版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2021-2022高考數學模擬試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知集合,,,則()A. B. C. D.2.已知函數,則下列判斷錯誤的是()A.的最小正周期為 B.的值域為C.的圖象關于直線對稱 D.的圖象關于點對稱3.設點是橢圓上的一點,是橢圓的兩個焦點,若,則()A. B. C. D.4.已知雙曲線的一個焦點為,且與雙曲線的漸近線相同,則雙曲線的標準方程為()A. B. C. D.5.已知正方體的體積為,點,分別在棱,上,滿足最小,則四面體的體積為A. B. C. D.6.已知函數f(x)=eb﹣x﹣ex﹣b+c(b,c均為常數)的圖象關于點(2,1)對稱,則f(5)+f(﹣1)=()A.﹣2 B.﹣1 C.2 D.47.設,是雙曲線的左,右焦點,是坐標原點,過點作的一條漸近線的垂線,垂足為.若,則的離心率為()A. B. C. D.8.設,則“”是“”的()A.充分而不必要條件 B.必要而不充分條件C.充分必要條件 D.既不充分也不必要條件9.已知隨機變量服從正態(tài)分布,且,則()A. B. C. D.10.已知底面為正方形的四棱錐,其一條側棱垂直于底面,那么該四棱錐的三視圖可能是下列各圖中的()A. B. C. D.11.如圖所示,三國時代數學家在《周脾算經》中利用弦圖,給出了勾股定理的絕妙證明.圖中包含四個全等的直角三角形及一個小正方形(陰影),設直角三角形有一個內角為,若向弦圖內隨機拋擲200顆米粒(大小忽略不計,?。?,則落在小正方形(陰影)內的米粒數大約為()A.20 B.27 C.54 D.6412.胡夫金字塔是底面為正方形的錐體,四個側面都是相同的等腰三角形.研究發(fā)現,該金字塔底面周長除以倍的塔高,恰好為祖沖之發(fā)現的密率.設胡夫金字塔的高為,假如對胡夫金字塔進行亮化,沿其側棱和底邊布設單條燈帶,則需要燈帶的總長度約為A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.將底面直徑為4,高為的圓錐形石塊打磨成一個圓柱,則該圓柱的側面積的最大值為__________.14.已知拋物線的焦點為,斜率為的直線過且與拋物線交于兩點,為坐標原點,若在第一象限,那么_______________.15.已知函數為奇函數,則______.16.函數(為自然對數的底數,),若函數恰有個零點,則實數的取值范圍為__________________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知,.(1)解;(2)若,證明:.18.(12分)已知各項均為正數的數列的前項和為,且是與的等差中項.(1)證明:為等差數列,并求;(2)設,數列的前項和為,求滿足的最小正整數的值.19.(12分)已知直線的參數方程為(為參數),以坐標原點為極點,軸的非負半軸為極軸且取相同的單位長度建立極坐標系,曲線的極坐標方程為.(1)求直線的普通方程及曲線的直角坐標方程;(2)設點,直線與曲線交于兩點,求的值.20.(12分)如圖,三棱臺中,側面與側面是全等的梯形,若,且.(Ⅰ)若,,證明:∥平面;(Ⅱ)若二面角為,求平面與平面所成的銳二面角的余弦值.21.(12分)在平面直角坐標系中,有一個微型智能機器人(大小不計)只能沿著坐標軸的正方向或負方向行進,且每一步只能行進1個單位長度,例如:該機器人在點處時,下一步可行進到、、、這四個點中的任一位置.記該機器人從坐標原點出發(fā)、行進步后落在軸上的不同走法的種數為.(1)分別求、、的值;(2)求的表達式.22.(10分)已知函數.(Ⅰ)當時,求函數在上的值域;(Ⅱ)若函數在上單調遞減,求實數的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.D【解析】
根據集合的基本運算即可求解.【詳解】解:,,,則故選:D.【點睛】本題主要考查集合的基本運算,屬于基礎題.2.D【解析】
先將函數化為,再由三角函數的性質,逐項判斷,即可得出結果.【詳解】可得對于A,的最小正周期為,故A正確;對于B,由,可得,故B正確;對于C,正弦函數對稱軸可得:解得:,當,,故C正確;對于D,正弦函數對稱中心的橫坐標為:解得:若圖象關于點對稱,則解得:,故D錯誤;故選:D.【點睛】本題考查三角恒等變換,三角函數的性質,熟記三角函數基本公式和基本性質,考查了分析能力和計算能力,屬于基礎題.3.B【解析】∵∵∴∵,∴∴故選B點睛:本題主要考查利用橢圓的簡單性質及橢圓的定義.求解與橢圓性質有關的問題時要結合圖形進行分析,既使不畫出圖形,思考時也要聯(lián)想到圖形,當涉及頂點、焦點、長軸、短軸等橢圓的基本量時,要理清它們之間的關系,挖掘出它們之間的內在聯(lián)系.4.B【解析】
根據焦點所在坐標軸和漸近線方程設出雙曲線的標準方程,結合焦點坐標求解.【詳解】∵雙曲線與的漸近線相同,且焦點在軸上,∴可設雙曲線的方程為,一個焦點為,∴,∴,故的標準方程為.故選:B【點睛】此題考查根據雙曲線的漸近線和焦點求解雙曲線的標準方程,易錯點在于漏掉考慮焦點所在坐標軸導致方程形式出錯.5.D【解析】
由題意畫出圖形,將所在的面延它們的交線展開到與所在的面共面,可得當時最小,設正方體的棱長為,得,進一步求出四面體的體積即可.【詳解】解:如圖,
∵點M,N分別在棱上,要最小,將所在的面延它們的交線展開到與所在的面共面,三線共線時,最小,
∴
設正方體的棱長為,則,∴.
取,連接,則共面,在中,設到的距離為,
設到平面的距離為,
.
故選D.【點睛】本題考查多面體體積的求法,考查了多面體表面上的最短距離問題,考查計算能力,是中檔題.6.C【解析】
根據對稱性即可求出答案.【詳解】解:∵點(5,f(5))與點(﹣1,f(﹣1))滿足(5﹣1)÷2=2,故它們關于點(2,1)對稱,所以f(5)+f(﹣1)=2,故選:C.【點睛】本題主要考查函數的對稱性的應用,屬于中檔題.7.B【解析】
設過點作的垂線,其方程為,聯(lián)立方程,求得,,即,由,列出相應方程,求出離心率.【詳解】解:不妨設過點作的垂線,其方程為,由解得,,即,由,所以有,化簡得,所以離心率.故選:B.【點睛】本題主要考查雙曲線的概念、直線與直線的位置關系等基礎知識,考查運算求解、推理論證能力,屬于中檔題.8.C【解析】
根據充分條件和必要條件的定義結合對數的運算進行判斷即可.【詳解】∵a,b∈(1,+∞),∴a>b?logab<1,logab<1?a>b,∴a>b是logab<1的充分必要條件,故選C.【點睛】本題主要考查充分條件和必要條件的判斷,根據不等式的解法是解決本題的關鍵.9.C【解析】
根據在關于對稱的區(qū)間上概率相等的性質求解.【詳解】,,,.故選:C.【點睛】本題考查正態(tài)分布的應用.掌握正態(tài)曲線的性質是解題基礎.隨機變量服從正態(tài)分布,則.10.C【解析】試題分析:通過對以下四個四棱錐的三視圖對照可知,只有選項C是符合要求的.考點:三視圖11.B【解析】
設大正方體的邊長為,從而求得小正方體的邊長為,設落在小正方形內的米粒數大約為,利用概率模擬列方程即可求解?!驹斀狻吭O大正方體的邊長為,則小正方體的邊長為,設落在小正方形內的米粒數大約為,則,解得:故選:B【點睛】本題主要考查了概率模擬的應用,考查計算能力,屬于基礎題。12.D【解析】
設胡夫金字塔的底面邊長為,由題可得,所以,該金字塔的側棱長為,所以需要燈帶的總長度約為,故選D.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
由題意欲使圓柱側面積最大,需使圓柱內接于圓錐.設圓柱的高為h,底面半徑為r,則,將側面積表示成關于的函數,再利用一元二次函數的性質求最值.【詳解】欲使圓柱側面積最大,需使圓柱內接于圓錐.設圓柱的高為h,底面半徑為r,則,所以.∴,當時,的最大值為.故答案為:.【點睛】本題考查圓柱的側面積的最值,考查函數與方程思想、轉化與化歸思想、,考查空間想象能力和運算求解能力,求解時注意將問題轉化為函數的最值問題.14.2【解析】
如圖所示,先證明,再利用拋物線的定義和相似得到.【詳解】由題得,.因為.所以,過點A、B分別作準線的垂線,垂足分別為M,N,過點B作于點E,設|BF|=m,|AF|=n,則|BN|=m,|AM|=n,所以|AE|=n-m,因為,所以|AB|=3(n-m),所以3(n-m)=n+m,所以.所以.故答案為:2【點睛】本題主要考查直線和拋物線的位置關系,考查拋物線的定義,意在考查學生對這些知識的理解掌握水平.15.【解析】
利用奇函數的定義得出,結合對數的運算性質可求得實數的值.【詳解】由于函數為奇函數,則,即,,整理得,解得.當時,真數,不合乎題意;當時,,解不等式,解得或,此時函數的定義域為,定義域關于原點對稱,合乎題意.綜上所述,.故答案為:.【點睛】本題考查利用函數的奇偶性求參數,考查了函數奇偶性的定義和對數運算性質的應用,考查計算能力,屬于中等題.16.【解析】
令,則,恰有四個解.由判斷函數增減性,求出最小值,列出相應不等式求解得出的取值范圍.【詳解】解:令,則,恰有四個解.有兩個解,由,可得在上單調遞減,在上單調遞增,則,可得.設的負根為,由題意知,,,,則,.故答案為:.【點睛】本題考查導數在函數當中的應用,屬于難題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1);(2)見解析.【解析】
(1)在不等式兩邊平方化簡轉化為二次不等式,解此二次不等式即可得出結果;(2)利用絕對值三角不等式可證得成立.【詳解】(1),,由得,不等式兩邊平方得,即,解得或.因此,不等式的解集為;(2),,由絕對值三角不等式可得.因此,.【點睛】本題考查含絕對值不等式的求解,同時也考查了利用絕對值三角不等式證明不等式,考查推理能力與運算求解能力,屬于中等題.18.(1)見解析,(2)最小正整數的值為35.【解析】
(1)由等差中項可知,當時,得,整理后可得,從而證明為等差數列,繼而可求.(2),則可求出,令,即可求出的取值范圍,進而求出最小值.【詳解】解析:(1)由題意可得,當時,,∴,,當時,,整理可得,∴是首項為1,公差為1的等差數列,∴,.(2)由(1)可得,∴,解得,∴最小正整數的值為35.【點睛】本題考查了等差中項,考查了等差數列的定義,考查了與的關系,考查了裂項相消求和.當已知有與的遞推關系時,常代入進行整理.證明數列是等差數列時,一般借助數列,即后一項與前一項的差為常數.19.(1);(2)【解析】
(1)直接利用轉換關系的應用,把參數方程極坐標方程和直角坐標方程之間進行轉換.(2)利用(1)的結論,進一步利用一元二次方程根和系數的關系式的應用求出結果.【詳解】解:(1)直線的參數方程為(為參數),轉換為直角坐標方程為.曲線的極坐標方程為.轉換為,轉換為直角坐標方程為.(2)直線的參數方程為(為參數),轉換為標準式為(為參數),代入圓的直角坐標方程整理得,所以,..【點睛】本題屬于基礎本題考查的知識要點:主要考查極坐標,參數方程與普通方程互化,及求三角形面積.需要熟記極坐標系與參數方程的公式,及與解析幾何相關的直線與曲線位置關系的一些解題思路.20.(Ⅰ)見解析;(Ⅱ).【解析】試題分析:(Ⅰ)連接,由比例可得∥,進而得線面平行;(Ⅱ)過點作的垂線,建立空間直角坐標系,不妨設,則求得平面的法向量為,設平面的法向量為,由求二面角余弦即可.試題解析:(Ⅰ)證明:連接,梯形,,易知:;又,則∥;平面,平面,可得:∥平面;(Ⅱ)側面是梯形,,,,則為二面角的平面角,;均為正三角形,在平面內,過點作的垂線,如圖建立空間直角坐標系,不妨設,則,故點,;設平面的法向量為,則有:;設平面的法向量為,則有:;,故平面與平面所成的銳二面角的余弦值為.21.(1),,,(2)【解析】
(1)根據機器人的進行規(guī)律可確定、、的值;(2)首先根據機器人行進規(guī)則知機器人沿軸行進步,必須沿軸負方向行進相同的步數,而余下的每一步行進方向都有兩個選擇(向上或向下),由此結合組合知識確定機器人的每一種走法關于的表達式,并得到的表達式,然后結合二項式定理及展開式的通項公式進行求解.【詳解】解:(1),,(2)設為沿軸正方向走的步數(每一步長度為1),則反方向也需要走步才能回到軸上,所以,1,2,……,,(其中為不超過的最大整數)總共走步,首先任選步沿軸正方向走,再在剩下的步中選步沿軸負方向走,最后剩下的每一步都有兩種選擇(向上或向下),即等價于求中含項的系數,為其中含項的系數為故.【點睛】本
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 馬戲團合作協(xié)議書
- 2025年個人別墅測繪項目合同范本
- 2025版房地產開發(fā)項目施工合同交底書范本2篇
- 2025-2030全球三氟化銪行業(yè)調研及趨勢分析報告
- 2025-2030全球高折射率光纖行業(yè)調研及趨勢分析報告
- 2025-2030全球滑動軸承襯套行業(yè)調研及趨勢分析報告
- 2025-2030全球落地護眼燈行業(yè)調研及趨勢分析報告
- 2025年全球及中國微膠囊熱致變色顏料行業(yè)頭部企業(yè)市場占有率及排名調研報告
- 石料破碎加工合同范本
- 2025版?zhèn)€人股權交易保密協(xié)議書4篇
- 中國末端執(zhí)行器(靈巧手)行業(yè)市場發(fā)展態(tài)勢及前景戰(zhàn)略研判報告
- 北京離婚協(xié)議書(2篇)(2篇)
- 2025中國聯(lián)通北京市分公司春季校園招聘高頻重點提升(共500題)附帶答案詳解
- 康復醫(yī)學科患者隱私保護制度
- Samsung三星SMARTCAMERANX2000(20-50mm)中文說明書200
- 2024年藥品質量信息管理制度(2篇)
- 2024年安徽省高考地理試卷真題(含答案逐題解析)
- 廣東省廣州市2024年中考數學真題試卷(含答案)
- 高中學校開學典禮方案
- 內審檢查表完整版本
- 3級人工智能訓練師(高級)國家職業(yè)技能鑒定考試題及答案
評論
0/150
提交評論