新高考數(shù)學(xué)二輪復(fù)習(xí)培優(yōu)專(zhuān)題訓(xùn)練專(zhuān)題12 運(yùn)用空間向量研究立體幾何問(wèn)題(1)(解析版)_第1頁(yè)
新高考數(shù)學(xué)二輪復(fù)習(xí)培優(yōu)專(zhuān)題訓(xùn)練專(zhuān)題12 運(yùn)用空間向量研究立體幾何問(wèn)題(1)(解析版)_第2頁(yè)
新高考數(shù)學(xué)二輪復(fù)習(xí)培優(yōu)專(zhuān)題訓(xùn)練專(zhuān)題12 運(yùn)用空間向量研究立體幾何問(wèn)題(1)(解析版)_第3頁(yè)
新高考數(shù)學(xué)二輪復(fù)習(xí)培優(yōu)專(zhuān)題訓(xùn)練專(zhuān)題12 運(yùn)用空間向量研究立體幾何問(wèn)題(1)(解析版)_第4頁(yè)
新高考數(shù)學(xué)二輪復(fù)習(xí)培優(yōu)專(zhuān)題訓(xùn)練專(zhuān)題12 運(yùn)用空間向量研究立體幾何問(wèn)題(1)(解析版)_第5頁(yè)
已閱讀5頁(yè),還剩33頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

專(zhuān)題12運(yùn)用空間向量研究立體幾何問(wèn)題(1)1、(2023年全國(guó)甲卷數(shù)學(xué)(理))在三棱柱SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0底面ABC,SKIPIF1<0,SKIPIF1<0到平面SKIPIF1<0的距離為1.

(1)求證:SKIPIF1<0;(2)若直線(xiàn)SKIPIF1<0與SKIPIF1<0距離為2,求SKIPIF1<0與平面SKIPIF1<0所成角的正弦值.【答案】(1)證明見(jiàn)解析(2)SKIPIF1<0【詳解】(1)如圖,

SKIPIF1<0底面SKIPIF1<0,SKIPIF1<0面SKIPIF1<0,SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0,SKIPIF1<0平面ACC1A1,又SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0平面SKIPIF1<0,過(guò)SKIPIF1<0作SKIPIF1<0交SKIPIF1<0于SKIPIF1<0,又平面SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0SKIPIF1<0到平面SKIPIF1<0的距離為1,SKIPIF1<0,在SKIPIF1<0中,SKIPIF1<0,設(shè)SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0為直角三角形,且SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,解得SKIPIF1<0,SKIPIF1<0,SKIPIF1<0(2)SKIPIF1<0,SKIPIF1<0SKIPIF1<0,過(guò)B作SKIPIF1<0,交SKIPIF1<0于D,則SKIPIF1<0為SKIPIF1<0中點(diǎn),由直線(xiàn)SKIPIF1<0與SKIPIF1<0距離為2,所以SKIPIF1<0SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,在SKIPIF1<0,SKIPIF1<0,延長(zhǎng)SKIPIF1<0,使SKIPIF1<0,連接SKIPIF1<0,由SKIPIF1<0知四邊形SKIPIF1<0為平行四邊形,SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,又SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0則在SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,在SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,又SKIPIF1<0到平面SKIPIF1<0距離也為1,所以SKIPIF1<0與平面SKIPIF1<0所成角的正弦值為SKIPIF1<0.2、(2023年新課標(biāo)全國(guó)Ⅰ卷)如圖,在正四棱柱SKIPIF1<0中,SKIPIF1<0.點(diǎn)SKIPIF1<0分別在棱SKIPIF1<0,SKIPIF1<0上,SKIPIF1<0.

(1)證明:SKIPIF1<0;(2)點(diǎn)SKIPIF1<0在棱SKIPIF1<0上,當(dāng)二面角SKIPIF1<0為SKIPIF1<0時(shí),求SKIPIF1<0.【答案】(1)證明見(jiàn)解析;(2)1【詳解】(1)以SKIPIF1<0為坐標(biāo)原點(diǎn),SKIPIF1<0所在直線(xiàn)為SKIPIF1<0軸建立空間直角坐標(biāo)系,如圖,

則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,又SKIPIF1<0不在同一條直線(xiàn)上,SKIPIF1<0.(2)設(shè)SKIPIF1<0,則SKIPIF1<0,設(shè)平面SKIPIF1<0的法向量SKIPIF1<0,則SKIPIF1<0,令SKIPIF1<0,得SKIPIF1<0,SKIPIF1<0,設(shè)平面SKIPIF1<0的法向量SKIPIF1<0,則SKIPIF1<0,令SKIPIF1<0,得SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,化簡(jiǎn)可得,SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0,SKIPIF1<0或SKIPIF1<0,SKIPIF1<03、(2023年新課標(biāo)全國(guó)Ⅱ卷)如圖,三棱錐SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,E為BC的中點(diǎn).

(1)證明:SKIPIF1<0;(2)點(diǎn)F滿(mǎn)足SKIPIF1<0,求二面角SKIPIF1<0的正弦值.【答案】(1)證明見(jiàn)解析;(2)SKIPIF1<0.【詳解】(1)連接SKIPIF1<0,因?yàn)镋為BC中點(diǎn),SKIPIF1<0,所以SKIPIF1<0①,因?yàn)镾KIPIF1<0,SKIPIF1<0,所以SKIPIF1<0與SKIPIF1<0均為等邊三角形,SKIPIF1<0,從而SKIPIF1<0②,由①②,SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,所以,SKIPIF1<0平面SKIPIF1<0,而SKIPIF1<0平面SKIPIF1<0,所以SKIPIF1<0.(2)不妨設(shè)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.SKIPIF1<0,SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0SKIPIF1<0平面SKIPIF1<0.以點(diǎn)SKIPIF1<0為原點(diǎn),SKIPIF1<0所在直線(xiàn)分別為SKIPIF1<0軸,建立空間直角坐標(biāo)系,如圖所示:

設(shè)SKIPIF1<0,設(shè)平面SKIPIF1<0與平面SKIPIF1<0的一個(gè)法向量分別為SKIPIF1<0,二面角SKIPIF1<0平面角為SKIPIF1<0,而SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,即有SKIPIF1<0,SKIPIF1<0,取SKIPIF1<0,所以SKIPIF1<0;SKIPIF1<0,取SKIPIF1<0,所以SKIPIF1<0,所以,SKIPIF1<0,從而SKIPIF1<0.所以二面角SKIPIF1<0的正弦值為SKIPIF1<0.4、(2023年全國(guó)乙卷數(shù)學(xué)(理)(文))如圖,在三棱錐SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,BP,AP,BC的中點(diǎn)分別為D,E,O,SKIPIF1<0,點(diǎn)F在AC上,SKIPIF1<0.(1)證明:SKIPIF1<0平面SKIPIF1<0;(2)證明:平面SKIPIF1<0平面BEF;(3)求二面角SKIPIF1<0的正弦值.【答案】(1)證明見(jiàn)解析;(2)證明見(jiàn)解析;(3)SKIPIF1<0.【詳解】(1)連接SKIPIF1<0,設(shè)SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,解得SKIPIF1<0,則SKIPIF1<0為SKIPIF1<0的中點(diǎn),由SKIPIF1<0分別為SKIPIF1<0的中點(diǎn),于是SKIPIF1<0,即SKIPIF1<0,則四邊形SKIPIF1<0為平行四邊形,SKIPIF1<0,又SKIPIF1<0平面SKIPIF1<0平面SKIPIF1<0,所以SKIPIF1<0平面SKIPIF1<0.

(2)由(1)可知SKIPIF1<0,則SKIPIF1<0,得SKIPIF1<0,因此SKIPIF1<0,則SKIPIF1<0,有SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,則有SKIPIF1<0平面SKIPIF1<0,又SKIPIF1<0平面SKIPIF1<0,所以平面SKIPIF1<0平面SKIPIF1<0.(3)過(guò)點(diǎn)SKIPIF1<0作SKIPIF1<0交SKIPIF1<0于點(diǎn)SKIPIF1<0,設(shè)SKIPIF1<0,由SKIPIF1<0,得SKIPIF1<0,且SKIPIF1<0,又由(2)知,SKIPIF1<0,則SKIPIF1<0為二面角SKIPIF1<0的平面角,因?yàn)镾KIPIF1<0分別為SKIPIF1<0的中點(diǎn),因此SKIPIF1<0為SKIPIF1<0的重心,即有SKIPIF1<0,又SKIPIF1<0,即有SKIPIF1<0,SKIPIF1<0,解得SKIPIF1<0,同理得SKIPIF1<0,于是SKIPIF1<0,即有SKIPIF1<0,則SKIPIF1<0,從而SKIPIF1<0,SKIPIF1<0,在SKIPIF1<0中,SKIPIF1<0,于是SKIPIF1<0,SKIPIF1<0,所以二面角SKIPIF1<0的正弦值為SKIPIF1<0.

5、【2022年全國(guó)甲卷】在四棱錐P?ABCD中,PD⊥底面ABCD,CD∥AB,AD=DC=CB=1,AB=2,DP=3(1)證明:BD⊥PA;(2)求PD與平面PAB所成的角的正弦值.【解析】(1)證明:在四邊形ABCD中,作DE⊥AB于E,CF⊥AB于F,因?yàn)镃D//AB,AD=CD=CB=1,AB=2,所以四邊形ABCD為等腰梯形,所以AE=BF=1故DE=32,所以AD所以AD⊥BD,因?yàn)镻D⊥平面ABCD,BD?平面ABCD,所以PD⊥BD,又PD∩AD=D,所以BD⊥平面PAD,又因PA?平面PAD,所以BD⊥PA;(2)解:如圖,以點(diǎn)D為原點(diǎn)建立空間直角坐標(biāo)系,BD=3則A(1,0,0),B(0,3則AP=(?1,0,設(shè)平面PAB的法向量n=(x,y,z)則有{n→?則cos?所以PD與平面PAB所成角的正弦值為55

6、【2022年全國(guó)乙卷】如圖,四面體ABCD中,AD⊥CD,AD=CD,∠ADB=∠BDC,E為AC的中點(diǎn).(1)證明:平面BED⊥平面ACD;(2)設(shè)AB=BD=2,∠ACB=60°,點(diǎn)F在BD上,當(dāng)△AFC的面積最小時(shí),求CF與平面ABD所成的角的正弦值.【解析】(1)因?yàn)锳D=CD,E為AC的中點(diǎn),所以AC⊥DE;在△ABD和△CBD中,因?yàn)锳D=CD,∠ADB=∠CDB,DB=DB,所以△ABD≌△CBD,所以AB=CB,又因?yàn)镋為AC的中點(diǎn),所以AC⊥BE;又因?yàn)镈E,BE?平面BED,DE∩BE=E,所以AC⊥平面BED,因?yàn)锳C?平面ACD,所以平面BED⊥平面ACD.(2)連接EF,由(1)知,AC⊥平面BED,因?yàn)镋F?平面BED,所以AC⊥EF,所以S△AFC當(dāng)EF⊥BD時(shí),EF最小,即△AFC的面積最小.因?yàn)椤鰽BD≌△CBD,所以CB=AB=2,又因?yàn)椤螦CB=60°,所以△ABC是等邊三角形,因?yàn)镋為AC的中點(diǎn),所以AE=EC=1,BE=3因?yàn)锳D⊥CD,所以DE=1在△DEB中,DE2+B以E為坐標(biāo)原點(diǎn)建立如圖所示的空間直角坐標(biāo)系E?xyz,則A1,0,0,B0,設(shè)平面ABD的一個(gè)法向量為n=則n?AD=?x+z=0n?又因?yàn)镃?1,0,0,F0,所以cosn設(shè)CF與平面ABD所成的角的正弦值為θ0≤θ≤所以sinθ=所以CF與平面ABD所成的角的正弦值為437、【2022年新高考1卷】如圖,直三棱柱ABC?A1B1C

(1)求A到平面A1BC(2)設(shè)D為A1C的中點(diǎn),AA1=AB,平面A【解析】(1)在直三棱柱ABC?A1B1C1中,設(shè)點(diǎn)則VA?解得?=2所以點(diǎn)A到平面A1BC的距離為(2)取A1B的中點(diǎn)E,連接AE,如圖,因?yàn)锳A又平面A1BC⊥平面ABB1A且AE?平面ABB1A1,所以在直三棱柱ABC?A1B1C由BC?平面A1BC,BC?平面ABC可得AE⊥BC,又AE,BB1?平面ABB1所以BC,BA,BB1兩兩垂直,以由(1)得AE=2,所以AA1=AB=2,則A(0,2,0),A1(0,2,2),B(0,0,0),C(2,0,0),所以A則BD=(1,1,1),BA設(shè)平面ABD的一個(gè)法向量m=(x,y,z),則{可取m=(1,0,?1)設(shè)平面BDC的一個(gè)法向量n=(a,b,c),則{可取n=(0,1,?1)則cos?所以二面角A?BD?C的正弦值為1?(12)2=32.

8、【2022年新高考2卷】如圖,PO是三棱錐P?ABC的高,(1)證明:OE//平面PAC;(2)若∠ABO=∠CBO=30°,PO=3,PA=5,求二面角C?AE?B的正弦值.【解析】(1)證明:連接BO并延長(zhǎng)交AC于點(diǎn)D,連接OA、PD,因?yàn)镻O是三棱錐P?ABC的高,所以PO⊥平面ABC,AO,BO?平面ABC,所以PO⊥AO、PO⊥BO,又PA=PB,所以△POA?△POB,即OA=OB,所以∠OAB=∠OBA,又AB⊥AC,即∠BAC=90°,所以∠OAB+∠OAD=90°,∠OBA+∠ODA=90°,所以∠ODA=∠OAD所以AO=DO,即AO=DO=OB,所以O(shè)為BD的中點(diǎn),又E為PB的中點(diǎn),所以O(shè)E//又OE?平面PAC,PD?平面PAC,所以O(shè)E//平面(2)解:過(guò)點(diǎn)A作Az//因?yàn)镻O=3,AP=5,所以O(shè)A=A又∠OBA=∠OBC=30°,所以BD=2OA=8,則AD=4,AB=43所以AC=12,所以O(shè)23,2,0,B43,0,0,則AE=33,1,3設(shè)平面AEB的法向量為n=x,y,z,則n?AE=33x+y+32設(shè)平面AEC的法向量為m=a,b,c,則m?AE=33a+b+32所以cos設(shè)二面角C?AE?B為θ,由圖可知二面角C?AE?B為鈍二面角,所以cosθ=?4故二面角C?AE?B的正弦值為11題組一、線(xiàn)面角1-1、(2023·安徽宿州·統(tǒng)考一模)如圖,四棱錐SKIPIF1<0中,SKIPIF1<0底面ABCD,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0為棱SKIPIF1<0靠近點(diǎn)SKIPIF1<0的三等分點(diǎn).(1)證明:SKIPIF1<0平面SKIPIF1<0;(2)求SKIPIF1<0與平面SKIPIF1<0所成的角的正弦值.【答案】(1)見(jiàn)解析;(2)SKIPIF1<0【分析】(1)記SKIPIF1<0為棱SKIPIF1<0靠近點(diǎn)SKIPIF1<0的三等分點(diǎn),連接SKIPIF1<0,證明SKIPIF1<0,根據(jù)線(xiàn)面平行判定定理證明SKIPIF1<0平面SKIPIF1<0;(2)建立空間直角坐標(biāo)系,求直線(xiàn)SKIPIF1<0的方向向量和平面SKIPIF1<0的法向量,根據(jù)向量夾角公式求兩向量的夾角余弦,由此可得SKIPIF1<0與平面SKIPIF1<0所成的角的正弦值.【詳解】(1)記SKIPIF1<0為棱SKIPIF1<0靠近點(diǎn)SKIPIF1<0的三等分點(diǎn),連接SKIPIF1<0又SKIPIF1<0為棱SKIPIF1<0靠近點(diǎn)SKIPIF1<0的三等分點(diǎn).所以SKIPIF1<0,且SKIPIF1<0,又SKIPIF1<0且SKIPIF1<0,所以SKIPIF1<0且SKIPIF1<0,即四邊形ADEF為平行四邊形,所以SKIPIF1<0,又因?yàn)镾KIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,所以SKIPIF1<0平面SKIPIF1<0.(2)在BC上取一點(diǎn)G,使得SKIPIF1<0,所以SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0知四邊形AGCD為矩形,從而SKIPIF1<0,又SKIPIF1<0底面ABCD,所以AG,AD,AP兩兩垂直,以A為坐標(biāo)原點(diǎn),AG,AD,AP所在直線(xiàn)分別為x軸,y軸,z軸建立如圖所示的空間直角坐標(biāo)系SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,從而SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,設(shè)平面SKIPIF1<0的法向量為SKIPIF1<0,則SKIPIF1<0,即SKIPIF1<0,取SKIPIF1<0,可得SKIPIF1<0,SKIPIF1<0為平面PBC的一個(gè)法向量,則SKIPIF1<0,設(shè)SKIPIF1<0與平面SKIPIF1<0所成的角為SKIPIF1<0,則SKIPIF1<0,即SKIPIF1<0與平面SKIPIF1<0所成的角的正弦值為SKIPIF1<0.1-2、(2023·吉林通化·梅河口市第五中學(xué)校考一模)如圖,在正三棱柱SKIPIF1<0中,D為棱SKIPIF1<0上的點(diǎn),E,F(xiàn),G分別為AC,SKIPIF1<0,SKIPIF1<0的中點(diǎn),SKIPIF1<0.(1)求證:SKIPIF1<0;(2)若直線(xiàn)FG與平面BCD所成角的正弦值為SKIPIF1<0,求AD的長(zhǎng).【答案】(1)見(jiàn)解析;(2)SKIPIF1<0【分析】(1)由已知可得SKIPIF1<0,所以E、F、B、G四點(diǎn)共面,再證明SKIPIF1<0平面SKIPIF1<0即可證明;(2)以SKIPIF1<0為原點(diǎn),建立空間直角坐標(biāo)系SKIPIF1<0,設(shè)SKIPIF1<0,求出SKIPIF1<0,平面SKIPIF1<0的一個(gè)法向量,由向量的夾角公式建立方程即可求解.【詳解】(1)在正三棱柱SKIPIF1<0中,SKIPIF1<0平面SKIPIF1<0,因?yàn)镋,F(xiàn),G分別為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0的中點(diǎn),所以SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0,所以E、F、B、G四點(diǎn)共面,SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0,又因?yàn)镾KIPIF1<0,且SKIPIF1<0,又SKIPIF1<0平面SKIPIF1<0,所以SKIPIF1<0平面SKIPIF1<0,又SKIPIF1<0平面SKIPIF1<0,所以SKIPIF1<0.(2)以SKIPIF1<0為原點(diǎn),建立如圖所示的空間直角坐標(biāo)系SKIPIF1<0,設(shè)SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.SKIPIF1<0SKIPIF1<0設(shè)平面SKIPIF1<0的一個(gè)法向量為SKIPIF1<0,則SKIPIF1<0即SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0設(shè)直線(xiàn)SKIPIF1<0與平面SKIPIF1<0所成角的大小為SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0,解得SKIPIF1<0故AD的長(zhǎng)SKIPIF1<0.1-3、(2023·山西晉中·統(tǒng)考三模)如圖,在四棱錐P-ABCD中,底面ABCD為矩形,E是CD的中點(diǎn),AE與BD交于點(diǎn)F,G是SKIPIF1<0的重心.(1)求證:SKIPIF1<0平面PCD;(2)若平面PAD⊥平面ABCD,SKIPIF1<0為等腰直角三角形,且SKIPIF1<0,求直線(xiàn)AG與平面PBD所成角的正弦值.【答案】(1)證明見(jiàn)解析(2)SKIPIF1<0.【詳解】(1)證明:連接AG并延長(zhǎng)交PD于H,∵G為SKIPIF1<0的重心,∴SKIPIF1<0.又SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0.又SKIPIF1<0平面PCD,SKIPIF1<0平面PCD,∴SKIPIF1<0平面PCD.(2)連接PG并延長(zhǎng)交AD于O,顯然O為AD的中點(diǎn),因?yàn)槠矫鍼AD⊥平面ABCD,平面SKIPIF1<0平面SKIPIF1<0,又PO⊥AD,∴PO⊥平面ABCD.取BC中點(diǎn)M,以O(shè)為坐標(biāo)原點(diǎn),OA,OM,OP分別為x軸、y軸、z軸建立如圖所示空間直角坐標(biāo)系,則PO=2,于是,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,于是SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.設(shè)平面PBD的法向量為SKIPIF1<0,則SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,不妨取z=1,則SKIPIF1<0,∴SKIPIF1<0,∴AG與平面PBD所成角的正弦值為SKIPIF1<0題組二、面面角2-1、(2023·黑龍江大慶·統(tǒng)考一模)如圖,在長(zhǎng)方體SKIPIF1<0中,底面SKIPIF1<0是邊長(zhǎng)為2的正方形,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0分別是SKIPIF1<0,SKIPIF1<0的中點(diǎn).(1)證明:SKIPIF1<0∥平面SKIPIF1<0;(2)求平面SKIPIF1<0與平面SKIPIF1<0夾角的余弦值.【答案】(1)見(jiàn)解析;(2)SKIPIF1<0【分析】(1)取SKIPIF1<0的中點(diǎn)SKIPIF1<0,連接SKIPIF1<0,SKIPIF1<0,由三角形中位線(xiàn)定理結(jié)合已知條件可得四邊形SKIPIF1<0是平行四邊形,則SKIPIF1<0∥SKIPIF1<0,再由線(xiàn)面平行的判定定理可證得結(jié)論;(2)以SKIPIF1<0為坐標(biāo)原點(diǎn),SKIPIF1<0,SKIPIF1<0,SKIPIF1<0的方向分別為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0軸的正方向,建立如圖所示的空間直角坐標(biāo)系,利用空間向量求解.【詳解】(1)證明:取SKIPIF1<0的中點(diǎn)SKIPIF1<0,連接SKIPIF1<0,SKIPIF1<0,∵SKIPIF1<0,SKIPIF1<0分別是SKIPIF1<0,SKIPIF1<0的中點(diǎn),∴SKIPIF1<0∥SKIPIF1<0,SKIPIF1<0∵底面SKIPIF1<0是矩形,SKIPIF1<0是SKIPIF1<0的中點(diǎn),∴SKIPIF1<0∥SKIPIF1<0∥SKIPIF1<0,SKIPIF1<0∴四邊形SKIPIF1<0是平行四邊形,∴SKIPIF1<0∥SKIPIF1<0,∵SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,∴SKIPIF1<0∥平面SKIPIF1<0.(2)解:以SKIPIF1<0為坐標(biāo)原點(diǎn),SKIPIF1<0,SKIPIF1<0,SKIPIF1<0的方向分別為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0軸的正方向,建立如圖所示的空間直角坐標(biāo)系,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,設(shè)平面SKIPIF1<0的法向量為SKIPIF1<0,則SKIPIF1<0,令SKIPIF1<0,得SKIPIF1<0.取平面SKIPIF1<0的一個(gè)法向量SKIPIF1<0.設(shè)平面SKIPIF1<0與平面SKIPIF1<0的夾角為SKIPIF1<0,由圖可知SKIPIF1<0為銳角,則SKIPIF1<0故平面SKIPIF1<0與平面SKIPIF1<0夾角的余弦值為SKIPIF1<0.2-2、(2023·山西臨汾·統(tǒng)考一模)在三棱錐SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,取直線(xiàn)SKIPIF1<0與SKIPIF1<0的方向向量分別為SKIPIF1<0,SKIPIF1<0,若SKIPIF1<0與SKIPIF1<0夾角為SKIPIF1<0.(1)求證:SKIPIF1<0;(2)求平面SKIPIF1<0與平面SKIPIF1<0的夾角的余弦值.【答案】(1)見(jiàn)解析;(2)SKIPIF1<0【分析】(1)將SKIPIF1<0補(bǔ)全為矩形SKIPIF1<0,證明SKIPIF1<0平面SKIPIF1<0,建立空間直角坐標(biāo)系,計(jì)算SKIPIF1<0和SKIPIF1<0的數(shù)量積,證明SKIPIF1<0;(2)求平面SKIPIF1<0和平面SKIPIF1<0的法向量,計(jì)算夾角余弦的絕對(duì)值,可得所求.【詳解】(1)證明:過(guò)SKIPIF1<0作SKIPIF1<0,且SKIPIF1<0,連接SKIPIF1<0,SKIPIF1<0,取SKIPIF1<0的中點(diǎn)SKIPIF1<0,連接SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0為SKIPIF1<0與SKIPIF1<0的夾角,即SKIPIF1<0.設(shè)SKIPIF1<0,則SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0為等邊三角形,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.因?yàn)镾KIPIF1<0,所以平行四邊形SKIPIF1<0為矩形,所以SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0.因?yàn)镾KIPIF1<0,SKIPIF1<0平面SKIPIF1<0,所以SKIPIF1<0平面SKIPIF1<0.取SKIPIF1<0的中點(diǎn)SKIPIF1<0,連接SKIPIF1<0,分別以SKIPIF1<0,SKIPIF1<0,SKIPIF1<0為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0軸建立空間直角坐標(biāo)系.則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0.(2)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,設(shè)平面SKIPIF1<0的法向量為SKIPIF1<0,則SKIPIF1<0,即SKIPIF1<0,令SKIPIF1<0,得SKIPIF1<0,設(shè)平面SKIPIF1<0的法向量為SKIPIF1<0,則SKIPIF1<0,即SKIPIF1<0,令SKIPIF1<0,得SKIPIF1<0,所以SKIPIF1<0,所以平面SKIPIF1<0與平面SKIPIF1<0夾角的余弦值為SKIPIF1<0.2-3、(2023·云南紅河·統(tǒng)考一模)如圖,在多面體ABCDEF中,A,B,C,D四點(diǎn)共面,SKIPIF1<0,SKIPIF1<0,AF⊥平面ABCD,SKIPIF1<0.(1)求證:CD⊥平面ADF;(2)若SKIPIF1<0,SKIPIF1<0,求平面SKIPIF1<0和平面SKIPIF1<0的夾角的余弦值.【答案】(1)見(jiàn)解析;(2)SKIPIF1<0【分析】(1)利用線(xiàn)面垂直的性質(zhì)和勾股定理得到線(xiàn)線(xiàn)垂直,再利用線(xiàn)面垂直的判定即可證明;(2)建立空間直角坐標(biāo)系,求出相應(yīng)的坐標(biāo),分別求出平面SKIPIF1<0和平面SKIPIF1<0的法向量,利用向量的夾角公式即可求解.【詳解】(1)因?yàn)锳F⊥平面SKIPIF1<0,且SKIPIF1<0平面SKIPIF1<0,所以CD⊥AF,AD⊥AF.因?yàn)锳F∥CE,所以CE⊥平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,所以CE⊥CD.所以在SKIPIF1<0和SKIPIF1<0中,由勾股定理得SKIPIF1<0,SKIPIF1<0.又因?yàn)镾KIPIF1<0,所以SKIPIF1<0,即CD⊥AD.由SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,所以CD⊥平面SKIPIF1<0.(2)由(1)得CD⊥AD,當(dāng)SKIPIF1<0時(shí),點(diǎn)D在線(xiàn)段AC的垂直平分線(xiàn)上,D到直線(xiàn)AC的距離為1,由SKIPIF1<0,AF⊥平面SKIPIF1<0,故以點(diǎn)A為坐標(biāo)原點(diǎn),建立如圖所示空間直角標(biāo)系.則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.設(shè)平面SKIPIF1<0的一個(gè)法向量為SKIPIF1<0,由SKIPIF1<0,得SKIPIF1<0,令SKIPIF1<0,得SKIPIF1<0.設(shè)平面SKIPIF1<0的一個(gè)法向量為SKIPIF1<0,則由SKIPIF1<0,得SKIPIF1<0,令SKIPIF1<0,得SKIPIF1<0.則SKIPIF1<0.所以平面SKIPIF1<0和平面SKIPIF1<0的夾角的余弦值為SKIPIF1<0題組三、線(xiàn)面角與面面角的綜合3-1、(2023·湖南邵陽(yáng)·統(tǒng)考三模)如圖所示,在直四棱柱ABCD-SKIPIF1<0中,底面ABCD為菱形,SKIPIF1<0,SKIPIF1<0,E為線(xiàn)段SKIPIF1<0上一點(diǎn).(1)求證:SKIPIF1<0;(2)若平面SKIPIF1<0與平面ABCD的夾角的余弦值為SKIPIF1<0,求直線(xiàn)BE與平面SKIPIF1<0所成角的正弦值.【答案】(1)證明見(jiàn)解析(2)SKIPIF1<0【詳解】(1)連接SKIPIF1<0,SKIPIF1<0底面SKIPIF1<0為菱形,SKIPIF1<0.又SKIPIF1<0平面SKIPIF1<0平面SKIPIF1<0.又SKIPIF1<0面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0.又SKIPIF1<0平面SKIPIF1<0.(2)設(shè)SKIPIF1<0的中點(diǎn)為SKIPIF1<0,連接SKIPIF1<0,如圖:SKIPIF1<0為等邊三角形,SKIPIF1<0,又SKIPIF1<0,則SKIPIF1<0.又SKIPIF1<0平面SKIPIF1<0,則SKIPIF1<0.以A為坐標(biāo)原點(diǎn)建立如圖所示空間直角坐標(biāo)系,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,設(shè)平面SKIPIF1<0的一個(gè)法向量為SKIPIF1<0,SKIPIF1<0令SKIPIF1<0,則SKIPIF1<0.又平面SKIPIF1<0的一個(gè)法向量為SKIPIF1<0,則SKIPIF1<0.又平面SKIPIF1<0與平面SKIPIF1<0的夾角的余弦值為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.SKIPIF1<0直線(xiàn)SKIPIF1<0與平面SKIPIF1<0所成角的正弦值為SKIPIF1<0.3-2、(2023·湖南岳陽(yáng)·統(tǒng)考三模)如圖,在三棱柱SKIPIF1<0中,D為AC的中點(diǎn),AB=BC=2,SKIPIF1<0.(1)證明:SKIPIF1<0;(2)若SKIPIF1<0,且滿(mǎn)足:三棱柱SKIPIF1<0的體積為SKIPIF1<0,二面角SKIPIF1<0的大小為60°,求二面角SKIPIF1<0的正弦值.【答案】(1)證明見(jiàn)解析(2)SKIPIF1<0【詳解】(1)在三棱柱SKIPIF1<0中,由題意可得SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,又∵AD=DC,∴SKIPIF1<0,同時(shí)在△ABC中,∵AB=BC,AD=DC,∴SKIPIF1<0,∵SKIPIF1<0,SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,∴SKIPIF1<0平面SKIPIF1<0,又∵SKIPIF1<0平面SKIPIF1<0,∴SKIPIF1<0(2)∵SKIPIF1<0且SKIPIF1<0,∴SKIPIF1<0平面ABC,∵SKIPIF1<0平面ABC,∴SKIPIF1<0,又∵SKIPIF1<0,∴SKIPIF1<0為二面角SKIPIF1<0的平面角,即SKIPIF1<0,SKIPIF1<0,取BC的中點(diǎn)O,則SKIPIF1<0,∴SKIPIF1<0,又∵三棱柱SKIPIF1<0的體積為SKIPIF1<0,∴SKIPIF1<0如圖所示,建立空間直角坐標(biāo)系,設(shè)平面SKIPIF1<0的一個(gè)法向量為SKIPIF1<0,且SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,故SKIPIF1<0,設(shè)平面SKIPIF1<0的一個(gè)法向量為SKIPIF1<0,且SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,令SKIPIF1<0,則b=0,SKIPIF1<0,故SKIPIF1<0,SKIPIF1<0,故二面角SKIPIF1<0的正弦值為SKIPIF1<01、(2022·山東青島·高三期末)如圖所示,已知四棱錐P-ABCD的底面是矩形,SKIPIF1<0底面ABCD,M為BC中點(diǎn),且SKIPIF1<0.(1)求證:面SKIPIF1<0面PDB;(2)若兩條異面直線(xiàn)AB與PC所成的角為45°,求面PAM與面PBC夾角的余弦值.【答案】(1)證明見(jiàn)解析;(2)SKIPIF1<0.【分析】(1)根據(jù)給定條件證明SKIPIF1<0,再結(jié)合線(xiàn)面垂直性質(zhì)推理作答.(2)以SKIPIF1<0點(diǎn)為原點(diǎn),射線(xiàn)DA,DC,DP分別為x,y,z軸非負(fù)半軸建立空間直角坐標(biāo)系,借助空間向量計(jì)算作答.(1)矩形SKIPIF1<0中,M為BC中點(diǎn),則SKIPIF1<0,即有SKIPIF1<0,于是得SKIPIF1<0,則有SKIPIF1<0,因SKIPIF1<0底面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,則SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,從而有SKIPIF1<0平面SKIPIF1<0,又SKIPIF1<0平面SKIPIF1<0,所以平面SKIPIF1<0平面SKIPIF1<0.(2)因SKIPIF1<0,則SKIPIF1<0是異面直線(xiàn)SKIPIF1<0與SKIPIF1<0所成的角,即SKIPIF1<0,有SKIPIF1<0,以SKIPIF1<0點(diǎn)為原點(diǎn),射線(xiàn)DA,DC,DP分別為x,y,z軸非負(fù)半軸建立空間直角坐標(biāo)系,如圖,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,設(shè)平面SKIPIF1<0的一個(gè)法向量為SKIPIF1<0,則SKIPIF1<0,令SKIPIF1<0,得SKIPIF1<0,設(shè)平面SKIPIF1<0的一個(gè)法向量SKIPIF1<0,則SKIPIF1<0,令SKIPIF1<0,得SKIPIF1<0,因此,SKIPIF1<0,所以平面SKIPIF1<0與平面SKIPIF1<0所成角SKIPIF1<0的余弦值SKIPIF1<02、(2022·山東德州·高三期末)如圖,在直三棱柱SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,點(diǎn)Q為BC的中點(diǎn),平面SKIPIF1<0平面SKIPIF1<0.(1)證明:SKIPIF1<0平面SKIPIF1<0;(2)若直線(xiàn)AC與平面SKIPIF1<0所成角的大小為30°,求銳二面角SKIPIF1<0的大小.【答案】(1)證明見(jiàn)解析(2)60°【分析】(1)根據(jù)面面垂直性質(zhì)可得SKIPIF1<0面SKIPIF1<0,再根據(jù)線(xiàn)面垂直性質(zhì)可得SKIPIF1<0,再結(jié)合直棱柱性質(zhì)即可證明SKIPIF1<0平面SKIPIF1<0;(2)先通過(guò)線(xiàn)面角證明SKIPIF1<0,再通過(guò)建立空間直角坐標(biāo)系,將銳二面角SKIPIF1<0表示轉(zhuǎn)化為求向量的夾角,即向量法求二面角.(1)證明:取SKIPIF1<0中點(diǎn)D,連結(jié)CD,因?yàn)镾KIPIF1<0,SKIPIF1<0,所以SKIPIF1<0又面SKIPIF1<0面SKIPIF1<0,面SKIPIF1<0面SKIPIF1<0,所以SKIPIF1<0面SKIPIF1<0因?yàn)镾KIPIF1<0面SKIPIF1<0,所以SKIPIF1<0又因?yàn)镾KIPIF1<0,SKIPIF1<0,所以SKIPIF1<0面SKIPIF1<0.(2)連結(jié)AD,由(1)知,SKIPIF1<0面SKIPIF1<0,則SKIPIF1<0是直線(xiàn)AC與平面SKIPIF1<0所成角,SKIPIF1<0,SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0又SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,得SKIPIF1<0,所以SKIPIF1<0.以A為原點(diǎn),AB,AC,SKIPIF1<0所在直線(xiàn)分別為x,y,z軸建立空間直角坐標(biāo)系,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0設(shè)平面SKIPIF1<0得法向量為SKIPIF1<0,則SKIPIF1<0令SKIPIF1<0,則SKIPIF1<0.又SKIPIF1<0面SKIPIF1<0,則SKIPIF1<0為面SKIPIF1<0的一個(gè)法向量.設(shè)二面角SKIPIF1<0大小為SKIPIF1<0,則SKIPIF1<0所以銳二面角SKIPIF1<0的大小為60°.3、(2023·黑龍江·黑龍江實(shí)驗(yàn)中學(xué)校考一模)如圖,在四棱錐SKIPIF1<0中,四邊形ABCD是直角梯形,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0底面ABCD,SKIPIF1<0,SKIPIF1<0,E是PB的中點(diǎn).(1)求證:平面SKIPIF1<0平面PBC;(2)若二面角SKIPIF1<0的余弦值為SKIPIF1<0,求a的值;(3)在(2)的條件下求直線(xiàn)PA與平面EAC所成角的正弦值.【答案】(1)見(jiàn)解析;(2)4;(3)SKIPIF1<0【分析】(1)由線(xiàn)線(xiàn)垂直證SKIPIF1<0平面PBC,再證平面SKIPIF1<0平面PBC;(2)以C為原點(diǎn)建立如圖所示空間直角坐標(biāo)系,由向量法求平面SKIPIF1<0與平面SKIPIF1<0的夾角余弦值,進(jìn)而由二面角SKIPIF1<0的余弦值建立方程,解得a的值;(3)由向量法求得SKIPIF1<0,即可求得直線(xiàn)PA與平面EAC所成角的

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論