版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2024-2025學(xué)年黑龍江省克東縣第一中學(xué)高三全國(guó)統(tǒng)一考試仿真卷(四)數(shù)學(xué)試題試卷注意事項(xiàng)1.考生要認(rèn)真填寫(xiě)考場(chǎng)號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書(shū)寫(xiě)在答題卡上,在試卷上作答無(wú)效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.設(shè)集合,,若,則的取值范圍是()A. B. C. D.2.已知雙曲線的左焦點(diǎn)為,直線經(jīng)過(guò)點(diǎn)且與雙曲線的一條漸近線垂直,直線與雙曲線的左支交于不同的兩點(diǎn),,若,則該雙曲線的離心率為().A. B. C. D.3.在邊長(zhǎng)為1的等邊三角形中,點(diǎn)E是中點(diǎn),點(diǎn)F是中點(diǎn),則()A. B. C. D.4.的展開(kāi)式中的系數(shù)為()A. B. C. D.5.已知函數(shù)在上有兩個(gè)零點(diǎn),則的取值范圍是()A. B. C. D.6.設(shè),為非零向量,則“存在正數(shù),使得”是“”的()A.既不充分也不必要條件 B.必要不充分條件C.充分必要條件 D.充分不必要條件7.執(zhí)行如圖所示的程序框圖,如果輸入,則輸出屬于()A. B. C. D.8.等腰直角三角形的斜邊AB為正四面體側(cè)棱,直角邊AE繞斜邊AB旋轉(zhuǎn),則在旋轉(zhuǎn)的過(guò)程中,有下列說(shuō)法:(1)四面體EBCD的體積有最大值和最小值;(2)存在某個(gè)位置,使得;(3)設(shè)二面角的平面角為,則;(4)AE的中點(diǎn)M與AB的中點(diǎn)N連線交平面BCD于點(diǎn)P,則點(diǎn)P的軌跡為橢圓.其中,正確說(shuō)法的個(gè)數(shù)是()A.1 B.2 C.3 D.49.已知函數(shù),若函數(shù)在上有3個(gè)零點(diǎn),則實(shí)數(shù)的取值范圍為()A. B. C. D.10.一個(gè)空間幾何體的正視圖是長(zhǎng)為4,寬為的長(zhǎng)方形,側(cè)視圖是邊長(zhǎng)為2的等邊三角形,俯視圖如圖所示,則該幾何體的體積為()A. B. C. D.11.若,,,則()A. B.C. D.12.如圖是一個(gè)幾何體的三視圖,則該幾何體的體積為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知兩點(diǎn),,若直線上存在點(diǎn)滿足,則實(shí)數(shù)滿足的取值范圍是__________.14.已知集合,若,且,則實(shí)數(shù)所有的可能取值構(gòu)成的集合是________.15.電影《厲害了,我的國(guó)》于2018年3月正式登陸全國(guó)院線,網(wǎng)友紛紛表示,看完電影熱血沸騰“我為我的國(guó)家驕傲,我為我是中國(guó)人驕傲!”《厲害了,我的國(guó)》正在召喚我們每一個(gè)人,不忘初心,用奮斗書(shū)寫(xiě)無(wú)悔人生,小明想約甲、乙、丙、丁四位好朋友一同去看《厲害了,我的國(guó)》,并把標(biāo)識(shí)為的四張電影票放在編號(hào)分別為1,2,3,4的四個(gè)不同的盒子里,讓四位好朋友進(jìn)行猜測(cè):甲說(shuō):第1個(gè)盒子里放的是,第3個(gè)盒子里放的是乙說(shuō):第2個(gè)盒子里放的是,第3個(gè)盒子里放的是丙說(shuō):第4個(gè)盒子里放的是,第2個(gè)盒子里放的是丁說(shuō):第4個(gè)盒子里放的是,第3個(gè)盒子里放的是小明說(shuō):“四位朋友你們都只說(shuō)對(duì)了一半”可以預(yù)測(cè),第4個(gè)盒子里放的電影票為_(kāi)________16.在中,內(nèi)角的對(duì)邊分別是,若,,則____.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)為迎接2022年冬奧會(huì),北京市組織中學(xué)生開(kāi)展冰雪運(yùn)動(dòng)的培訓(xùn)活動(dòng),并在培訓(xùn)結(jié)束后對(duì)學(xué)生進(jìn)行了考核.記表示學(xué)生的考核成績(jī),并規(guī)定為考核優(yōu)秀.為了了解本次培訓(xùn)活動(dòng)的效果,在參加培訓(xùn)的學(xué)生中隨機(jī)抽取了30名學(xué)生的考核成績(jī),并作成如下莖葉圖:(Ⅰ)從參加培訓(xùn)的學(xué)生中隨機(jī)選取1人,請(qǐng)根據(jù)圖中數(shù)據(jù),估計(jì)這名學(xué)生考核優(yōu)秀的概率;(Ⅱ)從圖中考核成績(jī)滿足的學(xué)生中任取2人,求至少有一人考核優(yōu)秀的概率;(Ⅲ)記表示學(xué)生的考核成績(jī)?cè)趨^(qū)間的概率,根據(jù)以往培訓(xùn)數(shù)據(jù),規(guī)定當(dāng)時(shí)培訓(xùn)有效.請(qǐng)根據(jù)圖中數(shù)據(jù),判斷此次中學(xué)生冰雪培訓(xùn)活動(dòng)是否有效,并說(shuō)明理由.18.(12分)為調(diào)研高中生的作文水平.在某市普通高中的某次聯(lián)考中,參考的文科生與理科生人數(shù)之比為,且成績(jī)分布在的范圍內(nèi),規(guī)定分?jǐn)?shù)在50以上(含50)的作文被評(píng)為“優(yōu)秀作文”,按文理科用分層抽樣的方法抽取400人的成績(jī)作為樣本,得到成績(jī)的頻率分布直方圖,如圖所示.其中構(gòu)成以2為公比的等比數(shù)列.(1)求的值;(2)填寫(xiě)下面列聯(lián)表,能否在犯錯(cuò)誤的概率不超過(guò)0.01的情況下認(rèn)為“獲得優(yōu)秀作文”與“學(xué)生的文理科”有關(guān)?文科生理科生合計(jì)獲獎(jiǎng)6不獲獎(jiǎng)合計(jì)400(3)將上述調(diào)查所得的頻率視為概率,現(xiàn)從全市參考學(xué)生中,任意抽取2名學(xué)生,記“獲得優(yōu)秀作文”的學(xué)生人數(shù)為,求的分布列及數(shù)學(xué)期望.附:,其中.0.150.100.050.0250.0100.0050.0012.0722.7063.8415.0246.6357.87910.82819.(12分)在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系.已知直線的參數(shù)方程為(為參數(shù)),曲線的極坐標(biāo)方程為;(1)求直線的直角坐標(biāo)方程和曲線的直角坐標(biāo)方程;(2)若直線與曲線交點(diǎn)分別為,,點(diǎn),求的值.20.(12分)已知函數(shù),設(shè)為的導(dǎo)數(shù),.(1)求,;(2)猜想的表達(dá)式,并證明你的結(jié)論.21.(12分)某大學(xué)開(kāi)學(xué)期間,該大學(xué)附近一家快餐店招聘外賣(mài)騎手,該快餐店提供了兩種日工資結(jié)算方案:方案規(guī)定每日底薪100元,外賣(mài)業(yè)務(wù)每完成一單提成2元;方案規(guī)定每日底薪150元,外賣(mài)業(yè)務(wù)的前54單沒(méi)有提成,從第55單開(kāi)始,每完成一單提成5元.該快餐店記錄了每天騎手的人均業(yè)務(wù)量,現(xiàn)隨機(jī)抽取100天的數(shù)據(jù),將樣本數(shù)據(jù)分為七組,整理得到如圖所示的頻率分布直方圖.(1)隨機(jī)選取一天,估計(jì)這一天該快餐店的騎手的人均日外賣(mài)業(yè)務(wù)量不少于65單的概率;(2)從以往統(tǒng)計(jì)數(shù)據(jù)看,新聘騎手選擇日工資方案的概率為,選擇方案的概率為.若甲、乙、丙、丁四名騎手分別到該快餐店應(yīng)聘,四人選擇日工資方案相互獨(dú)立,求至少有兩名騎手選擇方案的概率,(3)若僅從人日均收入的角度考慮,請(qǐng)你為新聘騎手做出日工資方案的選擇,并說(shuō)明理由.(同組中的每個(gè)數(shù)據(jù)用該組區(qū)間的中點(diǎn)值代替)22.(10分)隨著時(shí)代的發(fā)展,A城市的競(jìng)爭(zhēng)力、影響力日益卓著,這座創(chuàng)新引領(lǐng)型城市有望踏上向“全球城市”發(fā)起“沖擊”的新征程.A城市的活力與包容無(wú)不吸引著無(wú)數(shù)懷揣夢(mèng)想的年輕人前來(lái)發(fā)展,目前A城市的常住人口大約為1300萬(wàn).近日,某報(bào)社記者作了有關(guān)“你來(lái)A城市發(fā)展的理由”的調(diào)查問(wèn)卷,參與調(diào)查的對(duì)象年齡層次在25~44歲之間.收集到的相關(guān)數(shù)據(jù)如下:來(lái)A城市發(fā)展的理由人數(shù)合計(jì)自然環(huán)境1.森林城市,空氣清新2003002.降水充足,氣候怡人100人文環(huán)境3.城市服務(wù)到位1507004.創(chuàng)業(yè)氛圍好3005.開(kāi)放且包容250合計(jì)10001000(1)根據(jù)以上數(shù)據(jù),預(yù)測(cè)400萬(wàn)25~44歲年齡的人中,選擇“創(chuàng)業(yè)氛圍好”來(lái)A城市發(fā)展的有多少人;(2)從所抽取選擇“自然環(huán)境”作為來(lái)A城市發(fā)展的理由的300人中,利用分層抽樣的方法抽取6人,從這6人中再選取3人發(fā)放紀(jì)念品.求選出的3人中至少有2人選擇“森林城市,空氣清新”的概率;(3)在選擇“自然環(huán)境”作為來(lái)A城市發(fā)展的理由的300人中有100名男性;在選擇“人文環(huán)境”作為來(lái)A城市發(fā)展的理由的700人中有400名男性;請(qǐng)?zhí)顚?xiě)下面列聯(lián)表,并判斷是否有的把握認(rèn)為性別與“自然環(huán)境”或“人文環(huán)境”的選擇有關(guān)?自然環(huán)境人文環(huán)境合計(jì)男女合計(jì)附:,.P()0.0500.0100.001k3.8416.63510.828
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.C【解析】
由得出,利用集合的包含關(guān)系可得出實(shí)數(shù)的取值范圍.【詳解】,且,,.因此,實(shí)數(shù)的取值范圍是.故選:C.本題考查利用集合的包含關(guān)系求參數(shù),考查計(jì)算能力,屬于基礎(chǔ)題.2.A【解析】
直線的方程為,令和雙曲線方程聯(lián)立,再由得到兩交點(diǎn)坐標(biāo)縱坐標(biāo)關(guān)系進(jìn)行求解即可.【詳解】由題意可知直線的方程為,不妨設(shè).則,且將代入雙曲線方程中,得到設(shè)則由,可得,故則,解得則所以雙曲線離心率故選:A此題考查雙曲線和直線相交問(wèn)題,聯(lián)立直線和雙曲線方程得到兩交點(diǎn)坐標(biāo)關(guān)系和已知條件即可求解,屬于一般性題目.3.C【解析】
根據(jù)平面向量基本定理,用來(lái)表示,然后利用數(shù)量積公式,簡(jiǎn)單計(jì)算,可得結(jié)果.【詳解】由題可知:點(diǎn)E是中點(diǎn),點(diǎn)F是中點(diǎn),所以又所以則故選:C本題考查平面向量基本定理以及數(shù)量積公式,掌握公式,細(xì)心觀察,屬基礎(chǔ)題.4.C【解析】由題意,根據(jù)二項(xiàng)式定理展開(kāi)式的通項(xiàng)公式,得展開(kāi)式的通項(xiàng)為,則展開(kāi)式的通項(xiàng)為,由,得,所以所求的系數(shù)為.故選C.點(diǎn)睛:此題主要考查二項(xiàng)式定理的通項(xiàng)公式的應(yīng)用,以及組合數(shù)、整數(shù)冪的運(yùn)算等有關(guān)方面的知識(shí)與技能,屬于中低檔題,也是??贾R(shí)點(diǎn).在二項(xiàng)式定理的應(yīng)用中,注意區(qū)分二項(xiàng)式系數(shù)與系數(shù),先求出通項(xiàng)公式,再根據(jù)所求問(wèn)題,通過(guò)確定未知的次數(shù),求出,將的值代入通項(xiàng)公式進(jìn)行計(jì)算,從而問(wèn)題可得解.5.C【解析】
對(duì)函數(shù)求導(dǎo),對(duì)a分類討論,分別求得函數(shù)的單調(diào)性及極值,結(jié)合端點(diǎn)處的函數(shù)值進(jìn)行判斷求解.【詳解】∵,.當(dāng)時(shí),,在上單調(diào)遞增,不合題意.當(dāng)時(shí),,在上單調(diào)遞減,也不合題意.當(dāng)時(shí),則時(shí),,在上單調(diào)遞減,時(shí),,在上單調(diào)遞增,又,所以在上有兩個(gè)零點(diǎn),只需即可,解得.綜上,的取值范圍是.故選C.本題考查了利用導(dǎo)數(shù)解決函數(shù)零點(diǎn)的問(wèn)題,考查了函數(shù)的單調(diào)性及極值問(wèn)題,屬于中檔題.6.D【解析】
充分性中,由向量數(shù)乘的幾何意義得,再由數(shù)量積運(yùn)算即可說(shuō)明成立;必要性中,由數(shù)量積運(yùn)算可得,不一定有正數(shù),使得,所以不成立,即可得答案.【詳解】充分性:若存在正數(shù),使得,則,,得證;必要性:若,則,不一定有正數(shù),使得,故不成立;所以是充分不必要條件故選:D本題考查平面向量數(shù)量積的運(yùn)算,向量數(shù)乘的幾何意義,還考查了充分必要條件的判定,屬于簡(jiǎn)單題.7.B【解析】
由題意,框圖的作用是求分段函數(shù)的值域,求解即得解.【詳解】由題意可知,框圖的作用是求分段函數(shù)的值域,當(dāng);當(dāng)綜上:.故選:B本題考查了條件分支的程序框圖,考查了學(xué)生邏輯推理,分類討論,數(shù)學(xué)運(yùn)算的能力,屬于基礎(chǔ)題.8.C【解析】
解:對(duì)于(1),當(dāng)CD⊥平面ABE,且E在AB的右上方時(shí),E到平面BCD的距離最大,當(dāng)CD⊥平面ABE,且E在AB的左下方時(shí),E到平面BCD的距離最小,∴四面體E﹣BCD的體積有最大值和最小值,故(1)正確;對(duì)于(2),連接DE,若存在某個(gè)位置,使得AE⊥BD,又AE⊥BE,則AE⊥平面BDE,可得AE⊥DE,進(jìn)一步可得AE=DE,此時(shí)E﹣ABD為正三棱錐,故(2)正確;對(duì)于(3),取AB中點(diǎn)O,連接DO,EO,則∠DOE為二面角D﹣AB﹣E的平面角,為θ,直角邊AE繞斜邊AB旋轉(zhuǎn),則在旋轉(zhuǎn)的過(guò)程中,θ∈[0,π),∠DAE∈[,π),所以θ≥∠DAE不成立.(3)不正確;對(duì)于(4)AE的中點(diǎn)M與AB的中點(diǎn)N連線交平面BCD于點(diǎn)P,P到BC的距離為:dP﹣BC,因?yàn)椋?,所以點(diǎn)P的軌跡為橢圓.(4)正確.故選:C.點(diǎn)睛:該題考查的是有關(guān)多面體和旋轉(zhuǎn)體對(duì)應(yīng)的特征,以幾何體為載體,考查相關(guān)的空間關(guān)系,在解題的過(guò)程中,需要認(rèn)真分析,得到結(jié)果,注意對(duì)知識(shí)點(diǎn)的靈活運(yùn)用.9.B【解析】
根據(jù)分段函數(shù),分當(dāng),,將問(wèn)題轉(zhuǎn)化為的零點(diǎn)問(wèn)題,用數(shù)形結(jié)合的方法研究.【詳解】當(dāng)時(shí),,令,在是增函數(shù),時(shí),有一個(gè)零點(diǎn),當(dāng)時(shí),,令當(dāng)時(shí),,在上單調(diào)遞增,當(dāng)時(shí),,在上單調(diào)遞減,所以當(dāng)時(shí),取得最大值,因?yàn)樵谏嫌?個(gè)零點(diǎn),所以當(dāng)時(shí),有2個(gè)零點(diǎn),如圖所示:所以實(shí)數(shù)的取值范圍為綜上可得實(shí)數(shù)的取值范圍為,故選:B本題主要考查了函數(shù)的零點(diǎn)問(wèn)題,還考查了數(shù)形結(jié)合的思想和轉(zhuǎn)化問(wèn)題的能力,屬于中檔題.10.B【解析】
由三視圖確定原幾何體是正三棱柱,由此可求得體積.【詳解】由題意原幾何體是正三棱柱,.故選:B.本題考查三視圖,考查棱柱的體積.解題關(guān)鍵是由三視圖不愿出原幾何體.11.C【解析】
利用指數(shù)函數(shù)和對(duì)數(shù)函數(shù)的單調(diào)性比較、、三個(gè)數(shù)與和的大小關(guān)系,進(jìn)而可得出、、三個(gè)數(shù)的大小關(guān)系.【詳解】對(duì)數(shù)函數(shù)為上的增函數(shù),則,即;指數(shù)函數(shù)為上的增函數(shù),則;指數(shù)函數(shù)為上的減函數(shù),則.綜上所述,.故選:C.本題考查指數(shù)冪與對(duì)數(shù)式的大小比較,一般利用指數(shù)函數(shù)和對(duì)數(shù)函數(shù)的單調(diào)性結(jié)合中間值法來(lái)比較,考查推理能力,屬于基礎(chǔ)題.12.A【解析】
根據(jù)三視圖可得幾何體為直三棱柱,根據(jù)三視圖中的數(shù)據(jù)直接利用公式可求體積.【詳解】由三視圖可知幾何體為直三棱柱,直觀圖如圖所示:其中,底面為直角三角形,,,高為.∴該幾何體的體積為故選:A.本題考查三視圖及棱柱的體積,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
問(wèn)題轉(zhuǎn)化為求直線與圓有公共點(diǎn)時(shí),的取值范圍,利用數(shù)形結(jié)合思想能求出結(jié)果.【詳解】解:直線,點(diǎn),,直線上存在點(diǎn)滿足,的軌跡方程是.如圖,直線與圓有公共點(diǎn),圓心到直線的距離:,解得.實(shí)數(shù)的取值范圍為.故答案為:.本題主要考查直線方程、圓、點(diǎn)到直線的距離公式等基礎(chǔ)知識(shí),考查推理論證能力、運(yùn)算求解能力,考查化歸與轉(zhuǎn)化思想、函數(shù)與方程思想,屬于中檔題.14..【解析】
化簡(jiǎn)集合,由,以及,即可求出結(jié)論.【詳解】集合,若,則的可能取值為,0,2,3,又因?yàn)?,所以?shí)數(shù)所有的可能取值構(gòu)成的集合是.故答案為:.本題考查集合與元素的關(guān)系,理解題意是解題的關(guān)鍵,屬于基礎(chǔ)題.15.A或D【解析】
分別假設(shè)每一個(gè)人一半是對(duì)的,然后分別進(jìn)行驗(yàn)證即可.【詳解】解:假設(shè)甲說(shuō):第1個(gè)盒子里面放的是是對(duì)的,則乙說(shuō):第3個(gè)盒子里面放的是是對(duì)的,丙說(shuō):第2個(gè)盒子里面放的是是對(duì)的,丁說(shuō):第4個(gè)盒子里面放的是是對(duì)的,由此可知第4個(gè)盒子里面放的是;假設(shè)甲說(shuō):第3個(gè)盒子里面放的是是對(duì)的,則丙說(shuō):第4個(gè)盒子里面放的是是對(duì)的,乙說(shuō):第2個(gè)盒子里面放的是是對(duì)的,丁說(shuō):第3個(gè)盒子里面放的是是對(duì)的,由此可知第4個(gè)盒子里面放的是.故第4個(gè)盒子里面放的電影票為或.故答案為:或本題考查簡(jiǎn)單的合情推理,考查推理論證能力、分析判斷能力、歸納總結(jié)能力,屬于中檔題.16.【解析】
由,根據(jù)正弦定理“邊化角”,可得,根據(jù)余弦定理,結(jié)合已知聯(lián)立方程組,即可求得角.【詳解】根據(jù)正弦定理:可得根據(jù)余弦定理:由已知可得:故可聯(lián)立方程:解得:.由故答案為:.本題主要考查了求三角形的一個(gè)內(nèi)角,解題關(guān)鍵是掌握由正弦定理“邊化角”的方法和余弦定理公式,考查了分析能力和計(jì)算能力,屬于中檔題.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(Ⅰ)(Ⅱ)(Ⅲ)見(jiàn)解析【解析】
(Ⅰ)根據(jù)莖葉圖求出滿足條件的概率即可;(Ⅱ)結(jié)合圖表得到6人中有2個(gè)人考核為優(yōu),從而求出滿足條件的概率即可;(Ⅲ)求出滿足的成績(jī)有16個(gè),求出滿足條件的概率即可.【詳解】解:(Ⅰ)設(shè)這名學(xué)生考核優(yōu)秀為事件,由莖葉圖中的數(shù)據(jù)可以知道,30名同學(xué)中,有7名同學(xué)考核優(yōu)秀,所以所求概率約為(Ⅱ)設(shè)從圖中考核成績(jī)滿足的學(xué)生中任取2人,至少有一人考核成績(jī)優(yōu)秀為事件,因?yàn)楸碇谐煽?jī)?cè)诘?人中有2個(gè)人考核為優(yōu),所以基本事件空間包含15個(gè)基本事件,事件包含9個(gè)基本事件,所以(Ⅲ)根據(jù)表格中的數(shù)據(jù),滿足的成績(jī)有16個(gè),所以所以可以認(rèn)為此次冰雪培訓(xùn)活動(dòng)有效.本題考查了莖葉圖問(wèn)題,考查概率求值以及轉(zhuǎn)化思想,是一道常規(guī)題.18.(1),,.(2)填表見(jiàn)解析;在犯錯(cuò)誤的概率不超過(guò)0.01的情況下,不能認(rèn)為“獲得優(yōu)秀作文”與“學(xué)生的文理科”有關(guān)(3)詳見(jiàn)解析【解析】
(1)根據(jù)頻率分步直方圖和構(gòu)成以2為公比的等比數(shù)列,即可得解;(2)由頻率分步直方圖算出相應(yīng)的頻數(shù)即可填寫(xiě)列聯(lián)表,再用的計(jì)算公式運(yùn)算即可;(3)獲獎(jiǎng)的概率為,隨機(jī)變量,再根據(jù)二項(xiàng)分布即可求出其分布列與期望.【詳解】解:(1)由頻率分布直方圖可知,,因?yàn)闃?gòu)成以2為公比的等比數(shù)列,所以,解得,所以,.故,,.(2)獲獎(jiǎng)的人數(shù)為人,因?yàn)閰⒖嫉奈目粕c理科生人數(shù)之比為,所以400人中文科生的數(shù)量為,理科生的數(shù)量為.由表可知,獲獎(jiǎng)的文科生有6人,所以獲獎(jiǎng)的理科生有人,不獲獎(jiǎng)的文科生有人.于是可以得到列聯(lián)表如下:文科生理科生合計(jì)獲獎(jiǎng)61420不獲獎(jiǎng)74306380合計(jì)80320400所以在犯錯(cuò)誤的概率不超過(guò)0.01的情況下,不能認(rèn)為“獲得優(yōu)秀作文”與“學(xué)生的文理科”有關(guān).(3)由(2)可知,獲獎(jiǎng)的概率為,的可能取值為0,1,2,,,,分布列如下:012數(shù)學(xué)期望為.本題考查頻率分布直方圖、統(tǒng)計(jì)案例和離散型隨機(jī)變量的分布列與期望,考查學(xué)生的閱讀理解能力和計(jì)算能力,屬于中檔題.19.(Ⅰ),曲線(Ⅱ)【解析】試題分析:(1)消去參數(shù)可得直線的直角坐標(biāo)系方程,由可得曲線的直角坐標(biāo)方程;(2)將(為參數(shù))代入曲線的方程得:,,利用韋達(dá)定理求解即可.試題解析:(1),曲線,(2)將(為參數(shù))代入曲線的方程得:.所以.所以.20.,;,證明見(jiàn)解析【解析】
對(duì)函數(shù)進(jìn)行求導(dǎo),并通過(guò)三角恒等變換進(jìn)行轉(zhuǎn)化求得的表達(dá)式,對(duì)函數(shù)再進(jìn)行求導(dǎo)并通過(guò)三角恒等變換進(jìn)行轉(zhuǎn)化求得的表達(dá)式;根據(jù)中,的表達(dá)式進(jìn)行歸納猜想,再利用數(shù)學(xué)歸納法證明即可.【詳解】(1),其中,[,其中,(2)猜想,下面用數(shù)學(xué)歸納法證明:①當(dāng)時(shí),成立,②假設(shè)時(shí),猜想成立即當(dāng)時(shí),當(dāng)時(shí),猜想成立由①②對(duì)成立本題考查導(dǎo)數(shù)及其應(yīng)用、三角恒等變換、歸納與猜想和數(shù)學(xué)歸納法;考查學(xué)生的邏輯推理能力和運(yùn)算求解能力;熟練掌握用數(shù)學(xué)歸納法進(jìn)行證明的步驟是求解本題的關(guān)鍵;屬于中檔題.21.(1)0.4;(2);(3)應(yīng)選擇方案,理由見(jiàn)解析【解析】
(1)根據(jù)頻率分布直方圖,可求得該快餐店的騎手的人均日外賣(mài)業(yè)務(wù)量不少于65單的頻率,即可估算其概率;(2)根據(jù)獨(dú)立重復(fù)試驗(yàn)概率求法,先求得四人中有0人、1人選擇方案的概率,再由對(duì)立事件概率性質(zhì)即可求得至少有兩名騎手選擇方案的概率;(3)設(shè)騎手每日完成外賣(mài)業(yè)務(wù)量為件,分別表示出方案的日工資和方案的日工資函數(shù)解析式,即可計(jì)算兩種計(jì)算方式下的數(shù)學(xué)期望,并根據(jù)數(shù)學(xué)期望作出選擇.【詳解】(1)設(shè)事件為“隨機(jī)選
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 上海紐約大學(xué)《學(xué)業(yè)指導(dǎo)》2023-2024學(xué)年第一學(xué)期期末試卷
- 上海民遠(yuǎn)職業(yè)技術(shù)學(xué)院《互換性與測(cè)量技術(shù)實(shí)驗(yàn)》2023-2024學(xué)年第一學(xué)期期末試卷
- 護(hù)理質(zhì)控半年總結(jié)匯報(bào)
- 上??苿?chuàng)職業(yè)技術(shù)學(xué)院《化工機(jī)械設(shè)備》2023-2024學(xué)年第一學(xué)期期末試卷
- 上海交通職業(yè)技術(shù)學(xué)院《非虛構(gòu)短視頻制作》2023-2024學(xué)年第一學(xué)期期末試卷
- 上海健康醫(yī)學(xué)院《藥用高分子材料》2023-2024學(xué)年第一學(xué)期期末試卷
- 上海建設(shè)管理職業(yè)技術(shù)學(xué)院《機(jī)器人檢測(cè)與傳感器技術(shù)》2023-2024學(xué)年第一學(xué)期期末試卷
- 上海健康醫(yī)學(xué)院《技術(shù)實(shí)驗(yàn)》2023-2024學(xué)年第一學(xué)期期末試卷
- 上海海洋大學(xué)《設(shè)計(jì)史論》2023-2024學(xué)年第一學(xué)期期末試卷
- 上海海洋大學(xué)《病原生物學(xué)與醫(yī)學(xué)免疫學(xué)(實(shí)驗(yàn))》2023-2024學(xué)年第一學(xué)期期末試卷
- 四年級(jí)美術(shù) 16. 印染“花布”【全國(guó)一等獎(jiǎng)】
- 初中美術(shù)八年級(jí)上冊(cè)服裝設(shè)計(jì)(全國(guó)一等獎(jiǎng))
- 導(dǎo)醫(yī)接待與患者情緒管理
- 化工行業(yè)基礎(chǔ)知識(shí)培訓(xùn)課件
- 斜拉橋施工技術(shù)
- 《影視行業(yè)無(wú)形資產(chǎn)評(píng)估的案例分析-以華誼兄弟為例》12000字
- 新課標(biāo)下小學(xué)美術(shù)課程設(shè)計(jì)
- 國(guó)開(kāi)電大操作系統(tǒng)-Linux系統(tǒng)使用-實(shí)驗(yàn)報(bào)告
- 電氣技術(shù)協(xié)議
- 香煙過(guò)濾嘴問(wèn)題論文
- 第五單元整體教學(xué)課件-七年級(jí)語(yǔ)文上冊(cè)
評(píng)論
0/150
提交評(píng)論