新高考數(shù)學(xué)二輪復(fù)習(xí)專題2-1 函數(shù)性質(zhì)(單調(diào)性、奇偶性、中心對稱、軸對稱、周期性)(解析版)_第1頁
新高考數(shù)學(xué)二輪復(fù)習(xí)專題2-1 函數(shù)性質(zhì)(單調(diào)性、奇偶性、中心對稱、軸對稱、周期性)(解析版)_第2頁
新高考數(shù)學(xué)二輪復(fù)習(xí)專題2-1 函數(shù)性質(zhì)(單調(diào)性、奇偶性、中心對稱、軸對稱、周期性)(解析版)_第3頁
新高考數(shù)學(xué)二輪復(fù)習(xí)專題2-1 函數(shù)性質(zhì)(單調(diào)性、奇偶性、中心對稱、軸對稱、周期性)(解析版)_第4頁
新高考數(shù)學(xué)二輪復(fù)習(xí)專題2-1 函數(shù)性質(zhì)(單調(diào)性、奇偶性、中心對稱、軸對稱、周期性)(解析版)_第5頁
已閱讀5頁,還剩38頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

專題2-1函數(shù)性質(zhì)(單調(diào)性、奇偶性、中心對稱、軸對稱、周期性)目錄TOC\o"1-1"\h\u題型01奇偶性基礎(chǔ) 1題型02中心對稱型函數(shù) 3題型03軸對稱型函數(shù) 6題型04斜直線軸對稱型 8題型05“正余弦”型對稱 10題型06伸縮型對稱 13題型07一元三次函數(shù)型中心對稱 15題型08“局部周期”型函數(shù)性質(zhì) 18題型09雙函數(shù)型對稱 20題型10原函數(shù)與導(dǎo)函數(shù)型雙函數(shù)對稱 22題型11放大鏡型函數(shù)性質(zhì) 25題型12抽象函數(shù)賦值型性質(zhì) 29題型13對稱型恒成立求參 31題型14構(gòu)造“對稱”型函數(shù) 33高考練場 35題型01奇偶性基礎(chǔ)【解題攻略】奇偶函數(shù)的性質(zhì)①偶函數(shù)?f(-x)=f(x)?關(guān)于y軸對稱?對稱區(qū)間的單調(diào)性相反;②奇函數(shù)?f(-x)=-f(x)?關(guān)于原點(diǎn)對稱?對稱區(qū)間的單調(diào)性相同;③奇函數(shù)在x=0處有意義時(shí),必有結(jié)論f(0)=0;奇偶性的判定①“奇±奇”是奇,“偶±偶”是偶,“奇×/÷奇”是偶,“偶×/÷偶”是偶,“奇×/÷偶”是奇;②奇(偶)函數(shù)倒數(shù)或相反數(shù)運(yùn)算,奇偶性不變; ③奇(偶)函數(shù)的絕對值運(yùn)算,函數(shù)的奇偶性均為偶函數(shù).【典例1-1】(2023秋·山西·高三校聯(lián)考期中)已知函數(shù)SKIPIF1<0為奇函數(shù),則SKIPIF1<0的值是(

)A.0 B.SKIPIF1<0 C.12 D.10【答案】D【分析】由奇函數(shù)的性質(zhì)可知SKIPIF1<0,由此可以求出SKIPIF1<0的值,進(jìn)而可以求出SKIPIF1<0.【詳解】因?yàn)楹瘮?shù)SKIPIF1<0為奇函數(shù),所以SKIPIF1<0,即SKIPIF1<0,即SKIPIF1<0或SKIPIF1<0,顯然函數(shù)SKIPIF1<0的定義域?yàn)镾KIPIF1<0關(guān)于原點(diǎn)對稱,且當(dāng)SKIPIF1<0時(shí),有SKIPIF1<0,從而有SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),有SKIPIF1<0,但SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0.故選:D.【典例1-2】(2023秋·北京昌平·高三北京市昌平區(qū)前鋒學(xué)校??茧A段練習(xí))已知SKIPIF1<0,則(

)A.SKIPIF1<0為偶函數(shù),且在SKIPIF1<0上單調(diào)遞增B.SKIPIF1<0為偶函數(shù),且在SKIPIF1<0上單調(diào)遞減C.SKIPIF1<0為奇函數(shù),且在SKIPIF1<0上單調(diào)遞增D.SKIPIF1<0為奇函數(shù),且在SKIPIF1<0上單調(diào)遞減【答案】C【分析】根據(jù)函數(shù)定義判斷函數(shù)的奇偶性以及結(jié)合指數(shù)函數(shù)判斷函數(shù)的單調(diào)性;【詳解】SKIPIF1<0SKIPIF1<0結(jié)合奇偶性定義,可知函數(shù)SKIPIF1<0為奇函數(shù),結(jié)合指數(shù)函數(shù)性質(zhì),SKIPIF1<0在SKIPIF1<0單調(diào)遞增,故SKIPIF1<0在SKIPIF1<0單調(diào)遞增,故選;C.【變式1-1】.(2023·全國·高一專題練習(xí))若SKIPIF1<0為奇函數(shù),則SKIPIF1<0的解集為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【分析】利用奇函數(shù)的定義求出a值,再由函數(shù)單調(diào)性求解不等式作答.【詳解】由SKIPIF1<0為奇函數(shù),得SKIPIF1<0,解得SKIPIF1<0,于是SKIPIF1<0,而SKIPIF1<0是減函數(shù),SKIPIF1<0是增函數(shù),函數(shù)SKIPIF1<0是R上的減函數(shù),不等式SKIPIF1<0,因此SKIPIF1<0,所以不等式SKIPIF1<0的解集為SKIPIF1<0.故選:D【變式1-2】(2023秋·江蘇南通·高三統(tǒng)考開學(xué)考試)已知SKIPIF1<0是奇函數(shù),則SKIPIF1<0在SKIPIF1<0處的切線方程是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【分析】根據(jù)奇函數(shù)定義求出SKIPIF1<0,再由導(dǎo)數(shù)的幾何意義求出切線斜率,即可得解.【詳解】因?yàn)镾KIPIF1<0為奇函數(shù),所以SKIPIF1<0,化簡可得SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),對任意SKIPIF1<0方程成立,故SKIPIF1<0,所以SKIPIF1<0,故SKIPIF1<0,所以切線方程為SKIPIF1<0,即SKIPIF1<0.故選:B【變式1-3】.(2023秋·天津和平·高三天津一中??茧A段練習(xí))已知函數(shù)SKIPIF1<0,SKIPIF1<0,若對任意SKIPIF1<0,都有SKIPIF1<0成立,則實(shí)數(shù)SKIPIF1<0的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】由解析式、奇偶性定義判斷SKIPIF1<0的單調(diào)性、奇偶性,再將條件化為SKIPIF1<0在SKIPIF1<0上恒成立,即可求范圍.【詳解】由SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,且SKIPIF1<0,即為奇函數(shù),所以SKIPIF1<0,則SKIPIF1<0在SKIPIF1<0上恒成立,所以SKIPIF1<0.故選:C題型02中心對稱型函數(shù)【解題攻略】中心對稱結(jié)論:(1)若函數(shù)SKIPIF1<0滿足SKIPIF1<0,則SKIPIF1<0的一個(gè)對稱中心為SKIPIF1<0(2)若函數(shù)SKIPIF1<0滿足SKIPIF1<0,則SKIPIF1<0的一個(gè)對稱中心為SKIPIF1<0(3)若函數(shù)SKIPIF1<0滿足SKIPIF1<0,則SKIPIF1<0的一個(gè)對稱中心為SKIPIF1<0.【典例1-1】.已知函數(shù)SKIPIF1<0,則存在非零實(shí)數(shù)SKIPIF1<0,使得()A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】D【分析】判斷函數(shù)SKIPIF1<0的奇偶性并求出其值域,根據(jù)值域可判斷A錯(cuò)誤;由函數(shù)的奇偶性可推出SKIPIF1<0,此式不成立,故B錯(cuò)誤;由所給等式可知SKIPIF1<0,此時(shí)不成立,故C錯(cuò)誤;由三角函數(shù)誘導(dǎo)公式可知SKIPIF1<0,代入等式可得SKIPIF1<0成立,故D正確.【詳解】SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0是定義在R上的奇函數(shù),令SKIPIF1<0,SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0單調(diào)遞增,SKIPIF1<0,又函數(shù)SKIPIF1<0為奇函數(shù),SKIPIF1<0,SKIPIF1<0函數(shù)SKIPIF1<0的值域?yàn)镾KIPIF1<0,SKIPIF1<0,SKIPIF1<0不存在SKIPIF1<0使得SKIPIF1<0成立,A錯(cuò)誤;SKIPIF1<0,SKIPIF1<0若SKIPIF1<0成立,則SKIPIF1<0,又函數(shù)SKIPIF1<0的值域?yàn)镾KIPIF1<0,所以SKIPIF1<0不成立,B錯(cuò)誤;SKIPIF1<0若SKIPIF1<0成立,則SKIPIF1<0,SKIPIF1<0不成立,C錯(cuò)誤;SKIPIF1<0,SKIPIF1<0SKIPIF1<0則SKIPIF1<0成立,故D正確.故選:D【典例1-2】函數(shù)SKIPIF1<0的圖象與函數(shù)SKIPIF1<0圖象的所有交點(diǎn)的橫坐標(biāo)之和為___________.【答案】-7【分析】由函數(shù)解析式可得兩函數(shù)圖象均關(guān)于點(diǎn)(﹣1,0)對稱,進(jìn)而探討函數(shù)SKIPIF1<0的單調(diào)性,然后畫出圖象的大致形狀,即可求得兩圖象所有交點(diǎn)的橫坐標(biāo)之和.【詳解】易知函數(shù)SKIPIF1<0的圖象關(guān)于點(diǎn)(﹣1,0)對稱,設(shè)函數(shù)SKIPIF1<0圖象上任意一點(diǎn)為SKIPIF1<0,則它關(guān)于(-1,0)的對稱點(diǎn)為SKIPIF1<0,將其代入SKIPIF1<0的解析式得:SKIPIF1<0,即SKIPIF1<0,于是函數(shù)SKIPIF1<0關(guān)于點(diǎn)(-1,0)對稱.又SKIPIF1<0,所以SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0單調(diào)遞減,SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0單調(diào)遞增,SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0單調(diào)遞減.于是x=-2時(shí),SKIPIF1<0的極小值為SKIPIF1<0,而SKIPIF1<0,x=0時(shí),SKIPIF1<0的極大值為SKIPIF1<0,而SKIPIF1<0.現(xiàn)作出兩個(gè)函數(shù)的大致圖象,如圖:于是得到圖象交點(diǎn)橫坐標(biāo)之和為:﹣1+(﹣2)×3=﹣7.故答案為:-7.【變式1-1】.設(shè)函數(shù)SKIPIF1<0的最大值為5,則SKIPIF1<0的最小值為()A.SKIPIF1<0 B.1 C.2 D.3【答案】B【分析】根據(jù)題意,設(shè)SKIPIF1<0,利用定義法判斷函數(shù)的奇偶性,得出SKIPIF1<0是奇函數(shù),結(jié)合條件得出SKIPIF1<0的最大值和最小值,從而得出SKIPIF1<0的最小值.解:由題可知,SKIPIF1<0,設(shè)SKIPIF1<0,其定義域?yàn)镾KIPIF1<0,又SKIPIF1<0,即SKIPIF1<0,由于SKIPIF1<0SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0是奇函數(shù),而SKIPIF1<0,由題可知,函數(shù)SKIPIF1<0的最大值為5,則函數(shù)SKIPIF1<0的最大值為:5-3=2,由于SKIPIF1<0是奇函數(shù),得SKIPIF1<0的最小值為-2,所以SKIPIF1<0的最小值為:-2+3=1.故選:B.【變式1-2】已知函數(shù)SKIPIF1<0,SKIPIF1<0,若SKIPIF1<0使關(guān)于SKIPIF1<0的不等式SKIPIF1<0成立,則實(shí)數(shù)SKIPIF1<0的范圍為___________.【答案】SKIPIF1<0【分析】證明函數(shù)圖象關(guān)于點(diǎn)SKIPIF1<0對稱,再判斷函數(shù)的單調(diào)性,從而把不等式變形后應(yīng)用單調(diào)性化簡,然后分離參數(shù),轉(zhuǎn)化為三角函數(shù)的最值,利用換元法可得結(jié)果.【詳解】顯然函數(shù)定義域是SKIPIF1<0,SKIPIF1<0SKIPIF1<0,∴SKIPIF1<0的圖象關(guān)于點(diǎn)SKIPIF1<0對稱,原不等式可化為SKIPIF1<0,即SKIPIF1<0,(*)設(shè)SKIPIF1<0,則SKIPIF1<0SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0SKIPIF1<0SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0,由SKIPIF1<0得SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0是增函數(shù),不等式(*)化為SKIPIF1<0,(**)令SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,不等式(**)化為SKIPIF1<0,SKIPIF1<0,問題轉(zhuǎn)化為存在SKIPIF1<0,使不等式SKIPIF1<0成立,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0的最小值為2.∴SKIPIF1<0.故答案為:SKIPIF1<0.【變式1-3】.函數(shù)SKIPIF1<0的圖像可能是()A. B.C. D.天津市耀華中學(xué)2021-2022學(xué)年高三上學(xué)期第一次月考數(shù)學(xué)試題【答案】D【分析】分析給定函數(shù)的奇偶性可排除兩個(gè)選項(xiàng),再對函數(shù)求導(dǎo)并求出在0處的導(dǎo)數(shù)值即可判斷作答.【詳解】令SKIPIF1<0,則其的定義域?yàn)镾KIPIF1<0,SKIPIF1<0,則函數(shù)SKIPIF1<0是奇函數(shù),其圖象關(guān)于原點(diǎn)對稱,于是排除選項(xiàng)A,B;SKIPIF1<0,于是得SKIPIF1<0,即函數(shù)SKIPIF1<0圖象在原點(diǎn)處切線斜率大于0,顯然選項(xiàng)C不滿足,D滿足.故選:D題型03軸對稱型函數(shù)【解題攻略】軸對稱性的常用結(jié)論如下:若函數(shù)SKIPIF1<0滿足SKIPIF1<0,則SKIPIF1<0的一條對稱軸為SKIPIF1<0若函數(shù)SKIPIF1<0滿足SKIPIF1<0,則SKIPIF1<0的一條對稱軸為SKIPIF1<0若函數(shù)SKIPIF1<0滿足SKIPIF1<0,則SKIPIF1<0的一條對稱軸為SKIPIF1<0(4)f(a-x)=f(b+x)?f(x)的圖象關(guān)于直線x=eq\f(a+b,2)對稱;【典例1-1】.(2023上·重慶·高三重慶市忠縣忠州中學(xué)校校聯(lián)考)已知定義在SKIPIF1<0上的函數(shù)SKIPIF1<0,函數(shù)SKIPIF1<0為偶函數(shù),且對SKIPIF1<0都有SKIPIF1<0,若SKIPIF1<0,則SKIPIF1<0的取值范圍是.【答案】SKIPIF1<0【分析】先根據(jù)條件得到函數(shù)的對稱性和單調(diào)性,進(jìn)而根據(jù)函數(shù)性質(zhì)解不等式即可.【詳解】SKIPIF1<0函數(shù)SKIPIF1<0為偶函數(shù),即SKIPIF1<0SKIPIF1<0函數(shù)SKIPIF1<0關(guān)于直線SKIPIF1<0對稱,又SKIPIF1<0對SKIPIF1<0都有SKIPIF1<0,SKIPIF1<0函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,SKIPIF1<0由SKIPIF1<0得SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0故答案為:SKIPIF1<0.【典例1-2】(2023上·江西景德鎮(zhèn)·高一統(tǒng)考期中)已知函數(shù)SKIPIF1<0滿足關(guān)系式SKIPIF1<0,且對于SKIPIF1<0,SKIPIF1<0,滿足SKIPIF1<0恒成立,若不等式SKIPIF1<0對SKIPIF1<0恒成立,則實(shí)數(shù)a的取值范圍是.【答案】SKIPIF1<0【分析】由已知判定函數(shù)的對稱性與單調(diào)性,利用單調(diào)性去函數(shù)符號(hào)解一元二次不等式恒成立問題即可.【詳解】由于SKIPIF1<0,可知函數(shù)SKIPIF1<0關(guān)于直線SKIPIF1<0軸對稱,又對于SKIPIF1<0恒成立,則函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增,則SKIPIF1<0SKIPIF1<0恒成立,則SKIPIF1<0.故答案為:SKIPIF1<0.【變式1-1】.(2023上·江蘇南通·高三統(tǒng)考階段練習(xí))設(shè)定義在SKIPIF1<0上的函數(shù)SKIPIF1<0在SKIPIF1<0單調(diào)遞減,且SKIPIF1<0為偶函數(shù),若SKIPIF1<0,SKIPIF1<0,且有SKIPIF1<0,則SKIPIF1<0的最小值為.【答案】SKIPIF1<0【分析】由題意可得SKIPIF1<0的對稱軸為SKIPIF1<0,函數(shù)SKIPIF1<0在SKIPIF1<0單調(diào)遞增,若SKIPIF1<0,SKIPIF1<0,且有SKIPIF1<0,則SKIPIF1<0,結(jié)合基本不等式求解最值即可.【詳解】SKIPIF1<0為偶函數(shù),則SKIPIF1<0,則SKIPIF1<0的對稱軸為SKIPIF1<0,函數(shù)SKIPIF1<0在SKIPIF1<0單調(diào)遞減,則函數(shù)SKIPIF1<0在SKIPIF1<0單調(diào)遞增,若SKIPIF1<0,SKIPIF1<0,且有SKIPIF1<0,則SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0SKIPIF1<0SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0且SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0時(shí),等號(hào)成立,故SKIPIF1<0的最小值為SKIPIF1<0.故答案為:SKIPIF1<0【變式1-2】(2023上·山東濟(jì)南·高三統(tǒng)考開學(xué)考試)若函數(shù)SKIPIF1<0的圖象關(guān)于直線SKIPIF1<0對稱,且SKIPIF1<0有且僅有4個(gè)零點(diǎn),則SKIPIF1<0的值為.【答案】39【分析】先得到SKIPIF1<0的圖象也關(guān)于SKIPIF1<0對稱,觀察到SKIPIF1<0為SKIPIF1<0的兩個(gè)零點(diǎn),故由對稱性可知,SKIPIF1<0的另外兩個(gè)零點(diǎn)分別為SKIPIF1<0,從而得到方程組,求出SKIPIF1<0,令SKIPIF1<0,求導(dǎo)得到其單調(diào)性和極值情況,畫出SKIPIF1<0的圖象,進(jìn)而得到SKIPIF1<0的圖象,根據(jù)SKIPIF1<0的零點(diǎn)個(gè)數(shù),數(shù)形結(jié)合得到SKIPIF1<0,從而得到答案.【詳解】由SKIPIF1<0得SKIPIF1<0,令SKIPIF1<0,由于SKIPIF1<0的圖象關(guān)于直線SKIPIF1<0對稱,所以SKIPIF1<0的圖象也關(guān)于SKIPIF1<0對稱,顯然SKIPIF1<0為SKIPIF1<0的兩個(gè)零點(diǎn),故由對稱性可知,SKIPIF1<0的另外兩個(gè)零點(diǎn)分別為SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0,故SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0SKIPIF1<0,故當(dāng)SKIPIF1<0或SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0單調(diào)遞增,當(dāng)SKIPIF1<0或SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0單調(diào)遞減,又SKIPIF1<0,SKIPIF1<0,畫出SKIPIF1<0的圖象如下,

故SKIPIF1<0的圖象是將SKIPIF1<0圖象位于SKIPIF1<0軸下方部分沿著SKIPIF1<0軸翻折到SKIPIF1<0軸上方即可,如下:

要想SKIPIF1<0有且僅有4個(gè)零點(diǎn),則SKIPIF1<0,故SKIPIF1<0.故答案為:39【變式1-3】.(2023上·陜西榆林·高三校考階段練習(xí))函數(shù)SKIPIF1<0是定義在SKIPIF1<0上的奇函數(shù),且圖象關(guān)于SKIPIF1<0對稱,在區(qū)間SKIPIF1<0上,SKIPIF1<0,則SKIPIF1<0.【答案】SKIPIF1<0/0.25【分析】根據(jù)對稱性和奇函數(shù)分析可得SKIPIF1<0,進(jìn)而結(jié)合指對數(shù)運(yùn)算求解.【詳解】由題意可得:SKIPIF1<0,則SKIPIF1<0,可得SKIPIF1<0,又因?yàn)镾KIPIF1<0,即SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0.故答案為:SKIPIF1<0.題型04斜直線軸對稱型【解題攻略】關(guān)于斜直線軸對稱,可以借鑒圓錐曲線中直線的對稱性來處理(1)點(diǎn)SKIPIF1<0關(guān)于直線SKIPIF1<0的對稱點(diǎn)SKIPIF1<0,則有SKIPIF1<0;(2)直線關(guān)于直線的對稱可轉(zhuǎn)化為點(diǎn)關(guān)于直線的對稱問題來解決.如果斜直線軸對稱,還有以下經(jīng)驗(yàn)公式:如果對稱軸所在的直線斜率是SKIPIF1<0,即直線是SKIPIF1<0型,可以利用反解對稱軸法直接求出對稱變換式子SKIPIF1<0(1)如果SKIPIF1<0關(guān)于直線SKIPIF1<0的對稱點(diǎn)為SKIPIF1<0,則SKIPIF1<0的坐標(biāo)為SKIPIF1<0;(2)如果SKIPIF1<0關(guān)于直線SKIPIF1<0的對稱點(diǎn)為SKIPIF1<0,則SKIPIF1<0的坐標(biāo)為SKIPIF1<0.【典例1-1】(2023上·重慶·高三西南大學(xué)附中??迹┮阎瘮?shù)SKIPIF1<0為奇函數(shù),SKIPIF1<0的函數(shù)圖象關(guān)于SKIPIF1<0對稱,且當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,則SKIPIF1<0.【答案】SKIPIF1<0/SKIPIF1<0【分析】根據(jù)函數(shù)的對稱性可得SKIPIF1<0關(guān)于點(diǎn)SKIPIF1<0對稱,進(jìn)而根據(jù)點(diǎn)SKIPIF1<0關(guān)于SKIPIF1<0的對稱點(diǎn)為SKIPIF1<0,將SKIPIF1<0代入SKIPIF1<0即可求解.【詳解】由SKIPIF1<0,用SKIPIF1<0替換SKIPIF1<0可得:SKIPIF1<0,所以SKIPIF1<0關(guān)于點(diǎn)SKIPIF1<0對稱,故SKIPIF1<0,設(shè)SKIPIF1<0,由于SKIPIF1<0關(guān)于SKIPIF1<0對稱,又當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,由于點(diǎn)SKIPIF1<0關(guān)于SKIPIF1<0的對稱點(diǎn)為SKIPIF1<0,則SKIPIF1<0在SKIPIF1<0上,故SKIPIF1<0,所以SKIPIF1<0,解得SKIPIF1<0,故SKIPIF1<0.故答案為:SKIPIF1<0【典例1-2】(2023上·遼寧·高三校聯(lián)考)已知定義域?yàn)镾KIPIF1<0的函數(shù)SKIPIF1<0滿足SKIPIF1<0,且其圖象關(guān)于直線SKIPIF1<0對稱,若當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,則SKIPIF1<0.【答案】SKIPIF1<0【分析】求得SKIPIF1<0,又由SKIPIF1<0,可得SKIPIF1<0,根據(jù)點(diǎn)SKIPIF1<0關(guān)于直線SKIPIF1<0的對稱點(diǎn)為SKIPIF1<0,即可求解.【詳解】設(shè)點(diǎn)SKIPIF1<0在函數(shù)SKIPIF1<0的圖像上,則關(guān)于直線SKIPIF1<0的對稱點(diǎn)為SKIPIF1<0,則SKIPIF1<0,解得:SKIPIF1<0,則SKIPIF1<0,由SKIPIF1<0時(shí),SKIPIF1<0,則SKIPIF1<0,又SKIPIF1<0,則SKIPIF1<0,則SKIPIF1<0,由圖象關(guān)于直線SKIPIF1<0對稱,則SKIPIF1<0SKIPIF1<0.故答案為:SKIPIF1<0.【變式1-1】(2023上·遼寧大連·高三大連八中校考期中)已知函數(shù)SKIPIF1<0,若曲線SKIPIF1<0關(guān)于直線SKIPIF1<0對稱,則SKIPIF1<0的值為.【答案】SKIPIF1<0【分析】直線關(guān)于SKIPIF1<0對稱,可從定義域出發(fā)判斷對稱軸的位置,進(jìn)一步結(jié)合函數(shù)的對稱性利用特殊值法即可得到實(shí)數(shù)SKIPIF1<0的值,檢驗(yàn)后,即可SKIPIF1<0的值.【詳解】因?yàn)楹瘮?shù)SKIPIF1<0,SKIPIF1<0的定義域?yàn)镾KIPIF1<0則SKIPIF1<0則SKIPIF1<0的定義域?yàn)镾KIPIF1<0,即函數(shù)的定義域?yàn)镾KIPIF1<0,又因?yàn)榍€SKIPIF1<0關(guān)于直線SKIPIF1<0對稱,則定義域也關(guān)于SKIPIF1<0對稱,即SKIPIF1<0,由對稱的性質(zhì)可知?jiǎng)tSKIPIF1<0令SKIPIF1<0可得SKIPIF1<0代入函數(shù)得SKIPIF1<0,則SKIPIF1<0所以SKIPIF1<0,則SKIPIF1<0.當(dāng)SKIPIF1<0時(shí),SKIPIF1<0驗(yàn)證是否關(guān)于SKIPIF1<0對稱:SKIPIF1<0SKIPIF1<0成立;則SKIPIF1<0.故答案為:SKIPIF1<0.【變式1-2】(2023上·上海浦東新·高三華師大二附中??迹┮阎瘮?shù)SKIPIF1<0的圖象過點(diǎn)SKIPIF1<0,且關(guān)于直線SKIPIF1<0成軸對稱圖形,則SKIPIF1<0.【答案】SKIPIF1<0【分析】在函數(shù)SKIPIF1<0的圖象上任取點(diǎn)SKIPIF1<0,可得該點(diǎn)關(guān)于直線SKIPIF1<0對稱點(diǎn),代入函數(shù)式并比較求出b,再將給定點(diǎn)代入求出a得解.【詳解】在函數(shù)SKIPIF1<0的圖象任取點(diǎn)SKIPIF1<0,則該點(diǎn)關(guān)于直線SKIPIF1<0對稱點(diǎn)SKIPIF1<0在SKIPIF1<0的圖象上,即SKIPIF1<0,整理得SKIPIF1<0,而有SKIPIF1<0,因此SKIPIF1<0,即有SKIPIF1<0,又函數(shù)SKIPIF1<0的圖象過點(diǎn)SKIPIF1<0,則SKIPIF1<0,解得SKIPIF1<0,所以SKIPIF1<0.故答案為:SKIPIF1<06.1.Y=x對稱【變式1-3】(2021上·高一校考課時(shí)練習(xí))若函數(shù)SKIPIF1<0的圖象與SKIPIF1<0且SKIPIF1<0的圖象關(guān)于直線SKIPIF1<0對稱,則SKIPIF1<0的值等于(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【分析】令SKIPIF1<0,根據(jù)對稱性可知解得SKIPIF1<0的值即為所求SKIPIF1<0.【詳解】令SKIPIF1<0,即SKIPIF1<0,解得:SKIPIF1<0;SKIPIF1<0與SKIPIF1<0圖象關(guān)于SKIPIF1<0對稱,SKIPIF1<0.故選:A.題型05“正余弦”型對稱【解題攻略】SKIPIF1<0(1)兩中心SKIPIF1<0;(2)兩垂直軸SKIPIF1<0則SKIPIF1<0;(3)一個(gè)中心SKIPIF1<0,一條軸SKIPIF1<0,則SKIPIF1<0【典例1-1】函數(shù)SKIPIF1<0是定義在SKIPIF1<0上的奇函數(shù),且SKIPIF1<0為偶函數(shù),當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,若函數(shù)SKIPIF1<0恰有一個(gè)零點(diǎn),則實(shí)數(shù)SKIPIF1<0的取值集合是(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】D【解析】根據(jù)條件判斷函數(shù)周期為SKIPIF1<0,求出函數(shù)在一個(gè)周期內(nèi)的解析式,將函數(shù)的零點(diǎn)轉(zhuǎn)化為SKIPIF1<0與直線SKIPIF1<0只有一個(gè)交點(diǎn),結(jié)合函數(shù)圖像,即可求解.【詳解】函數(shù)SKIPIF1<0是定義在SKIPIF1<0上的奇函數(shù),且SKIPIF1<0為偶函數(shù),SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0的周期為SKIPIF1<0.SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0周期為4,SKIPIF1<0,當(dāng)SKIPIF1<0,當(dāng)SKIPIF1<0,做出函數(shù)SKIPIF1<0圖像,如下圖所示:令SKIPIF1<0,當(dāng)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,兩邊平方得SKIPIF1<0,SKIPIF1<0,此時(shí)直線與SKIPIF1<0在SKIPIF1<0函數(shù)圖像相切,與函數(shù)有兩個(gè)交點(diǎn),同理SKIPIF1<0,直線與SKIPIF1<0在SKIPIF1<0函數(shù)圖像相切,與函數(shù)有兩個(gè)交點(diǎn),則要使函數(shù)SKIPIF1<0在SKIPIF1<0內(nèi)與直線SKIPIF1<0只有一個(gè)交點(diǎn),則SKIPIF1<0滿足SKIPIF1<0,SKIPIF1<0周期為4,SKIPIF1<0范圍也表示為SKIPIF1<0,所以所有SKIPIF1<0的取值范圍是SKIPIF1<0.故選:D.【典例1-2】.定義在SKIPIF1<0上的偶函數(shù)f(x)滿足f(-x)+f(x-2)=0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0(已知SKIPIF1<0),則(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】A【分析】根據(jù)條件,推出函數(shù)SKIPIF1<0的對稱性,周期性和單調(diào)性,將自變量SKIPIF1<0轉(zhuǎn)到區(qū)間SKIPIF1<0內(nèi),再根據(jù)單調(diào)性即可比較大小.【詳解】∵SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0的圖像關(guān)于直線SKIPIF1<0和點(diǎn)SKIPIF1<0對稱,∴SKIPIF1<0的周期為4,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0在SKIPIF1<0遞增,由對稱性知SKIPIF1<0在SKIPIF1<0,SKIPIF1<0遞減∴SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0,由條件知SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0;故選:A.【變式1-1】已知定義在SKIPIF1<0上的函數(shù)SKIPIF1<0滿足條件SKIPIF1<0,且函數(shù)SKIPIF1<0為奇函數(shù),則下列說法中錯(cuò)誤的是(

)A.函數(shù)SKIPIF1<0是周期函數(shù);B.函數(shù)SKIPIF1<0的圖象關(guān)于點(diǎn)SKIPIF1<0對稱;C.函數(shù)SKIPIF1<0為SKIPIF1<0上的偶函數(shù);D.函數(shù)SKIPIF1<0為SKIPIF1<0上的單調(diào)函數(shù).【答案】D【分析】根據(jù)函數(shù)周期性、對稱性、奇偶性、單調(diào)性對選項(xiàng)逐一分析,由此確定正確選項(xiàng).【詳解】對于A,SKIPIF1<0,所以SKIPIF1<0是周期為SKIPIF1<0的周期函數(shù),故A正確.對于B,函數(shù)SKIPIF1<0為奇函數(shù),關(guān)于SKIPIF1<0對稱,向左平移SKIPIF1<0個(gè)單位得到SKIPIF1<0,橫坐標(biāo)再擴(kuò)大為原來的SKIPIF1<0倍,所以SKIPIF1<0關(guān)于SKIPIF1<0對稱,故B正確.對于C,SKIPIF1<0關(guān)于SKIPIF1<0對稱,則SKIPIF1<0,SKIPIF1<0SKIPIF1<0,所以SKIPIF1<0為偶函數(shù),故C正確.對于D,由于SKIPIF1<0是偶函數(shù),函數(shù)圖象關(guān)于SKIPIF1<0軸對稱,SKIPIF1<0軸兩側(cè)函數(shù)對應(yīng)區(qū)間的單調(diào)性相反,故D錯(cuò)誤.故選:D【變式1-2】已知函數(shù)SKIPIF1<0的定義域?yàn)镾KIPIF1<0,SKIPIF1<0為SKIPIF1<0的導(dǎo)函數(shù),且SKIPIF1<0,SKIPIF1<0,若SKIPIF1<0為偶函數(shù),則下列結(jié)論不一定成立的是(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】先證明SKIPIF1<0為奇函數(shù),再進(jìn)行合理賦值逐個(gè)分析判斷.【詳解】對A:∵SKIPIF1<0為偶函數(shù),則SKIPIF1<0兩邊求導(dǎo)可得SKIPIF1<0∴SKIPIF1<0為奇函數(shù),則SKIPIF1<0令SKIPIF1<0,則可得SKIPIF1<0,則SKIPIF1<0,A成立;對B:令SKIPIF1<0,則可得SKIPIF1<0,則SKIPIF1<0,B成立;∵SKIPIF1<0,則可得SKIPIF1<0SKIPIF1<0,則可得SKIPIF1<0兩式相加可得:SKIPIF1<0,∴SKIPIF1<0關(guān)于點(diǎn)SKIPIF1<0成中心對稱則SKIPIF1<0,D成立又∵SKIPIF1<0,則可得SKIPIF1<0SKIPIF1<0,則可得SKIPIF1<0∴SKIPIF1<0以4為周期的周期函數(shù)根據(jù)以上性質(zhì)只能推出SKIPIF1<0,不能推出SKIPIF1<0,C不一定成立故選:C.【變式1-3】.定義在SKIPIF1<0上的函數(shù)SKIPIF1<0滿足SKIPIF1<0,SKIPIF1<0;且當(dāng)SKIPIF1<0時(shí),SKIPIF1<0.則方程SKIPIF1<0所有的根之和為(

)A.6 B.12 C.14 D.10【答案】D【分析】根據(jù)題意可得SKIPIF1<0為奇函數(shù),關(guān)于直線SKIPIF1<0對稱且周期為4,再根據(jù)當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,求導(dǎo)分析單調(diào)性,從而畫出簡圖,根據(jù)函數(shù)的性質(zhì)求解零點(diǎn)和即可.【詳解】∵SKIPIF1<0,∴SKIPIF1<0為奇函數(shù),又∵SKIPIF1<0,∴SKIPIF1<0關(guān)于直線SKIPIF1<0對稱.當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0單調(diào)遞增,SKIPIF1<0,SKIPIF1<0一個(gè)周期為4,SKIPIF1<0關(guān)于SKIPIF1<0中心對稱.由SKIPIF1<0,∴所有實(shí)根之和為SKIPIF1<0.故選:D.題型06伸縮型對稱【解題攻略】伸縮變換y=f(ax)y=f(x)eq\o(→,\s\up7(a>1,縱坐標(biāo)伸長為原來的a倍,橫坐標(biāo)不變),\s\do5(0<a<1,縱坐標(biāo)縮短為原來的a倍,橫坐標(biāo)不變))y=af(x)【典例1-1】(2023秋·湖南懷化·高三統(tǒng)考)已知SKIPIF1<0不是常函數(shù),且是定義域?yàn)镾KIPIF1<0的奇函數(shù),若SKIPIF1<0的最小正周期為1,則(

)A.SKIPIF1<0 B.1是SKIPIF1<0的一個(gè)周期C.SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】根據(jù)函數(shù)的周期性和奇函數(shù)即可根據(jù)選項(xiàng)逐一求解.【詳解】SKIPIF1<0的最小正周期為1,則SKIPIF1<0,所以SKIPIF1<0是以2為周期的周期函數(shù),因此SKIPIF1<0,故B錯(cuò)誤;對于A,SKIPIF1<0,故A錯(cuò)誤;對于C,由周期得SKIPIF1<0,又SKIPIF1<0,因此SKIPIF1<0,故C正確;對于D,SKIPIF1<0,故D錯(cuò)誤,故選:C.【典例1-2】(2023·河南·長葛市第一高級(jí)中學(xué)統(tǒng)考模擬預(yù)測)若函數(shù)f(x)的定義域?yàn)镽,且f(2x+1)為偶函數(shù),f(x-1)的圖象關(guān)于點(diǎn)(3,3)成中心對稱,則下列說法正確的個(gè)數(shù)為(

)①SKIPIF1<0的一個(gè)周期為2

②SKIPIF1<0③SKIPIF1<0④直線SKIPIF1<0是SKIPIF1<0圖象的一條對稱軸A.1 B.2 C.3 D.4【答案】B【分析】由題意,根據(jù)函數(shù)的奇偶性,可得SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0,根據(jù)函數(shù)周期性的定義,可判①的正誤;根據(jù)周期性的應(yīng)用,可判②的正誤;根據(jù)函數(shù)的周期性,進(jìn)行分組求和,根據(jù)函數(shù)的對稱性,可得SKIPIF1<0,SKIPIF1<0,可判③的正誤;根據(jù)函數(shù)的軸對稱性的性質(zhì),可判④的正誤.【詳解】因?yàn)镾KIPIF1<0偶函數(shù),所以SKIPIF1<0,則SKIPIF1<0,即函數(shù)SKIPIF1<0關(guān)于直線SKIPIF1<0成軸對稱,因?yàn)楹瘮?shù)SKIPIF1<0的圖象是由函數(shù)SKIPIF1<0的圖象向左平移SKIPIF1<0個(gè)單位,所以函數(shù)SKIPIF1<0關(guān)于點(diǎn)SKIPIF1<0成中心對稱,則SKIPIF1<0,且SKIPIF1<0,對于①,SKIPIF1<0,SKIPIF1<0,則函數(shù)SKIPIF1<0的周期SKIPIF1<0,故①錯(cuò)誤;對于②,SKIPIF1<0,故②正確;對于③,SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,由SKIPIF1<0,則SKIPIF1<0SKIPIF1<0SKIPIF1<0,故③正確;對于④,SKIPIF1<0,而函數(shù)SKIPIF1<0不是偶函數(shù),所以SKIPIF1<0不恒成立,故④錯(cuò)誤.故選:B.【變式1-1】(2022秋·重慶南岸·高三重慶市第十一中學(xué)校校考階段練習(xí))已知SKIPIF1<0是定義在SKIPIF1<0上的函數(shù),SKIPIF1<0是奇函數(shù),且SKIPIF1<0是偶函數(shù),則下列選項(xiàng)一定正確的是(

)A.函數(shù)SKIPIF1<0的周期為2 B.函數(shù)SKIPIF1<0的周期為3C.SKIPIF1<0 D.SKIPIF1<0【答案】D【分析】根據(jù)賦值法結(jié)合周期定義得出函數(shù)SKIPIF1<0的周期為SKIPIF1<0,再由周期的性質(zhì)判斷CD.【詳解】因?yàn)镾KIPIF1<0為奇函數(shù),所以SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,因?yàn)镾KIPIF1<0為偶函數(shù),所以SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,即函數(shù)SKIPIF1<0的周期為SKIPIF1<0,故AB不正確;又SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,故D正確;SKIPIF1<0的值不確定,故C不正確.故選:D.【變式1-2】.(2022秋·吉林長春·高三長春市第二中學(xué)校考階段練習(xí))設(shè)函數(shù)SKIPIF1<0的定義域?yàn)镾KIPIF1<0,且SKIPIF1<0是奇函數(shù),SKIPIF1<0是偶函數(shù),則一定有(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【分析】推導(dǎo)出函數(shù)SKIPIF1<0的圖象關(guān)于直線SKIPIF1<0對稱,也關(guān)于點(diǎn)SKIPIF1<0對稱,進(jìn)一步可推導(dǎo)出函數(shù)SKIPIF1<0為周期函數(shù),確定該函數(shù)的周期,逐項(xiàng)判斷可得出合適的選項(xiàng).【詳解】因?yàn)楹瘮?shù)SKIPIF1<0為偶函數(shù),則SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,即SKIPIF1<0,則SKIPIF1<0,因?yàn)楹瘮?shù)SKIPIF1<0為奇函數(shù),則SKIPIF1<0,所以,函數(shù)SKIPIF1<0的圖象關(guān)于直線SKIPIF1<0對稱,也關(guān)于點(diǎn)SKIPIF1<0對稱,則SKIPIF1<0,可得SKIPIF1<0,所以,SKIPIF1<0,故函數(shù)SKIPIF1<0為周期函數(shù),且周期為SKIPIF1<0,對于A選項(xiàng),SKIPIF1<0,A對;對于BCD選項(xiàng),SKIPIF1<0,SKIPIF1<0,但SKIPIF1<0的值無法確定,BCD均錯(cuò).故選:A.【變式1-3】(2022秋·廣西玉林·高三校聯(lián)考階段練習(xí))已知SKIPIF1<0是定義域?yàn)镾KIPIF1<0的奇函數(shù),SKIPIF1<0是定義域?yàn)镾KIPIF1<0的偶函數(shù),則(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【分析】由條件得到函數(shù)SKIPIF1<0的對稱性,根據(jù)對稱性求值,即可求解.【詳解】因?yàn)镾KIPIF1<0是定義域?yàn)镾KIPIF1<0的奇函數(shù),所以SKIPIF1<0,所以函數(shù)SKIPIF1<0關(guān)于點(diǎn)SKIPIF1<0對稱,且SKIPIF1<0因?yàn)镾KIPIF1<0是定義域?yàn)?/p>

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論