本題考查復(fù)數(shù)的計(jì)算,虛部的概念,屬于簡(jiǎn)單題.2.D【解析】

利用向量運(yùn)算可得,即,由為的中位線,得到,所以,再根據(jù)雙曲線定義即可求得離心率.【詳解】取的中點(diǎn),則由得,即;在中,為的中位線,所以,所以;由雙曲線定義知,且,所以,解得,故選:D【點(diǎn)睛】本題綜合考查向量運(yùn)算與雙曲線的相關(guān)性質(zhì),難度一般.3.B【解析】

由已知可求出焦點(diǎn)坐標(biāo)為,可求得冪函數(shù)為,設(shè)出切點(diǎn)通過導(dǎo)數(shù)求出切線方程的斜率,利用斜率相等列出方程,即可求出切點(diǎn)坐標(biāo),然后求解雙曲線的離心率.【詳解】依題意可得,拋物線的焦點(diǎn)為,F(xiàn)關(guān)于原點(diǎn)的對(duì)稱點(diǎn);,,所以,,設(shè),則,解得,∴,可得,又,,可解得,故雙曲線的離心率是.故選B.【點(diǎn)睛】本題考查雙曲線的性質(zhì),已知拋物線方程求焦點(diǎn)坐標(biāo),求冪函數(shù)解析式,直線的斜率公式及導(dǎo)數(shù)的幾何意義,考查了學(xué)生分析問題和解決問題的能力,難度一般.4.A【解析】

根據(jù)正切函數(shù)的圖象求出A、B兩點(diǎn)的坐標(biāo),再求出向量的坐標(biāo),根據(jù)向量數(shù)量積的坐標(biāo)運(yùn)算求出結(jié)果.【詳解】由圖象得,令=0,即=kπ,k=0時(shí)解得x=2,令=1,即,解得x=3,∴A(2,0),B(3,1),∴,∴.故選:A.【點(diǎn)睛】本題考查正切函數(shù)的圖象,平面向量數(shù)量積的運(yùn)算,屬于綜合題,但是難度不大,解題關(guān)鍵是利用圖象與正切函數(shù)圖象求出坐標(biāo),再根據(jù)向量數(shù)量積的坐標(biāo)運(yùn)算可得結(jié)果,屬于簡(jiǎn)單題.5.C【解析】

確定函數(shù)為奇函數(shù),且單調(diào)遞減,不等式轉(zhuǎn)化為,利用雙勾函數(shù)單調(diào)性求最值得到答案.【詳解】是奇函數(shù),,易知均為減函數(shù),故且在上單調(diào)遞減,不等式,即,結(jié)合函數(shù)的單調(diào)性可得,即,設(shè),,故單調(diào)遞減,故,當(dāng),即時(shí)取最大值,所以.故選:.【點(diǎn)睛】本題考查了根據(jù)函數(shù)單調(diào)性和奇偶性解不等式,參數(shù)分離求最值是解題的關(guān)鍵.6.D【解析】

作,垂足為,過點(diǎn)N作,垂足為G,設(shè),則,結(jié)合圖形可得,,從而可求出,進(jìn)而可求得,,由的面積即可求出,再結(jié)合為線段的中點(diǎn),即可求出到的距離.【詳解】如圖所示,作,垂足為,設(shè),由,得,則,.過點(diǎn)N作,垂足為G,則,,所以在中,,,所以,所以,在中,,所以,所以,,所以.解得,因?yàn)椋詾榫€段的中點(diǎn),所以F到l的距離為.故選:D【點(diǎn)睛】本題主要考查拋物線的幾何性質(zhì)及平面幾何的有關(guān)知識(shí),屬于中檔題.7.C【解析】

作出三棱錐的實(shí)物圖,然后補(bǔ)成直四棱錐,且底面為矩形,可得知三棱錐的外接球和直四棱錐的外接球?yàn)橥粋€(gè)球,然后計(jì)算出矩形的外接圓直徑,利用公式可計(jì)算出外接球的直徑,再利用球體的表面積公式即可得出該三棱錐的外接球的表面積.【詳解】三棱錐的實(shí)物圖如下圖所示:將其補(bǔ)成直四棱錐,底面,可知四邊形為矩形,且,.矩形的外接圓直徑,且.所以,三棱錐外接球的直徑為,因此,該三棱錐的外接球的表面積為.故選:C.【點(diǎn)睛】本題考查三棱錐外接球的表面積,解題時(shí)要結(jié)合三視圖作出三棱錐的實(shí)物圖,并分析三棱錐的結(jié)構(gòu),選擇合適的模型進(jìn)行計(jì)算,考查推理能力與計(jì)算能力,屬于中等題.8.A【解析】

將化成以為底的對(duì)數(shù),即可判斷的大小關(guān)系;由對(duì)數(shù)函數(shù)、指數(shù)函數(shù)的性質(zhì),可判斷出與1的大小關(guān)系,從而可判斷三者的大小關(guān)系.【詳解】依題意,由對(duì)數(shù)函數(shù)的性質(zhì)可得.又因?yàn)?,?故選:A.【點(diǎn)睛】本題考查了指數(shù)函數(shù)的性質(zhì),考查了對(duì)數(shù)函數(shù)的性質(zhì),考查了對(duì)數(shù)的運(yùn)算性質(zhì).兩個(gè)對(duì)數(shù)型的數(shù)字比較大小時(shí),底數(shù)相同,則構(gòu)造對(duì)數(shù)函數(shù),結(jié)合對(duì)數(shù)的單調(diào)性可判斷大小;若真數(shù)相同,則結(jié)合對(duì)數(shù)函數(shù)的圖像或者換底公式可判斷大小;若真數(shù)和底數(shù)都不相同,則可與中間值如1,0比較大小.9.A【解析】

由傾斜角的余弦值,求出正切值,即的關(guān)系,求出雙曲線的離心率.【詳解】解:設(shè)雙曲線的半個(gè)焦距為,由題意又,則,,,所以離心率,故選:A.【點(diǎn)睛】本題考查雙曲線的簡(jiǎn)單幾何性質(zhì),屬于基礎(chǔ)題10.C【解析】

命題:函數(shù)在上單調(diào)遞減,即可判斷出真假.命題:在中,利用余弦函數(shù)單調(diào)性判斷出真假.【詳解】解:命題:函數(shù),所以,當(dāng)時(shí),,即函數(shù)在上單調(diào)遞減,因此是假命題.命題:在中,在上單調(diào)遞減,所以,是真命題.則下列命題為真命題的是.故選:C.【點(diǎn)睛】本題考查了函數(shù)的單調(diào)性、正弦定理、三角形邊角大小關(guān)系、簡(jiǎn)易邏輯的判定方法,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.11.C【解析】

由,再運(yùn)用三點(diǎn)共線時(shí)和最小,即可求解.【詳解】.故選:C【點(diǎn)睛】本題考查拋物線的定義,合理轉(zhuǎn)化是本題的關(guān)鍵,注意拋物線的性質(zhì)的靈活運(yùn)用,屬于中檔題.12.D【解析】

可過點(diǎn)S作SF∥OE,交AB于點(diǎn)F,并連接CF,從而可得出∠CSF(或補(bǔ)角)為異面直線SC與OE所成的角,根據(jù)條件即可求出,這樣即可得出tan∠CSF的值.【詳解】如圖,過點(diǎn)S作SF∥OE,交AB于點(diǎn)F,連接CF,則∠CSF(或補(bǔ)角)即為異面直線SC與OE所成的角,∵,∴,又OB=3,∴,SO⊥OC,SO=OC=3,∴;SO⊥OF,SO=3,OF=1,∴;OC⊥OF,OC=3,OF=1,∴,∴等腰△SCF中,.故選:D.【點(diǎn)睛】本題考查了異面直線所成角的定義及求法,直角三角形的邊角的關(guān)系,平行線分線段成比例的定理,考查了計(jì)算能力,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13.8【解析】

根據(jù),利用基本不等式可求得函數(shù)最值.【詳解】,,當(dāng)且僅當(dāng)且,即時(shí),等號(hào)成立.時(shí),取得最小值.故答案為:【點(diǎn)睛】本題考查基本不等式,構(gòu)造基本不等式的形式是解題關(guān)鍵.14.2【解析】

將已知數(shù)列分組為(1),,共個(gè)組.設(shè)在第組,,則有,即.注意到,解得.所以,.因此,.故.15.-1【解析】

由約束條件作出可行域,化目標(biāo)函數(shù)為直線方程的斜截式,數(shù)形結(jié)合得到最優(yōu)解,把最優(yōu)解的坐標(biāo)代入目標(biāo)函數(shù)得答案.【詳解】由約束條件作出可行域如圖,化目標(biāo)函數(shù)為,由圖可得,當(dāng)直線過點(diǎn)時(shí),直線在軸上的截距最大,由得即,則有最大值,故答案為.【點(diǎn)睛】本題主要考查線性規(guī)劃中利用可行域求目標(biāo)函數(shù)的最值,屬簡(jiǎn)單題.求目標(biāo)函數(shù)最值的一般步驟是“一畫、二移、三求”:(1)作出可行域(一定要注意是實(shí)線還是虛線);(2)找到目標(biāo)函數(shù)對(duì)應(yīng)的最優(yōu)解對(duì)應(yīng)點(diǎn)(在可行域內(nèi)平移變形后的目標(biāo)函數(shù),最先通過或最后通過的頂點(diǎn)就是最優(yōu)解);(3)將最優(yōu)解坐標(biāo)代入目標(biāo)函數(shù)求出最值.16.x﹣y=0.【解析】

先將x=1代入函數(shù)式求出切點(diǎn)縱坐標(biāo),然后對(duì)函數(shù)求導(dǎo)數(shù),進(jìn)一步求出切線斜率,最后利用點(diǎn)斜式寫出切線方程.【詳解】由題意得.故切線方程為y﹣1=x﹣1,即x﹣y=0.故答案為:x﹣y=0.【點(diǎn)睛】本題考查利用導(dǎo)數(shù)求切線方程的基本方法,利用切點(diǎn)滿足的條件列方程(組)是關(guān)鍵.同時(shí)也考查了學(xué)生的運(yùn)算能力,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1)單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為;(2)【解析】

(1)求導(dǎo),根據(jù)導(dǎo)數(shù)與函數(shù)單調(diào)性關(guān)系即可求出.(2)解法一:分類討論:當(dāng)時(shí),觀察式子可得恒成立;當(dāng)時(shí),利用導(dǎo)數(shù)判斷函數(shù)為單調(diào)遞增,可知;當(dāng)時(shí),令,由,,根據(jù)零點(diǎn)存在性定理可得,進(jìn)而可得在上,單調(diào)遞減,即不滿足題意;解法二:通過分離參數(shù)可知條件等價(jià)于恒成立,進(jìn)而記,問題轉(zhuǎn)化為求在上的最小值問題,通過二次求導(dǎo),結(jié)合洛比達(dá)法則計(jì)算可得結(jié)論.【詳解】(1)當(dāng),,,,令,解得,當(dāng)時(shí),,當(dāng)時(shí),,在上單調(diào)遞減,在上單調(diào)遞增.(2)解法一:當(dāng)時(shí),函數(shù),若時(shí),此時(shí)對(duì)任意都有,所以恒成立;若時(shí),對(duì)任意都有,,所以,所以在上為增函數(shù),所以,即時(shí)滿足題意;若時(shí),令,則,所以在上單調(diào)遞增,,,可知,一定存在使得,且當(dāng)時(shí),,所以在上,單調(diào)遞減,從而有時(shí),,不滿足題意;綜上可知,實(shí)數(shù)a的取值范圍為.解法二:當(dāng)時(shí),函數(shù),又當(dāng)時(shí),,對(duì)一切恒成立等價(jià)于恒成立,記,其中,則,令,則,在上單調(diào)遞增,,恒成立,從而在上單調(diào)遞增,,由洛比達(dá)法則可知,,,解得.實(shí)數(shù)a的取值范圍為.【點(diǎn)睛】本題考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性與不等式恒成立問題,考查了分類與整合的解題思想,涉及分離參數(shù)法等技巧、涉及到洛比達(dá)法則等知識(shí),注意解題方法的積累,屬于難題.18.(1)見解析(2)不存在,見解析【解析】

(1)求出函數(shù)的導(dǎo)數(shù),通過討論的范圍求出函數(shù)的單調(diào)區(qū)間即可;(2)求出函數(shù)的導(dǎo)數(shù),結(jié)合導(dǎo)數(shù)的幾何意義,再令,轉(zhuǎn)化為方程有解問題,即可說明.【詳解】(1)函數(shù)的定義域?yàn)?,所以?dāng)時(shí),;,所以函數(shù)在上單調(diào)遞增當(dāng)時(shí),①當(dāng)時(shí),函數(shù)在上遞增②,顯然無增區(qū)間;③當(dāng)時(shí),,函數(shù)在上遞增,綜上當(dāng)函數(shù)在上單調(diào)遞增.當(dāng)時(shí)函數(shù)在上單調(diào)遞增;當(dāng)時(shí)函數(shù)無單調(diào)遞增區(qū)間當(dāng)時(shí)函數(shù)在上單調(diào)遞增(2)假設(shè)函數(shù)存在“中值相依切線”設(shè)是曲線上不同的兩個(gè)點(diǎn),且則曲線在點(diǎn)處的切線的斜率為,.令,則,單調(diào)遞增,,故無解,假設(shè)不成立綜上,假設(shè)不成立,所以不存在“中值相依切線”【點(diǎn)睛】本題考查了函數(shù)的單調(diào)性,導(dǎo)數(shù)的幾何意義,考查導(dǎo)數(shù)的應(yīng)用以及分類討論和轉(zhuǎn)化思想,屬于中檔題.19.見解析【解析】

選擇①時(shí):,,計(jì)算,根據(jù)正弦定理得到,計(jì)算面積得到答案;選擇②時(shí),,,故,為鈍角,故無解;選擇③時(shí),,根據(jù)正弦定理解得,,根據(jù)正弦定理得到,計(jì)算面積得到答案.【詳解】選擇①時(shí):,,故.根據(jù)正弦定理:,故,故.選擇②時(shí),,,故,為鈍角,故無解.選擇③時(shí),,根據(jù)正弦定理:,故,解得,.根據(jù)正弦定理:,故,故.【點(diǎn)睛】本題考查了三角恒等變換,正弦定理,面積公式,意在考查學(xué)生的計(jì)算能力和綜合應(yīng)用能力.20.(1);(2)見解析【解析】試題分析:(I)由題意可得,,則,,關(guān)于的線性回歸方程為.(II)由題意可知二人所獲購(gòu)物券總金額的可能取值有、、、、元,它們所對(duì)應(yīng)的概率分別為:,,,.據(jù)此可得分布列,計(jì)算相應(yīng)的數(shù)學(xué)期望為元.試題解析:(I)依題意:,,,,,,則關(guān)于的線性回歸方程為.(II)二人

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論