版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2024-2025學年博雅聞道高三考前沖刺測試卷數(shù)學試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設,是非零向量,若對于任意的,都有成立,則A. B. C. D.2.函數(shù)()的圖象的大致形狀是()A. B. C. D.3.如圖,四邊形為平行四邊形,為中點,為的三等分點(靠近)若,則的值為()A. B. C. D.4.集合,則()A. B. C. D.5.如圖,在四邊形中,,,,,,則的長度為()A. B.C. D.6.若函數(shù)在處有極值,則在區(qū)間上的最大值為()A. B.2 C.1 D.37.已知向量,是單位向量,若,則()A. B. C. D.8.函數(shù)與在上最多有n個交點,交點分別為(,……,n),則()A.7 B.8 C.9 D.109.在中,角所對的邊分別為,已知,.當變化時,若存在最大值,則正數(shù)的取值范圍為A. B. C. D.10.某學校為了調查學生在課外讀物方面的支出情況,抽取了一個容量為的樣本,其頻率分布直方圖如圖所示,其中支出在(單位:元)的同學有34人,則的值為()A.100 B.1000 C.90 D.9011.已知集合,則元素個數(shù)為()A.1 B.2 C.3 D.412.在中,內角所對的邊分別為,若依次成等差數(shù)列,則()A.依次成等差數(shù)列 B.依次成等差數(shù)列C.依次成等差數(shù)列 D.依次成等差數(shù)列二、填空題:本題共4小題,每小題5分,共20分。13.已知拋物線的焦點為,其準線與坐標軸交于點,過的直線與拋物線交于兩點,若,則直線的斜率________.14.設,滿足條件,則的最大值為__________.15.已知的終邊過點,若,則__________.16.已知多項式的各項系數(shù)之和為32,則展開式中含項的系數(shù)為______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓,點,點滿足(其中為坐標原點),點在橢圓上.(1)求橢圓的標準方程;(2)設橢圓的右焦點為,若不經過點的直線與橢圓交于兩點.且與圓相切.的周長是否為定值?若是,求出定值;若不是,請說明理由.18.(12分)已知橢圓的短軸的兩個端點分別為、,焦距為.(1)求橢圓的方程;(2)已知直線與橢圓有兩個不同的交點、,設為直線上一點,且直線、的斜率的積為.證明:點在軸上.19.(12分)已知拋物線的焦點為,準線與軸交于點,點在拋物線上,直線與拋物線交于另一點.(1)設直線,的斜率分別為,,求證:常數(shù);(2)①設的內切圓圓心為的半徑為,試用表示點的橫坐標;②當?shù)膬惹袌A的面積為時,求直線的方程.20.(12分)如圖,在三棱柱中,已知四邊形為矩形,,,,的角平分線交于.(1)求證:平面平面;(2)求二面角的余弦值.21.(12分)中國古代數(shù)學經典《數(shù)書九章》中,將底面為矩形且有一條側棱與底面垂直的四棱錐稱為“陽馬”,將四個面都為直角三角形的四面體稱之為“鱉臑”.在如圖所示的陽馬中,底面ABCD是矩形.平面,,,以的中點O為球心,AC為直徑的球面交PD于M(異于點D),交PC于N(異于點C).(1)證明:平面,并判斷四面體MCDA是否是鱉臑,若是,寫出它每個面的直角(只需寫出結論);若不是,請說明理由;(2)求直線與平面所成角的正弦值.22.(10分)在全面抗擊新冠肺炎疫情這一特殊時期,我市教育局提出“停課不停學”的口號,鼓勵學生線上學習.某校數(shù)學教師為了調查高三學生數(shù)學成績與線上學習時間之間的相關關系,對高三年級隨機選取45名學生進行跟蹤問卷,其中每周線上學習數(shù)學時間不少于5小時的有19人,余下的人中,在檢測考試中數(shù)學平均成績不足120分的占,統(tǒng)計成績后得到如下列聯(lián)表:分數(shù)不少于120分分數(shù)不足120分合計線上學習時間不少于5小時419線上學習時間不足5小時合計45(1)請完成上面列聯(lián)表;并判斷是否有99%的把握認為“高三學生的數(shù)學成績與學生線上學習時間有關”;(2)①按照分層抽樣的方法,在上述樣本中從分數(shù)不少于120分和分數(shù)不足120分的兩組學生中抽取9名學生,設抽到不足120分且每周線上學習時間不足5小時的人數(shù)是,求的分布列(概率用組合數(shù)算式表示);②若將頻率視為概率,從全校高三該次檢測數(shù)學成績不少于120分的學生中隨機抽取20人,求這些人中每周線上學習時間不少于5小時的人數(shù)的期望和方差.(下面的臨界值表供參考)0.100.050.0250.0100.0050.0012.7063.8415.0246.6357.87910.828(參考公式其中)
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.D【解析】
畫出,,根據(jù)向量的加減法,分別畫出的幾種情況,由數(shù)形結合可得結果.【詳解】由題意,得向量是所有向量中模長最小的向量,如圖,當,即時,最小,滿足,對于任意的,所以本題答案為D.本題主要考查了空間向量的加減法,以及點到直線的距離最短問題,解題的關鍵在于用有向線段正確表示向量,屬于基礎題.2.C【解析】
對x分類討論,去掉絕對值,即可作出圖象.【詳解】故選C.識圖常用的方法(1)定性分析法:通過對問題進行定性的分析,從而得出圖象的上升(或下降)的趨勢,利用這一特征分析解決問題;(2)定量計算法:通過定量的計算來分析解決問題;(3)函數(shù)模型法:由所提供的圖象特征,聯(lián)想相關函數(shù)模型,利用這一函數(shù)模型來分析解決問題.3.D【解析】
使用不同方法用表示出,結合平面向量的基本定理列出方程解出.【詳解】解:,又解得,所以故選:D本題考查了平面向量的基本定理及其意義,屬于基礎題.4.D【解析】
利用交集的定義直接計算即可.【詳解】,故,故選:D.本題考查集合的交運算,注意常見集合的符號表示,本題屬于基礎題.5.D【解析】
設,在中,由余弦定理得,從而求得,再由由正弦定理得,求得,然后在中,用余弦定理求解.【詳解】設,在中,由余弦定理得,則,從而,由正弦定理得,即,從而,在中,由余弦定理得:,則.故選:D本題主要考查正弦定理和余弦定理的應用,還考查了數(shù)形結合的思想和運算求解的能力,屬于中檔題.6.B【解析】
根據(jù)極值點處的導數(shù)為零先求出的值,然后再按照求函數(shù)在連續(xù)的閉區(qū)間上最值的求法計算即可.【詳解】解:由已知得,,,經檢驗滿足題意.,.由得;由得或.所以函數(shù)在上遞增,在上遞減,在上遞增.則,,由于,所以在區(qū)間上的最大值為2.故選:B.本題考查了導數(shù)極值的性質以及利用導數(shù)求函數(shù)在連續(xù)的閉區(qū)間上的最值問題的基本思路,屬于中檔題.7.C【解析】
設,根據(jù)題意求出的值,代入向量夾角公式,即可得答案;【詳解】設,,是單位向量,,,,聯(lián)立方程解得:或當時,;當時,;綜上所述:.故選:C.本題考查向量的模、夾角計算,考查函數(shù)與方程思想、轉化與化歸思想,考查邏輯推理能力、運算求解能力,求解時注意的兩種情況.8.C【解析】
根據(jù)直線過定點,采用數(shù)形結合,可得最多交點個數(shù),然后利用對稱性,可得結果.【詳解】由題可知:直線過定點且在是關于對稱如圖通過圖像可知:直線與最多有9個交點同時點左、右邊各四個交點關于對稱所以故選:C本題考查函數(shù)對稱性的應用,數(shù)形結合,難點在于正確畫出圖像,同時掌握基礎函數(shù)的性質,屬難題.9.C【解析】
因為,,所以根據(jù)正弦定理可得,所以,,所以,其中,,因為存在最大值,所以由,可得,所以,所以,解得,所以正數(shù)的取值范圍為,故選C.10.A【解析】
利用頻率分布直方圖得到支出在的同學的頻率,再結合支出在(單位:元)的同學有34人,即得解【詳解】由題意,支出在(單位:元)的同學有34人由頻率分布直方圖可知,支出在的同學的頻率為.故選:A本題考查了頻率分布直方圖的應用,考查了學生概念理解,數(shù)據(jù)處理,數(shù)學運算的能力,屬于基礎題.11.B【解析】
作出兩集合所表示的點的圖象,可得選項.【詳解】由題意得,集合A表示以原點為圓心,以2為半徑的圓,集合B表示函數(shù)的圖象上的點,作出兩集合所表示的點的示意圖如下圖所示,得出兩個圖象有兩個交點:點A和點B,所以兩個集合有兩個公共元素,所以元素個數(shù)為2,故選:B.本題考查集合的交集運算,關鍵在于作出集合所表示的點的圖象,再運用數(shù)形結合的思想,屬于基礎題.12.C【解析】
由等差數(shù)列的性質、同角三角函數(shù)的關系以及兩角和的正弦公式可得,由正弦定理可得,再由余弦定理可得,從而可得結果.【詳解】依次成等差數(shù)列,,正弦定理得,由余弦定理得,,即依次成等差數(shù)列,故選C.本題主要考查等差數(shù)列的定義、正弦定理、余弦定理,屬于難題.解三角形時,有時可用正弦定理,有時也可用余弦定理,應注意用哪一個定理更方便、簡捷.如果式子中含有角的余弦或邊的二次式,要考慮用余弦定理;如果遇到的式子中含有角的正弦或邊的一次式時,則考慮用正弦定理;以上特征都不明顯時,則要考慮兩個定理都有可能用到.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
求出拋物線焦點坐標,由,結合向量的坐標運算得,直線方程為,代入拋物線方程后應用韋達定理得,,從而可求得,得斜率.【詳解】由得,即聯(lián)立得解得或,∴.故答案為:.本題考查直線與拋物線相交,考查向量的線性運算的坐標表示.直線方程與拋物線方程聯(lián)立后消元,應用韋達定理是解決直線與拋物線相交問題的常用方法.14.【解析】
作出可行域,由得,平移直線,數(shù)形結合可求的最大值.【詳解】作出可行域如圖所示由得,則是直線在軸上的截距.平移直線,當直線經過可行域內的點時,最小,此時最大.解方程組,得,..故答案為:.本題考查簡單的線性規(guī)劃,屬于基礎題.15.【解析】
】由題意利用任意角的三角函數(shù)的定義,求得的值.【詳解】∵的終邊過點,若,.即答案為-2.本題主要考查任意角的三角函數(shù)的定義和誘導公式,屬基礎題.16.【解析】
令可得各項系數(shù)和為,得出,根據(jù)第一個因式展開式的常數(shù)項與第二個因式的展開式含一次項的積與第一個因式展開式含x的一次項與第二個因式常數(shù)項的積的和即為展開式中含項,可得解.【詳解】令,則得,解得,所以展開式中含項為:,故答案為:本題主要考查了二項展開式的系數(shù)和,二項展開式特定項,賦值法,屬于中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1)(2)是,【解析】
(1)設,根據(jù)條件可求出的坐標,再利用在橢圓上,代入橢圓方程求出即可;(2)設運用勾股定理和點滿足橢圓方程,求出,,再利用焦半徑公式表示出,進而求出周長為定值.【詳解】(1)設,因為,即則,即,因為均在上,代入得,解得,所以橢圓的方程為;(2)由(1)得,作出示意圖,設切點為,則,同理即,所以,又,則的周長,所以周長為定值.標準方程的求解,橢圓中的定值問題,考查焦半徑公式的運用,考查邏輯推理能力和運算求解能力,難度較難.18.(1);(2)見解析.【解析】
(1)由已知條件得出、的值,進而可得出的值,由此可求得橢圓的方程;(2)設點,可得,且,,求出直線的斜率,進而可求得直線與的方程,將直線直線與的方程聯(lián)立,求出點的坐標,即可證得結論.【詳解】(1)由題設,得,所以,即.故橢圓的方程為;(2)設,則,,.所以直線的斜率為,因為直線、的斜率的積為,所以直線的斜率為.直線的方程為,直線的方程為.聯(lián)立,解得點的縱坐標為.因為點在橢圓上,所以,則,所以點在軸上.本題考查橢圓方程的求解,同時也考查了點在定直線的證明,考查計算能力與推理能力,屬于中等題.19.(1)證明見解析;(2)①;②.【解析】
(1)設過的直線交拋物線于,,聯(lián)立,利用直線的斜率公式和韋達定理表示出,化簡即可;(2)由(1)知點在軸上,故,設出直線方程,求出交點坐標,因為內心到三角形各邊的距離相等且均為內切圓半徑,列出方程組求解即可.【詳解】(1)設過的直線交拋物線于,,聯(lián)立方程組,得:.于是,有:,又,;(2)①由(1)知點在軸上,故,聯(lián)立的直線方程:.,又點在拋物線上,得,又,;②由題得,(解法一)所以直線的方程為(解法二)設內切圓半徑為,則.設直線的斜率為,則:直線的方程為:代入直線的直線方程,可得于是有:得,又由(1)可設內切圓的圓心為則,即:,解得:所以,直線的方程為:.本題主要考查了拋物線的性質,直線與拋物線相關的綜合問題的求解,考查了學生的運算求解與邏輯推理能力.20.(1)見解析;(2)【解析】
(1)過點作交于,連接,設,連接,由角平分線的性質,正方形的性質,三角形的全等,證得,,由線面垂直的判斷定理證得平面,再由面面垂直的判斷得證.(2)平面幾何知識和線面的關系可證得平面,建立空間直角坐標系,求得兩個平面的法向量,根據(jù)二面角的向量計算公式可求得其值.【詳解】(1)如圖,過點作交于,連接,設,連接,,,又為的角平分線,四邊形為正方形,,又,,,,,又為的中點,又平面,,平面,又平面,平面平面,(2)在中,,,,在中,,,又,,,,又,,平面,平面,故建立如圖空間直角坐標系,則,,,,,,,設平面的一個法向量為,則,,令,得,設平面的一個法向量為,則,,令,得,由圖示可知二面角是銳角,故二面角的余弦值為.本題考查空間的面面垂直關系的證明,二面角的計算,在證明垂直關系時,注意運用平面幾何中的等腰三角形的“三線合一”,勾股定理、菱形的對角線互相垂直,屬于基礎題.21.(1)證明見解析,是,,,,;(2)【解析】
(1)根據(jù)是球的直徑,則,又平面,得到,再由線面垂直的判定定理得到平面,,進而得到,再利用線面垂直的判定定理得到平面.(2)以A為原點,,,所在直線為x,y,z軸建立直角坐標系,設,由,解得,得到,從而得到,然后求得平面的一個法向量,代入公式
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024上海市優(yōu)惠價房購買合同文本
- 咖啡店桌椅訂購與安裝合同
- 2024年挖機施工協(xié)議合同
- 企業(yè)承包經營合同書范本
- 2024年購買二手車需謹慎
- 展會與媒體合作協(xié)議模板
- 產品制造分許可協(xié)議分析
- 個人與企業(yè)間借款合同范本
- 成都市白蟻防治工程合同書參考文獻
- 廣告媒介合同格式參考
- 第三章 信息系統(tǒng)的網(wǎng)絡組建- 復習課件 2021-2022學年粵教版(2019)高中信息技術必修2
- GB/T 4909.4-2009裸電線試驗方法第4部分:扭轉試驗
- 佛七精進念佛容易著魔請看祖師開示及個人感悟
- 中小學教師信息技術培訓
- 幼兒園中班科學活動教案《奇妙的感官》
- Yes-or-No-questions-一般疑問課件
- 環(huán)境保護相關知識培訓專題培訓課件
- 復變函數(shù)與積分變換全套課件
- 腹壁的解剖課件
- 兒科常用藥物與急救藥物-換算方法課件
- 壓花制作(觀賞植物學)課件
評論
0/150
提交評論