![新高考數(shù)學(xué)二輪復(fù)習(xí)專題2-5 函數(shù)與導(dǎo)數(shù)壓軸小題歸類(原卷版)_第1頁](http://file4.renrendoc.com/view3/M00/2C/38/wKhkFma8PCuAF2ryAAK-c_yI2zA917.jpg)
![新高考數(shù)學(xué)二輪復(fù)習(xí)專題2-5 函數(shù)與導(dǎo)數(shù)壓軸小題歸類(原卷版)_第2頁](http://file4.renrendoc.com/view3/M00/2C/38/wKhkFma8PCuAF2ryAAK-c_yI2zA9172.jpg)
![新高考數(shù)學(xué)二輪復(fù)習(xí)專題2-5 函數(shù)與導(dǎo)數(shù)壓軸小題歸類(原卷版)_第3頁](http://file4.renrendoc.com/view3/M00/2C/38/wKhkFma8PCuAF2ryAAK-c_yI2zA9173.jpg)
![新高考數(shù)學(xué)二輪復(fù)習(xí)專題2-5 函數(shù)與導(dǎo)數(shù)壓軸小題歸類(原卷版)_第4頁](http://file4.renrendoc.com/view3/M00/2C/38/wKhkFma8PCuAF2ryAAK-c_yI2zA9174.jpg)
![新高考數(shù)學(xué)二輪復(fù)習(xí)專題2-5 函數(shù)與導(dǎo)數(shù)壓軸小題歸類(原卷版)_第5頁](http://file4.renrendoc.com/view3/M00/2C/38/wKhkFma8PCuAF2ryAAK-c_yI2zA9175.jpg)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
專題2-5函數(shù)導(dǎo)數(shù)壓軸小題歸類目錄TOC\o"1-1"\h\u題型01整數(shù)解型 1題型02函數(shù)零點(diǎn)構(gòu)造型 2題型03同構(gòu):方程零點(diǎn)型同構(gòu) 3題型04同構(gòu):不等式型同構(gòu)求參 4題型05恒成立求參:移項(xiàng)討論型 5題型06恒成立求參:虛設(shè)零點(diǎn)型 5題型07“倍縮”型函數(shù)求參數(shù) 6題型08恒成立求參:“等式”型 7題型09雙變量型不等式范圍最值 8題型10雙變量型:凸凹反轉(zhuǎn)型 9題型11多參型:代換型 10題型12多參型:二次構(gòu)造放縮型 10題型13多參型:韋達(dá)定理求參型 11題型14多參型:單峰函數(shù)絕對(duì)值型 12題型15導(dǎo)數(shù)與三角函數(shù) 12高考練場 13題型01整數(shù)解型【解題攻略】整數(shù)解,屬于導(dǎo)數(shù)研究函數(shù)的性質(zhì),根據(jù)題意求得整數(shù)型參數(shù)的取值范圍,或者整數(shù)解求參數(shù)范圍等,涉及函數(shù)的零點(diǎn)問題、方程解的個(gè)數(shù)問題、函數(shù)圖像交點(diǎn)個(gè)數(shù)問題,一般先通過導(dǎo)數(shù)研究函數(shù)的單調(diào)性、最大值、最小值、變化趨勢等,再借助函數(shù)的大致圖象判斷零點(diǎn)、方程根、交點(diǎn)的情況,歸根到底還是研究函數(shù)的性質(zhì),如單調(diào)性、極值,然后通過數(shù)形結(jié)合的思想找到解題的思路.【典例1-1】(2021·湖南懷化·二模(理))已知函數(shù)SKIPIF1<0,SKIPIF1<0,若對(duì)任意的SKIPIF1<0,存在實(shí)數(shù)SKIPIF1<0滿足SKIPIF1<0,使得SKIPIF1<0,則SKIPIF1<0的最大值是A.3 B.2 C.4 D.5【典例1-2】.(2020·黑龍江實(shí)驗(yàn)中學(xué)三模(理))已知函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0內(nèi)存在極值點(diǎn),且SKIPIF1<0恰好有唯一整數(shù)解,則的取值范圍是()A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【變式1-1】在關(guān)于SKIPIF1<0的不等式SKIPIF1<0(其中SKIPIF1<0SKIPIF1<0為自然對(duì)數(shù)的底數(shù))的解集中,有且僅有兩個(gè)大于2的整數(shù),則實(shí)數(shù)SKIPIF1<0的取值范圍為()A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【變式1-2】(黑龍江省佳木斯市第一中學(xué)2021-2022學(xué)年高三上學(xué)期第四次調(diào)研考試?yán)砜茢?shù)學(xué)試題)已知偶函數(shù)SKIPIF1<0滿足SKIPIF1<0,且當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,若關(guān)于x的不等式SKIPIF1<0在SKIPIF1<0上有且只有150個(gè)整數(shù)解,則實(shí)數(shù)t的取值范圍是()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【變式1-3】(四川省成都石室中學(xué)高三下學(xué)期考試數(shù)學(xué)(理)試題)已知函數(shù)SKIPIF1<0,若關(guān)于SKIPIF1<0的不等式SKIPIF1<0恰有兩個(gè)整數(shù)解,則實(shí)數(shù)SKIPIF1<0的取值范圍是A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0題型02函數(shù)零點(diǎn)構(gòu)造型【解題攻略】函數(shù)零點(diǎn)構(gòu)造型,涉及到函數(shù)的性質(zhì)應(yīng)用:與對(duì)稱有關(guān)的常用結(jié)論:①若點(diǎn)SKIPIF1<0,SKIPIF1<0關(guān)于直線SKIPIF1<0對(duì)稱,則SKIPIF1<0;②若SKIPIF1<0的圖象關(guān)于直線SKIPIF1<0對(duì)稱,則SKIPIF1<0;③若SKIPIF1<0,則SKIPIF1<0的圖象關(guān)于直線SKIPIF1<0對(duì)稱;④若SKIPIF1<0,則SKIPIF1<0的圖象關(guān)于點(diǎn)SKIPIF1<0對(duì)稱.?dāng)?shù)形結(jié)合法解決零點(diǎn)問題:①零點(diǎn)個(gè)數(shù):幾個(gè)零點(diǎn)②幾個(gè)零點(diǎn)的和③幾個(gè)零點(diǎn)的積.【典例1-1】(2020·黑龍江實(shí)驗(yàn)中學(xué)高三階段練習(xí)(理))已知函數(shù)SKIPIF1<0,若實(shí)數(shù)SKIPIF1<0互不相等,且SKIPIF1<0,則SKIPIF1<0的取值范圍為______.【典例1-2】.(2020·吉林吉林·三模)已知函數(shù)SKIPIF1<0,若實(shí)數(shù)SKIPIF1<0滿足SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0的取值范圍為___________.【變式1-1】(2022·云南省玉溪第一中學(xué)高三)已知函數(shù)SKIPIF1<0,SKIPIF1<0,若SKIPIF1<0,其中SKIPIF1<0,則SKIPIF1<0的取值范圍是______.【變式1-2】.(2022·浙江·高三專題練習(xí))設(shè)函數(shù)SKIPIF1<0已知SKIPIF1<0,且SKIPIF1<0,若SKIPIF1<0的最小值為SKIPIF1<0,則a的值為___________.【變式1-3】.(2021·全國·模擬預(yù)測)已知函數(shù)SKIPIF1<0,SKIPIF1<0,若方程SKIPIF1<0有4個(gè)不同的實(shí)根SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0的取值范圍是______.題型03同構(gòu):方程零點(diǎn)型同構(gòu)【解題攻略】對(duì)于既含有指數(shù)式又含有對(duì)數(shù)式的等式或不等式,直接求導(dǎo)會(huì)出現(xiàn)越求導(dǎo)式子越復(fù)雜的情況,此時(shí)可通過同構(gòu)函數(shù),再利用函數(shù)的單調(diào)性,把問題轉(zhuǎn)化為較為簡單的函數(shù)的導(dǎo)數(shù)問題.導(dǎo)函數(shù)求解參數(shù)取值范圍,當(dāng)函數(shù)中同時(shí)出現(xiàn)SKIPIF1<0與SKIPIF1<0,通常使用同構(gòu)來進(jìn)行求解,難點(diǎn)是尋找構(gòu)造突破口。如SKIPIF1<0變形得到SKIPIF1<0,從而構(gòu)造SKIPIF1<0進(jìn)行求解.常見同構(gòu):①SKIPIF1<0;②SKIPIF1<0;③SKIPIF1<0④SKIPIF1<0;SKIPIF1<0【典例1-1】(2024·全國·模擬預(yù)測)已知m是方程SKIPIF1<0的一個(gè)根,則SKIPIF1<0(
)A.1 B.2 C.3 D.5【典例1-2】(2023·全國·模擬預(yù)測)若方程SKIPIF1<0在SKIPIF1<0上有實(shí)根,則a的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【變式1-1】(2023·全國·模擬預(yù)測)已知SKIPIF1<0是方程SKIPIF1<0的一個(gè)根,則SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.2 D.3【變式1-2】(2023上·四川綿陽·高三四川省綿陽實(shí)驗(yàn)高級(jí)中學(xué)校考階段練習(xí))已知SKIPIF1<0且SKIPIF1<0則一定有(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【變式1-3】(2023上·山東日照·高三統(tǒng)考開學(xué)考試)已知正實(shí)數(shù)SKIPIF1<0,SKIPIF1<0滿足SKIPIF1<0,則SKIPIF1<0的最大值為(
)A.0 B.1 C.2 D.3題型04同構(gòu):不等式型同構(gòu)求參【解題攻略】(1)乘積模型:SKIPIF1<0(2)商式模型:SKIPIF1<0(3)和差模型:SKIPIF1<0【典例1-1】(2023·全國·安陽市第二中學(xué)校聯(lián)考模擬預(yù)測)已知關(guān)于x的不等式SKIPIF1<0在SKIPIF1<0上恒成立,則正數(shù)m的最大值為(
)A.SKIPIF1<0 B.0 C.e D.1【典例1-2】(2020上·北京·高三統(tǒng)考階段練習(xí))已知不等式SKIPIF1<0對(duì)SKIPIF1<0恒成立,則實(shí)數(shù)a的最小值為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【變式1-1】(2022下·河南·高三校聯(lián)考階段練習(xí))若關(guān)于SKIPIF1<0的不等式SKIPIF1<0在SKIPIF1<0上恒成立,則實(shí)數(shù)SKIPIF1<0的取值范圍為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【變式1-2】(2022上·浙江紹興·高三統(tǒng)考期末)已知關(guān)于SKIPIF1<0的不等式SKIPIF1<0恒成立,其中SKIPIF1<0為自然對(duì)數(shù)的底數(shù),SKIPIF1<0,則(
)A.SKIPIF1<0既有最小值,也有最大值 B.SKIPIF1<0有最小值,沒有最大值C.SKIPIF1<0有最大值,沒有最小值 D.SKIPIF1<0既沒有最小值,也沒有最大值【變式1-3】(2022上·安徽亳州·高三統(tǒng)考期末)已知SKIPIF1<0,若SKIPIF1<0時(shí),SKIPIF1<0恒成立,則SKIPIF1<0的最小值為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0題型05恒成立求參:移項(xiàng)討論型【解題攻略】一般地,已知函數(shù)SKIPIF1<0,SKIPIF1<0(1)若SKIPIF1<0,SKIPIF1<0,有SKIPIF1<0成立,故SKIPIF1<0;(2)若SKIPIF1<0,SKIPIF1<0,有SKIPIF1<0成立,故SKIPIF1<0;(3)若SKIPIF1<0,SKIPIF1<0,有SKIPIF1<0成立,故SKIPIF1<0;(4)若SKIPIF1<0,SKIPIF1<0,有SKIPIF1<0成立,故SKIPIF1<0;【典例1-1】(2022·全國·高三專題練習(xí))已知函數(shù)SKIPIF1<0有唯一零點(diǎn),則SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【典例1-2】.(2022·全國·高三專題練習(xí))若對(duì)任意SKIPIF1<0,不等式SKIPIF1<0恒成立,則實(shí)數(shù)a的最大值為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【變式1-1】(2020·福建省福州第一中學(xué)高三階段練習(xí)(理))已知SKIPIF1<0,且SKIPIF1<0時(shí),SKIPIF1<0恒成立,則SKIPIF1<0的最小值是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【變式1-2】(2022·全國·高三專題練習(xí))已知函數(shù)SKIPIF1<0,SKIPIF1<0,若SKIPIF1<0有最小值,則實(shí)數(shù)SKIPIF1<0的取值范圍是A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【變式1-3】(2022上·江蘇揚(yáng)州·高三統(tǒng)考階段練習(xí))當(dāng)SKIPIF1<0時(shí),不等式SKIPIF1<0有解,則實(shí)數(shù)m的范圍為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0題型06恒成立求參:虛設(shè)零點(diǎn)型【解題攻略】虛設(shè)零點(diǎn)法:涉及到導(dǎo)函數(shù)有零點(diǎn)但是求解相對(duì)比較繁雜甚至無法求解的情形時(shí),可以將這個(gè)零點(diǎn)只設(shè)出來而不必求出來,然后尋找一種整體的轉(zhuǎn)換和過度,再結(jié)合其他條件,進(jìn)行代換變形,從而最重獲得問題的解決(1)、整體代換:把超越式子(多為指數(shù)和對(duì)數(shù)式子)轉(zhuǎn)化為普通的(如二次函數(shù)一次哈數(shù)等)可解式子,如比值代換等等。(2)、反代消參:反解參數(shù)代入,構(gòu)造單一變量的函數(shù)。如果要求解(或者要證明)的結(jié)論與參數(shù)無關(guān),則可以通過反解參數(shù),用變量(零點(diǎn))表示參數(shù),然后把函數(shù)變成關(guān)于零點(diǎn)的單一函數(shù),再對(duì)單一變量求導(dǎo)就可以解決相應(yīng)的問題。(3)留參降次(留參、消去指對(duì)等超越項(xiàng)):如果要求解的與參數(shù)有關(guān),則可以通過消去超越項(xiàng),建立含參數(shù)的方程或者不等式。恒等變形或者化簡方向時(shí)保留參數(shù),通過“降次”變換,一直降到不可再降為止,再結(jié)合條件,求解方程或者不等式,解的相應(yīng)的參數(shù)值或者參數(shù)范圍【典例1-1】(四川省內(nèi)江市威遠(yuǎn)中學(xué)校2022-2023學(xué)年高三上學(xué)期第三次月考數(shù)學(xué)(理)試題)已知不等式SKIPIF1<0對(duì)SKIPIF1<0恒成立,則SKIPIF1<0取值范圍為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【典例1-2】(黑龍江省哈爾濱市第六中學(xué)校2022-2023學(xué)年高三上學(xué)期10月月考數(shù)學(xué)試題)若關(guān)于SKIPIF1<0的不等式SKIPIF1<0對(duì)一切正實(shí)數(shù)SKIPIF1<0恒成立,則實(shí)數(shù)SKIPIF1<0的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【變式1-1】設(shè)實(shí)數(shù)SKIPIF1<0,若對(duì)任意SKIPIF1<0,不等式SKIPIF1<0恒成立,則SKIPIF1<0的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【變式1-2】已知函數(shù)SKIPIF1<0有唯一零點(diǎn),則SKIPIF1<0()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【變式1-3】若對(duì)任意SKIPIF1<0,不等式SKIPIF1<0恒成立,則實(shí)數(shù)a的最大值為()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0題型07“倍縮”型函數(shù)求參數(shù)【解題攻略】如果函數(shù)SKIPIF1<0在定義域的某個(gè)區(qū)間SKIPIF1<0(SKIPIF1<0)上的值域恰為SKIPIF1<0(SKIPIF1<0),則稱函數(shù)SKIPIF1<0為SKIPIF1<0上的k倍域函數(shù),SKIPIF1<0稱為函數(shù)SKIPIF1<0的一個(gè)k倍域區(qū)間.把函數(shù)SKIPIF1<0存在區(qū)間SKIPIF1<0,使得函數(shù)SKIPIF1<0為SKIPIF1<0上的SKIPIF1<0倍域函數(shù),結(jié)合函數(shù)的單調(diào)性,轉(zhuǎn)化為SKIPIF1<0是解答的關(guān)鍵.【典例1-1】(陜西省漢中中學(xué)2019屆高三上學(xué)期第二次月考數(shù)學(xué)(理)試卷)設(shè)函數(shù)的定義域?yàn)镈,若滿足條件:存在SKIPIF1<0,使SKIPIF1<0在SKIPIF1<0上的值域?yàn)镾KIPIF1<0,則稱SKIPIF1<0為“倍縮函數(shù)”.若函數(shù)SKIPIF1<0為“倍縮函數(shù)”,則實(shí)數(shù)t的取值范圍是A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【典例1-2】(浙江省杭州學(xué)軍中學(xué)西溪校區(qū)2020-2021學(xué)年高三3月數(shù)學(xué)試題)設(shè)函數(shù)SKIPIF1<0的定義域?yàn)镾KIPIF1<0,若函數(shù)SKIPIF1<0滿足條件:存在SKIPIF1<0,使SKIPIF1<0在SKIPIF1<0上的值域是SKIPIF1<0,則SKIPIF1<0稱為“倍縮函數(shù)”,若函數(shù)SKIPIF1<0為“倍縮函數(shù)”,則實(shí)數(shù)SKIPIF1<0的取值范圍是________.【變式1-1】(2020年浙江省新高考考前原創(chuàng)沖刺卷(二))設(shè)函數(shù)SKIPIF1<0的定義域?yàn)镈,若滿足條件:存在SKIPIF1<0,使SKIPIF1<0在SKIPIF1<0上的值域?yàn)镾KIPIF1<0,則稱SKIPIF1<0為“倍脹函數(shù)”.若函數(shù)SKIPIF1<0為“倍脹函數(shù)”,則實(shí)數(shù)t的取值范圍是________.【變式1-2】(河北省邢臺(tái)一中2021-2022學(xué)年高三下學(xué)期模擬數(shù)學(xué)(理)試題).設(shè)函數(shù)SKIPIF1<0的定義域?yàn)镾KIPIF1<0,若存在SKIPIF1<0,使得SKIPIF1<0在區(qū)間SKIPIF1<0上的值域?yàn)镾KIPIF1<0,則稱SKIPIF1<0為“SKIPIF1<0倍函數(shù)”.已知函數(shù)SKIPIF1<0為“3倍函數(shù)”,則實(shí)數(shù)SKIPIF1<0的取值范圍為()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【變式1-3】(2022吉林吉林·高三階段練習(xí)(理))設(shè)函數(shù)SKIPIF1<0的定義域?yàn)镾KIPIF1<0,若滿足條件:存在SKIPIF1<0,使SKIPIF1<0在SKIPIF1<0上的值域?yàn)镾KIPIF1<0(SKIPIF1<0且SKIPIF1<0),則稱SKIPIF1<0為“SKIPIF1<0倍函數(shù)”,若函數(shù)SKIPIF1<0SKIPIF1<0為“3倍函數(shù)”,則實(shí)數(shù)SKIPIF1<0的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0題型08恒成立求參:“等式”型【解題攻略】一般地,已知函數(shù)SKIPIF1<0,SKIPIF1<0若SKIPIF1<0,SKIPIF1<0,有SKIPIF1<0,則SKIPIF1<0的值域是SKIPIF1<0值域的子集.【典例1-1】(2021·四川·綿陽中學(xué)模擬預(yù)測(文))已知函數(shù)SKIPIF1<0,SKIPIF1<0,若SKIPIF1<0,使得SKIPIF1<0,則實(shí)數(shù)SKIPIF1<0的取值范圍是A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【典例1-2】.(2022·福建·泉州市城東中學(xué)高三)已知SKIPIF1<0,SKIPIF1<0是函數(shù)SKIPIF1<0的兩個(gè)極值點(diǎn),且SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),不等式SKIPIF1<0恒成立,則實(shí)數(shù)SKIPIF1<0的取值范圍(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【變式1-1】(2022·四川成都·高三階段練習(xí)(文))設(shè)函數(shù)SKIPIF1<0,SKIPIF1<0,其中SKIPIF1<0.若對(duì)任意的正實(shí)數(shù)SKIPIF1<0,SKIPIF1<0,不等式SKIPIF1<0恒成立,則a的最小值為(
)A.0 B.1 C.SKIPIF1<0 D.e【變式1-2】(2022·河南安陽·高三階段練習(xí))已知函數(shù)SKIPIF1<0,SKIPIF1<0,若SKIPIF1<0,SKIPIF1<0使得SKIPIF1<0成立,則實(shí)數(shù)a的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【變式1-3】(江蘇省南京航空航天大學(xué)附屬高級(jí)中學(xué)2020-2021學(xué)年高三數(shù)學(xué)試題)已知函數(shù)SKIPIF1<0,SKIPIF1<0,對(duì)任意的SKIPIF1<0,總存在SKIPIF1<0使得SKIPIF1<0成立,則a的范圍為_________.題型09雙變量型不等式范圍最值【解題攻略】一般地,已知函數(shù)SKIPIF1<0,SKIPIF1<0不等關(guān)系(1)若SKIPIF1<0,SKIPIF1<0,總有SKIPIF1<0成立,故SKIPIF1<0;(2)若SKIPIF1<0,SKIPIF1<0,有SKIPIF1<0成立,故SKIPIF1<0;(3)若SKIPIF1<0,SKIPIF1<0,有SKIPIF1<0成立,故SKIPIF1<0;(4)若SKIPIF1<0,SKIPIF1<0,有SKIPIF1<0成立,故SKIPIF1<0.【典例1-1】(2023下·四川眉山·高三眉山市彭山區(qū)第一中學(xué)??茧A段練習(xí))已知函數(shù)SKIPIF1<0有兩個(gè)零點(diǎn)SKIPIF1<0,且SKIPIF1<0,則下列說法不正確的是(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0有極小值點(diǎn)【典例1-2】(2023下·福建福州·高三福建省福州第一中學(xué)校考)已知函數(shù)SKIPIF1<0,若SKIPIF1<0,且SKIPIF1<0,SKIPIF1<0,則(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【變式1-1】(2019下·河南鶴壁·高三鶴壁高中??茧A段練習(xí))已知函數(shù)SKIPIF1<0,SKIPIF1<0,曲線SKIPIF1<0上總存在兩點(diǎn)SKIPIF1<0,SKIPIF1<0,使曲線SKIPIF1<0在SKIPIF1<0兩點(diǎn)處的切線互相平行,則SKIPIF1<0的取值范圍為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【變式1-2】(2019下·山西長治·高三統(tǒng)考階段練習(xí))若方程x﹣2lnx+a=0存在兩個(gè)不相等的實(shí)數(shù)根x1和x2,則()A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【變式1-3】(2021上·高三單元測試)已知直線SKIPIF1<0分別與函數(shù)SKIPIF1<0和SKIPIF1<0的圖象交于點(diǎn)SKIPIF1<0,SKIPIF1<0,則下列結(jié)論錯(cuò)誤的是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0題型10雙變量型:凸凹反轉(zhuǎn)型【解題攻略】凸凹翻轉(zhuǎn)型常見思路,如下圖轉(zhuǎn)化為兩個(gè)函數(shù)的最值問題是關(guān)鍵。【典例1-1】(2023·全國·高三專題練習(xí))設(shè)大于1的兩個(gè)實(shí)數(shù)a,b滿足SKIPIF1<0,則正整數(shù)n的最大值為(
).A.7 B.9 C.11 D.12【典例1-2】(2023上·江蘇蘇州·高三統(tǒng)考階段練習(xí))已知正數(shù)SKIPIF1<0滿足SKIPIF1<0,則SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.1 D.SKIPIF1<0【變式1-1】.已知實(shí)數(shù)SKIPIF1<0,SKIPIF1<0滿足SKIPIF1<0,則SKIPIF1<0的值為A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【變式1-2】(安徽省六安市第一中學(xué)、合肥八中、阜陽一中三校2021-2022學(xué)年高三上學(xué)期10月聯(lián)考數(shù)學(xué)試題)已知函數(shù)SKIPIF1<0有兩個(gè)零點(diǎn),則SKIPIF1<0的取值范圍為()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0題型11多參型:代換型【解題攻略】不等式中,可以借助對(duì)數(shù)均值不等式解決,完整的對(duì)數(shù)均值不等式為:SKIPIF1<0,可用兩邊同除SKIPIF1<0,令SKIPIF1<0整體換元的思想來構(gòu)造函數(shù),證明不等式成立求解參數(shù)【典例1-1】(2022·全國·高三專題練習(xí))已知函數(shù)SKIPIF1<0,對(duì)于正實(shí)數(shù)a,若關(guān)于t的方程SKIPIF1<0恰有三個(gè)不同的正實(shí)數(shù)根,則a的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【典例1-2】(2020·江蘇·高三專題練習(xí))若對(duì)任意正實(shí)數(shù)SKIPIF1<0恒成立,則實(shí)數(shù)SKIPIF1<0的取值范圍是_________【變式1-1】(2020·全國·高三專題練習(xí)(文))設(shè)三次函數(shù)SKIPIF1<0,(a,b,c為實(shí)數(shù)且SKIPIF1<0)的導(dǎo)數(shù)為SKIPIF1<0,記SKIPIF1<0,若對(duì)任意SKIPIF1<0,不等式SKIPIF1<0恒成立,則SKIPIF1<0的最大值為____________【變式1-2】已知存在SKIPIF1<0,若要使等式SKIPIF1<0成立(e=2.71828…),則實(shí)數(shù)SKIPIF1<0的可能的取值是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.0【變式1-3】(江蘇省揚(yáng)州中學(xué)2022-2023學(xué)年高三考試數(shù)學(xué))若正實(shí)數(shù)SKIPIF1<0滿足SKIPIF1<0,則函數(shù)SKIPIF1<0的零點(diǎn)的最大值為______.題型12多參型:二次構(gòu)造放縮型【解題攻略】多參數(shù)型求參數(shù)范圍,或者多參型最值,難點(diǎn)是能夠兩次構(gòu)造函數(shù),利用導(dǎo)數(shù)求出相應(yīng)函數(shù)的最值【典例1-1】(2023·全國·高三專題練習(xí))已知關(guān)于SKIPIF1<0的不等式SKIPIF1<0恒成立,則SKIPIF1<0的最小值為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【典例1-2】(2021·高三單元測試)已知SKIPIF1<0為自然對(duì)數(shù)的底數(shù),SKIPIF1<0為實(shí)數(shù),且不等式SKIPIF1<0對(duì)任意的SKIPIF1<0恒成立.則當(dāng)SKIPIF1<0取最大值時(shí),SKIPIF1<0的值為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【變式1-1】(2021·四川成都·統(tǒng)考模擬預(yù)測)設(shè)SKIPIF1<0,SKIPIF1<0,若關(guān)于SKIPIF1<0的不等式SKIPIF1<0在SKIPIF1<0上恒成立,則SKIPIF1<0的最小值是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【變式1-2】(2022·四川南充·高三四川省南充高級(jí)中學(xué)??迹┮阎瘮?shù)SKIPIF1<0,若SKIPIF1<0時(shí),恒有SKIPIF1<0,則SKIPIF1<0的最大值為A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【變式1-3】(2023·浙江·高三路橋中學(xué)校聯(lián)考)已知SKIPIF1<0,SKIPIF1<0,關(guān)于SKIPIF1<0的不等式SKIPIF1<0無實(shí)數(shù)解,則SKIPIF1<0的最小值為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0題型13多參型:韋達(dá)定理求參型【典例1-1】(2023上·北京順義·高三北京市順義區(qū)第一中學(xué)??迹┤艉瘮?shù)SKIPIF1<0既有極大值也有極小值,則錯(cuò)誤的是(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【典例1-2】(2023上·江蘇蘇州·高三蘇州中學(xué)校考開學(xué)考試)若函數(shù)SKIPIF1<0既有極大值也有極小值,則SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【變式1-1】(2023·山東煙臺(tái)·統(tǒng)考二模)若函數(shù)SKIPIF1<0有兩個(gè)極值點(diǎn)SKIPIF1<0,且SKIPIF1<0,則(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【變式1-2】(2021·浙江·模擬預(yù)測)已知SKIPIF1<0在SKIPIF1<0上恰有兩個(gè)極值點(diǎn)SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0的取值范圍為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【變式1-3】(2023·河南開封·高三統(tǒng)考)已知函數(shù)SKIPIF1<0的兩個(gè)極值點(diǎn)分別是SKIPIF1<0,則下列結(jié)論正確的是(
)A.SKIPIF1<0或SKIPIF1<0 B.SKIPIF1<0C.存在實(shí)數(shù)a,使得SKIPIF1<0 D.SKIPIF1<0題型14多參型:單峰函數(shù)絕對(duì)值型【典例1-1】(安徽省阜陽市太和第一中學(xué)2019-2020學(xué)年高三數(shù)學(xué)試題)若存在實(shí)數(shù)SKIPIF1<0,對(duì)任意實(shí)數(shù)SKIPIF1<0,使不等式SKIPIF1<0恒成立,則實(shí)數(shù)SKIPIF1<0的取值范圍為________.【典例1-2】(中學(xué)生標(biāo)準(zhǔn)學(xué)術(shù)能力診斷性測試2019-2020學(xué)年高三1月(一卷)數(shù)學(xué)(理)試題)設(shè)函數(shù)SKIPIF1<0,若對(duì)任意的實(shí)數(shù)SKIPIF1<0和SKIPIF1<0,總存在SKIPIF1<0,使得SKIPIF1<0,則實(shí)數(shù)SKIPIF1<0的最大值為__________.【變式1-1】設(shè)函數(shù)SKIPIF1<0,若對(duì)任意的實(shí)數(shù)SKIPIF1<0,總存在SKIPIF1<0使得SKIPIF1<0成立,則實(shí)數(shù)SKIPIF1<0的取值范圍是________.【變式1-2】若SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,對(duì)任意SKIPIF1<0,總存在唯一的SKIPIF1<0,使得SKIPIF1<0成立,則實(shí)數(shù)a的取值范圍____________.【變式1-3】(浙江省溫州市2021-2022學(xué)年高三適應(yīng)性測試一模數(shù)學(xué)試題)設(shè)函數(shù)SKIPIF1<0.若SKIPIF1<0在SKIPIF1<0上的最大值為2,則實(shí)數(shù)a所有可能的取值組成的集合是________.題型15導(dǎo)數(shù)與三角函數(shù)【典例1-1】函數(shù)SKIPIF1<0的最大值為()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【典例1-2】已知函數(shù)SKIPIF1<0,若對(duì)于任意的SKIPIF1<0,均有SKIPIF1<0成立,則實(shí)數(shù)a的最小值為A.SKIPIF1<0 B.1 C.SKIPIF1<0 D.3【變式1-1】函數(shù)SKIPIF1<0的圖象與函數(shù)SKIPIF1<0圖象的所有交點(diǎn)的橫坐標(biāo)之和為___________.【變式1-2】已知SKIPIF1<0,且SKIPIF1<0,其中e為自然對(duì)數(shù)的底數(shù),則下列選項(xiàng)中一定成立的是(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【變式1-3】已知函數(shù)SKIPIF1<0,若f(x)在R上單調(diào),則a的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0高考練場1.(黑龍江省實(shí)驗(yàn)校2020屆高三第三次模擬考試數(shù)學(xué)(理)試題)已知函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0內(nèi)存在極值點(diǎn),且SKIPIF1<0恰好有唯一整數(shù)解,則的取值范圍是()A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<02.(2021·江蘇·高三開學(xué)考試)已知函數(shù)SKIPIF1<0,SKIPIF1<0,若SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0的最小值為___________.3.(2023·廣東梅州·統(tǒng)考三模)已知實(shí)數(shù)SKIPIF1<0,SKIPIF1<0滿足SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0(
)A.1 B.2 C.4 D.84.(2021·廣東深圳·高三練習(xí))設(shè)SKIPIF1<0,若存在正實(shí)數(shù)SKIPIF1<0,使得不等式SKIPIF1<0成立,則SKIPIF1<0的最大值為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<05.(2021下·四川眉山··高三練習(xí))若SKIPIF1<0,SKIPIF1<0恒
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 人教版九年級(jí)數(shù)學(xué)上冊(cè)21.3.1《一元二次方程的根與系數(shù)的關(guān)系》聽評(píng)課記錄
- 2025年便攜式X?zé)晒夤庾V分析儀合作協(xié)議書
- 七年級(jí)第二學(xué)期工作總結(jié)
- 蘇科版數(shù)學(xué)七年級(jí)下冊(cè)8.1.1《同底數(shù)冪的乘法》聽評(píng)課記錄
- 公司職工食堂承包協(xié)議書范本
- 裝飾裝修勞務(wù)分包合同范本
- 2025年度新能源電站租賃誠意金合同
- 2025年度裝修施工現(xiàn)場安全監(jiān)督合同
- 二零二五年度航空航天設(shè)備采購合同知識(shí)產(chǎn)權(quán)保護(hù)及實(shí)施約定
- 2025年度航空航天零部件購買協(xié)議范文匯編
- GB/T 7251.5-2017低壓成套開關(guān)設(shè)備和控制設(shè)備第5部分:公用電網(wǎng)電力配電成套設(shè)備
- 2023年湖南高速鐵路職業(yè)技術(shù)學(xué)院高職單招(數(shù)學(xué))試題庫含答案解析
- 中考語文非連續(xù)性文本閱讀10篇專項(xiàng)練習(xí)及答案
- 勇者斗惡龍9(DQ9)全任務(wù)攻略
- 經(jīng)顱磁刺激的基礎(chǔ)知識(shí)及臨床應(yīng)用參考教學(xué)課件
- 小學(xué)語文人教四年級(jí)上冊(cè)第四單元群文閱讀“神話故事之人物形象”PPT
- 鄉(xiāng)村振興匯報(bào)課件
- 紅色記憶模板課件
- ISO 31000-2018 風(fēng)險(xiǎn)管理標(biāo)準(zhǔn)-中文版
- 油氣藏類型、典型的相圖特征和識(shí)別實(shí)例
- 麗聲三葉草分級(jí)讀物第四級(jí)A Friend for Little White Rabbit課件
評(píng)論
0/150
提交評(píng)論