![新高考數(shù)學(xué)二輪復(fù)習(xí)重難點(diǎn)7-1 圓的最值與范圍問(wèn)題(8題型+滿(mǎn)分技巧+限時(shí)檢測(cè))(解析版)_第1頁(yè)](http://file4.renrendoc.com/view8/M02/07/18/wKhkGWa9N3eAB4szAAH247zqOp8689.jpg)
![新高考數(shù)學(xué)二輪復(fù)習(xí)重難點(diǎn)7-1 圓的最值與范圍問(wèn)題(8題型+滿(mǎn)分技巧+限時(shí)檢測(cè))(解析版)_第2頁(yè)](http://file4.renrendoc.com/view8/M02/07/18/wKhkGWa9N3eAB4szAAH247zqOp86892.jpg)
![新高考數(shù)學(xué)二輪復(fù)習(xí)重難點(diǎn)7-1 圓的最值與范圍問(wèn)題(8題型+滿(mǎn)分技巧+限時(shí)檢測(cè))(解析版)_第3頁(yè)](http://file4.renrendoc.com/view8/M02/07/18/wKhkGWa9N3eAB4szAAH247zqOp86893.jpg)
![新高考數(shù)學(xué)二輪復(fù)習(xí)重難點(diǎn)7-1 圓的最值與范圍問(wèn)題(8題型+滿(mǎn)分技巧+限時(shí)檢測(cè))(解析版)_第4頁(yè)](http://file4.renrendoc.com/view8/M02/07/18/wKhkGWa9N3eAB4szAAH247zqOp86894.jpg)
![新高考數(shù)學(xué)二輪復(fù)習(xí)重難點(diǎn)7-1 圓的最值與范圍問(wèn)題(8題型+滿(mǎn)分技巧+限時(shí)檢測(cè))(解析版)_第5頁(yè)](http://file4.renrendoc.com/view8/M02/07/18/wKhkGWa9N3eAB4szAAH247zqOp86895.jpg)
版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
重難點(diǎn)7-1圓的最值與范圍問(wèn)題與圓相關(guān)的最值問(wèn)題是近幾年高考數(shù)學(xué)對(duì)圓的考查的重點(diǎn)內(nèi)容。主要考查與圓相關(guān)的參數(shù)范圍問(wèn)題和圓相關(guān)的長(zhǎng)度或面積的最值及問(wèn)題。一般以選擇題和填空題的形式考查,但還需注意與圓錐曲線(xiàn)相結(jié)合的問(wèn)題。【題型1圓上一點(diǎn)到定點(diǎn)的最值范圍】滿(mǎn)分技巧圓上的點(diǎn)到定點(diǎn)的距離最值問(wèn)題:一般都是轉(zhuǎn)化為點(diǎn)到圓心的距離處理,加半徑為最大值,減半徑為最小值。已知圓及圓外一定點(diǎn),設(shè)圓的半徑為,則圓上點(diǎn)到點(diǎn)距離的最小值為,最大值為,即連結(jié)并延長(zhǎng),為與圓的交點(diǎn),為延長(zhǎng)線(xiàn)與圓的交點(diǎn).【例1】(2024·山東濟(jì)南·高三濟(jì)南一中校聯(lián)考開(kāi)學(xué)考試)已知SKIPIF1<0是圓SKIPIF1<0上的動(dòng)點(diǎn),點(diǎn)SKIPIF1<0滿(mǎn)足SKIPIF1<0,點(diǎn)SKIPIF1<0,則SKIPIF1<0的最大值為()A.8B.9C.SKIPIF1<0D.SKIPIF1<0【答案】C【解析】設(shè)SKIPIF1<0,SKIPIF1<0,由SKIPIF1<0,得SKIPIF1<0,SKIPIF1<0,因?yàn)辄c(diǎn)SKIPIF1<0在圓SKIPIF1<0上,即SKIPIF1<0,則SKIPIF1<0,所以點(diǎn)SKIPIF1<0的軌跡是以SKIPIF1<0為圓心,3為半徑的圓,因?yàn)镾KIPIF1<0,SKIPIF1<0,所以點(diǎn)SKIPIF1<0在圓外,所以SKIPIF1<0的最大值為SKIPIF1<0.故選:C【變式1-1】(2024·北京朝陽(yáng)·高三統(tǒng)考期末)在平面直角坐標(biāo)系SKIPIF1<0中,已知點(diǎn)SKIPIF1<0,動(dòng)點(diǎn)SKIPIF1<0滿(mǎn)足SKIPIF1<0,則SKIPIF1<0的最大值為()A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0【答案】D【解析】設(shè)SKIPIF1<0,易知SKIPIF1<0,由SKIPIF1<0可得SKIPIF1<0,整理得SKIPIF1<0,即動(dòng)點(diǎn)SKIPIF1<0的軌跡是以SKIPIF1<0為圓心,半徑為1的圓,又SKIPIF1<0,可得SKIPIF1<0的最大值為SKIPIF1<0到圓心SKIPIF1<0的距離再加上半徑,即SKIPIF1<0.故選:D【變式1-2】(2023·山東濰坊·昌邑市第一中學(xué)校考模擬預(yù)測(cè))已知復(fù)數(shù)SKIPIF1<0滿(mǎn)足:SKIPIF1<0,則SKIPIF1<0的最大值為()A.2B.SKIPIF1<0C.SKIPIF1<0D.3【答案】B【解析】設(shè)SKIPIF1<0,其中SKIPIF1<0,則SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,即點(diǎn)SKIPIF1<0的軌跡是以SKIPIF1<0為圓心,SKIPIF1<0為半徑的圓,∴SKIPIF1<0即為圓上動(dòng)點(diǎn)到定點(diǎn)SKIPIF1<0的距離,∴SKIPIF1<0的最大值為SKIPIF1<0.故選:B.【變式1-3】(2023·上?!じ呷袑?shí)驗(yàn)學(xué)校??茧A段練習(xí))若點(diǎn)SKIPIF1<0在圓SKIPIF1<0上運(yùn)動(dòng),SKIPIF1<0為SKIPIF1<0的中點(diǎn).SKIPIF1<0點(diǎn)在圓SKIPIF1<0上運(yùn)動(dòng),則SKIPIF1<0的最小值為()A.1B.2C.3D.4【答案】B【解析】∵點(diǎn)SKIPIF1<0在圓SKIPIF1<0上運(yùn)動(dòng),SKIPIF1<0,∴SKIPIF1<0中點(diǎn)SKIPIF1<0到圓心SKIPIF1<0的距離為SKIPIF1<0,由圓的定義可知,點(diǎn)SKIPIF1<0的運(yùn)動(dòng)軌跡為以SKIPIF1<0,半徑SKIPIF1<0的圓SKIPIF1<0,又∵SKIPIF1<0點(diǎn)在圓SKIPIF1<0∴SKIPIF1<0的最小值為:SKIPIF1<0.故選:B.【變式1-4】(2024·重慶·統(tǒng)考一模)過(guò)點(diǎn)SKIPIF1<0作圓SKIPIF1<0的兩條切線(xiàn),切點(diǎn)分別為SKIPIF1<0,若SKIPIF1<0為直角三角形,SKIPIF1<0為坐標(biāo)原點(diǎn),則SKIPIF1<0的取值范圍為()A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0【答案】D【解析】圓SKIPIF1<0的圓心SKIPIF1<0,半徑SKIPIF1<0,由SKIPIF1<0切圓SKIPIF1<0于點(diǎn)SKIPIF1<0,且SKIPIF1<0為直角三角形,得SKIPIF1<0,連接SKIPIF1<0,則SKIPIF1<0,即四邊形SKIPIF1<0是正方形,SKIPIF1<0,因此點(diǎn)SKIPIF1<0在以點(diǎn)SKIPIF1<0為圓心,SKIPIF1<0為半徑的圓上,而SKIPIF1<0,于是SKIPIF1<0,所以SKIPIF1<0的取值范圍為SKIPIF1<0.故選:D【題型2圓上一點(diǎn)到直線(xiàn)的最值范圍】滿(mǎn)分技巧圓上的點(diǎn)到直線(xiàn)的距離最值問(wèn)題:已知圓和圓外的一條直線(xiàn),則圓上點(diǎn)到直線(xiàn)距離的最小值為,距離的最大值為(過(guò)圓心作的垂線(xiàn),垂足為,與圓交于,其反向延長(zhǎng)線(xiàn)交圓于【例2】(2023·江蘇·高三校聯(lián)考階段練習(xí))已知直線(xiàn)SKIPIF1<0和圓SKIPIF1<0,則圓SKIPIF1<0上的點(diǎn)SKIPIF1<0到直線(xiàn)SKIPIF1<0的距離的最大值為()A.2B.3C.4D.5【答案】C【解析】由題知,圓SKIPIF1<0,其中圓心SKIPIF1<0,半徑為1,直線(xiàn)SKIPIF1<0過(guò)定點(diǎn)SKIPIF1<0,所以點(diǎn)SKIPIF1<0到直線(xiàn)SKIPIF1<0的距離的最大值為SKIPIF1<0到圓心的距離加上圓的半徑,即SKIPIF1<0.故選:C【變式2-1】(2024·廣東湛江·統(tǒng)考一模)已知點(diǎn)P為直線(xiàn)SKIPIF1<0上的動(dòng)點(diǎn),過(guò)P作圓SKIPIF1<0的兩條切線(xiàn),切點(diǎn)分別為A,B,若點(diǎn)M為圓SKIPIF1<0上的動(dòng)點(diǎn),則點(diǎn)M到直線(xiàn)AB的距離的最大值為.【答案】SKIPIF1<0【解析】設(shè)SKIPIF1<0,則滿(mǎn)足SKIPIF1<0;易知圓SKIPIF1<0的圓心為SKIPIF1<0,半徑SKIPIF1<0;圓SKIPIF1<0的圓心為SKIPIF1<0,半徑SKIPIF1<0,如下圖所示:易知SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,整理可得SKIPIF1<0;同理可得SKIPIF1<0,即SKIPIF1<0是方程SKIPIF1<0的兩組解,可得直線(xiàn)SKIPIF1<0的方程為SKIPIF1<0,聯(lián)立SKIPIF1<0,即SKIPIF1<0;令SKIPIF1<0,可得SKIPIF1<0,即SKIPIF1<0時(shí)等式SKIPIF1<0與SKIPIF1<0無(wú)關(guān),所以直線(xiàn)SKIPIF1<0恒過(guò)定點(diǎn)SKIPIF1<0,可得SKIPIF1<0;又SKIPIF1<0在圓SKIPIF1<0內(nèi),當(dāng)SKIPIF1<0,且點(diǎn)SKIPIF1<0為SKIPIF1<0的延長(zhǎng)線(xiàn)與圓SKIPIF1<0的交點(diǎn)時(shí),點(diǎn)SKIPIF1<0到直線(xiàn)SKIPIF1<0的距離最大;最大值為SKIPIF1<0.【變式2-2】(2022·全國(guó)·高三專(zhuān)題練習(xí))圓SKIPIF1<0上到直線(xiàn)SKIPIF1<0的距離等于1的點(diǎn)的個(gè)數(shù)為()A.1B.2C.3D.4【答案】C【解析】由題意知SKIPIF1<0,圓心為SKIPIF1<0,半徑SKIPIF1<0,圓心到直線(xiàn)SKIPIF1<0的距離SKIPIF1<0,當(dāng)SKIPIF1<0,此時(shí)圓上有SKIPIF1<0個(gè)點(diǎn)滿(mǎn)足,當(dāng)SKIPIF1<0,此時(shí)圓上有SKIPIF1<0個(gè)點(diǎn)滿(mǎn)足,所以圓上到直線(xiàn)距離為SKIPIF1<0的點(diǎn)的個(gè)數(shù)為SKIPIF1<0.故C正確.故選:C.【變式2-3】(2024·重慶·高三重慶一中??奸_(kāi)學(xué)考試)已知點(diǎn)SKIPIF1<0為直線(xiàn)SKIPIF1<0上的動(dòng)點(diǎn),平面內(nèi)的動(dòng)點(diǎn)SKIPIF1<0到兩定點(diǎn)SKIPIF1<0,SKIPIF1<0的距離分別為SKIPIF1<0和SKIPIF1<0,且SKIPIF1<0,則點(diǎn)SKIPIF1<0和點(diǎn)SKIPIF1<0距離的最小值為.【答案】SKIPIF1<0【解析】設(shè)SKIPIF1<0,由SKIPIF1<0得SKIPIF1<0,即SKIPIF1<0,即SKIPIF1<0,也即SKIPIF1<0,所以SKIPIF1<0點(diǎn)的軌跡是以SKIPIF1<0為圓心,半徑為SKIPIF1<0的圓,所以點(diǎn)SKIPIF1<0和點(diǎn)SKIPIF1<0距離的最小值為SKIPIF1<0.【變式2-4】(2024·廣東茂名·統(tǒng)考一模)動(dòng)點(diǎn)SKIPIF1<0與兩個(gè)定點(diǎn)SKIPIF1<0,SKIPIF1<0滿(mǎn)足SKIPIF1<0,則點(diǎn)SKIPIF1<0到直線(xiàn)SKIPIF1<0:SKIPIF1<0的距離的最大值為.【答案】SKIPIF1<0【解析】令SKIPIF1<0,則SKIPIF1<0,整理得SKIPIF1<0,所以SKIPIF1<0的軌跡是圓心為SKIPIF1<0,半徑為2的圓上,又直線(xiàn)SKIPIF1<0:SKIPIF1<0可化為SKIPIF1<0,易知過(guò)定點(diǎn)SKIPIF1<0,由SKIPIF1<0,故點(diǎn)SKIPIF1<0在圓SKIPIF1<0外,則圓心與定點(diǎn)所在直線(xiàn)與直線(xiàn)SKIPIF1<0垂直,圓心與直線(xiàn)SKIPIF1<0距離最大,所以點(diǎn)SKIPIF1<0到直線(xiàn)SKIPIF1<0距離的最大值為SKIPIF1<0.【題型3過(guò)圓內(nèi)定點(diǎn)的最值范圍】滿(mǎn)分技巧過(guò)圓內(nèi)定點(diǎn)的弦長(zhǎng)最值:已知圓及圓內(nèi)一定點(diǎn),則過(guò)點(diǎn)的所有弦中最長(zhǎng)為直徑,最短為與該直徑垂直的弦.【例3】(2024·福建福州·高三福州第一中學(xué)??计谀┰O(shè)直線(xiàn)SKIPIF1<0與圓SKIPIF1<0交于SKIPIF1<0,SKIPIF1<0兩點(diǎn),則SKIPIF1<0的取值范圍為()A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0【答案】D【解析】設(shè)直線(xiàn)SKIPIF1<0為l,方程變形為SKIPIF1<0,所以直線(xiàn)恒過(guò)定點(diǎn)SKIPIF1<0,因?yàn)閳A的方程為SKIPIF1<0,所以圓心SKIPIF1<0,半徑SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0在圓的內(nèi)部,當(dāng)直線(xiàn)SKIPIF1<0時(shí),弦SKIPIF1<0最短,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,當(dāng)直線(xiàn)l過(guò)圓心時(shí),弦SKIPIF1<0最長(zhǎng)為SKIPIF1<0,故SKIPIF1<0的取值范圍為SKIPIF1<0.故選:SKIPIF1<0.【變式3-1】(2023·山西忻州·高三校聯(lián)考階段練習(xí))直線(xiàn)SKIPIF1<0被圓SKIPIF1<0所截得的弦長(zhǎng)的最小值為.【答案】2【解析】直線(xiàn)SKIPIF1<0,即SKIPIF1<0,則SKIPIF1<0,即直線(xiàn)SKIPIF1<0過(guò)定點(diǎn)SKIPIF1<0,由于SKIPIF1<0,故點(diǎn)SKIPIF1<0在圓SKIPIF1<0,當(dāng)圓心和SKIPIF1<0的連線(xiàn)與直線(xiàn)SKIPIF1<0垂直時(shí),直線(xiàn)SKIPIF1<0被圓SKIPIF1<0所截得的弦長(zhǎng)最短,圓心為SKIPIF1<0,和SKIPIF1<0的距離為SKIPIF1<0,故弦長(zhǎng)的最小值為SKIPIF1<0.【變式3-2】(2024·寧夏石嘴山·高三石嘴山市第三中學(xué)校考階段練習(xí))已知圓C:SKIPIF1<0,直線(xiàn)SKIPIF1<0:SKIPIF1<0,直線(xiàn)SKIPIF1<0被圓C截得的弦長(zhǎng)最短時(shí),實(shí)數(shù)m的值為()A.SKIPIF1<0B.SKIPIF1<0C.1D.SKIPIF1<0【答案】B【解析】因?yàn)橹本€(xiàn)SKIPIF1<0:SKIPIF1<0,方程可化為SKIPIF1<0,令SKIPIF1<0,解得SKIPIF1<0,故直線(xiàn)SKIPIF1<0過(guò)定點(diǎn)SKIPIF1<0,且在圓C:SKIPIF1<0內(nèi),又SKIPIF1<0,故當(dāng)直線(xiàn)SKIPIF1<0被圓C截得的弦長(zhǎng)最短時(shí),有SKIPIF1<0,則SKIPIF1<0,解得SKIPIF1<0,故選:B.【變式3-3】(2023·河南·高三統(tǒng)考階段練習(xí))過(guò)圓SKIPIF1<0內(nèi)點(diǎn)SKIPIF1<0有若干條弦,它們的長(zhǎng)度構(gòu)成公差為d的等差數(shù)列SKIPIF1<0,且SKIPIF1<0,其中SKIPIF1<0分別為過(guò)點(diǎn)SKIPIF1<0的圓的最短弦長(zhǎng)和最長(zhǎng)弦長(zhǎng),則SKIPIF1<0的取值集合為()A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0【答案】C【解析】由題意可知:圓SKIPIF1<0的圓心為SKIPIF1<0,半徑SKIPIF1<0,則SKIPIF1<0,可知SKIPIF1<0,因?yàn)閿?shù)列SKIPIF1<0為等差數(shù)列,則SKIPIF1<0,解得SKIPIF1<0,又因?yàn)镾KIPIF1<0且SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0的取值集合為SKIPIF1<0.故選:C.【變式3-4】(2023·湖北·高三孝感高中校聯(lián)考開(kāi)學(xué)考試)已知圓SKIPIF1<0,直線(xiàn)SKIPIF1<0,當(dāng)圓SKIPIF1<0被直線(xiàn)SKIPIF1<0截得的弦長(zhǎng)最短時(shí),直線(xiàn)SKIPIF1<0的方程為.【答案】SKIPIF1<0【解析】由題意,直線(xiàn)SKIPIF1<0的方程化為SKIPIF1<0,由SKIPIF1<0得SKIPIF1<0∴直線(xiàn)SKIPIF1<0過(guò)定點(diǎn)SKIPIF1<0,顯然點(diǎn)SKIPIF1<0在圓SKIPIF1<0內(nèi),要使直線(xiàn)SKIPIF1<0被圓SKIPIF1<0截得弦長(zhǎng)最短,只需SKIPIF1<0與圓心SKIPIF1<0的連線(xiàn)垂直于直線(xiàn)SKIPIF1<0,SKIPIF1<0,解得SKIPIF1<0,代入到直線(xiàn)SKIPIF1<0的方程并化簡(jiǎn)得SKIPIF1<0.【題型4圓的切線(xiàn)長(zhǎng)的最值范圍】滿(mǎn)分技巧切線(xiàn)長(zhǎng)度的最值求法1、代數(shù)法:利用勾股定理求出切線(xiàn)長(zhǎng),把切線(xiàn)長(zhǎng)中的變量統(tǒng)一成一個(gè),轉(zhuǎn)化成函數(shù)求最值;2、幾何法:把切線(xiàn)長(zhǎng)最值問(wèn)題轉(zhuǎn)化成圓心到直線(xiàn)的距離問(wèn)題.已知圓和圓外的一條直線(xiàn),則過(guò)直線(xiàn)上的點(diǎn)作圓的切線(xiàn),切線(xiàn)長(zhǎng)的最小值為.【例4】(2024·湖北·校聯(lián)考模擬預(yù)測(cè))已知點(diǎn)SKIPIF1<0為直線(xiàn)SKIPIF1<0上的一點(diǎn),過(guò)點(diǎn)SKIPIF1<0作圓SKIPIF1<0的切線(xiàn)SKIPIF1<0,切點(diǎn)為SKIPIF1<0,則切線(xiàn)長(zhǎng)SKIPIF1<0的最小值為()A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0【答案】A【解析】由題意可知,圓SKIPIF1<0的圓心為SKIPIF1<0,半徑為SKIPIF1<0,由圓的幾何性質(zhì)可知,SKIPIF1<0,由勾股定理可得SKIPIF1<0,所以要使切線(xiàn)長(zhǎng)SKIPIF1<0取最小值,只需SKIPIF1<0取最小值即可.當(dāng)直線(xiàn)SKIPIF1<0與直線(xiàn)SKIPIF1<0垂直時(shí),SKIPIF1<0取最小值SKIPIF1<0,則SKIPIF1<0的最小值是SKIPIF1<0.故選:A.【變式4-1】(2023·湖南長(zhǎng)沙·高三雅禮中學(xué)??茧A段練習(xí))已知O為坐標(biāo)原點(diǎn),點(diǎn)P在標(biāo)準(zhǔn)單位圓上,過(guò)點(diǎn)P作圓C:SKIPIF1<0的切線(xiàn),切點(diǎn)為Q,則SKIPIF1<0的最小值為.【答案】SKIPIF1<0【解析】圓C的圓心為SKIPIF1<0,半徑SKIPIF1<0,標(biāo)準(zhǔn)單位圓的圓心為SKIPIF1<0,半徑SKIPIF1<0,因?yàn)镾KIPIF1<0,可知圓C與標(biāo)準(zhǔn)單位圓外離,即點(diǎn)P在圓C外,由題意可知:SKIPIF1<0,且SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0在線(xiàn)段SKIPIF1<0上時(shí),等號(hào)成立,所以SKIPIF1<0,即SKIPIF1<0的最小值為SKIPIF1<0.【變式4-2】(2023·河北石家莊·高三統(tǒng)考期中)已知?jiǎng)狱c(diǎn)SKIPIF1<0到兩個(gè)定點(diǎn)SKIPIF1<0,SKIPIF1<0的距離之比為SKIPIF1<0,過(guò)點(diǎn)SKIPIF1<0作圓SKIPIF1<0的切線(xiàn),切點(diǎn)為SKIPIF1<0,則SKIPIF1<0的最小值為()A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0【答案】A【解析】設(shè)SKIPIF1<0,由題可知SKIPIF1<0,整理得SKIPIF1<0,圓心為SKIPIF1<0,半徑為SKIPIF1<0.圓SKIPIF1<0的圓心為SKIPIF1<0,半徑為2.如圖,因?yàn)镾KIPIF1<0,所以,當(dāng)SKIPIF1<0取得最小值時(shí),SKIPIF1<0有最小值,由圖可知,SKIPIF1<0的最小值為SKIPIF1<0,所以SKIPIF1<0的最小值為SKIPIF1<0.故選:A【變式4-3】(2024·全國(guó)·模擬預(yù)測(cè))已知點(diǎn)SKIPIF1<0是拋物線(xiàn)SKIPIF1<0:SKIPIF1<0上的動(dòng)點(diǎn),過(guò)點(diǎn)SKIPIF1<0作圓SKIPIF1<0:SKIPIF1<0的切線(xiàn),切點(diǎn)為SKIPIF1<0,則SKIPIF1<0的最小值為.【答案】SKIPIF1<0【解析】設(shè)SKIPIF1<0,則SKIPIF1<0,故當(dāng)SKIPIF1<0時(shí),SKIPIF1<0取最小值SKIPIF1<0.又由圓的切線(xiàn)性質(zhì)可得此時(shí)SKIPIF1<0.【變式4-4】(2023·浙江·模擬預(yù)測(cè))已知圓SKIPIF1<0和點(diǎn)SKIPIF1<0,由圓外一點(diǎn)SKIPIF1<0向圓SKIPIF1<0引切線(xiàn),切點(diǎn)分別為SKIPIF1<0,若SKIPIF1<0,則SKIPIF1<0的最小值是()A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0【答案】C【解析】設(shè)SKIPIF1<0,連接SKIPIF1<0,則SKIPIF1<0,可得SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,可得SKIPIF1<0,所以SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0.故選:C.【題型5距離和差的最值范圍】滿(mǎn)分技巧圓中的距離和差問(wèn)題可借助圓的幾何特性進(jìn)行舉例轉(zhuǎn)化,有時(shí)需結(jié)合對(duì)稱(chēng)性及三點(diǎn)共線(xiàn)距離最短的性質(zhì)求解最值。【例5】(2024·四川成都·成都七中??寄M預(yù)測(cè))已知SKIPIF1<0為直線(xiàn)SKIPIF1<0上一點(diǎn),過(guò)點(diǎn)SKIPIF1<0作圓SKIPIF1<0的切線(xiàn)SKIPIF1<0(SKIPIF1<0點(diǎn)為切點(diǎn)),SKIPIF1<0為圓SKIPIF1<0上一動(dòng)點(diǎn).則SKIPIF1<0的最小值是()A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0【答案】B【解析】如圖所示,連接SKIPIF1<0,可得SKIPIF1<0,且垂足為SKIPIF1<0要使得SKIPIF1<0取得最小值,即SKIPIF1<0,又由SKIPIF1<0,SKIPIF1<0,顯然,當(dāng)SKIPIF1<0最小時(shí),SKIPIF1<0同時(shí)取得最小值,所以,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0且SKIPIF1<0,所以SKIPIF1<0.故選:B.【變式5-1】(2024·江西·高三校聯(lián)考期末)已知A為圓C:SKIPIF1<0上的動(dòng)點(diǎn),B為圓E:SKIPIF1<0上的動(dòng)點(diǎn),P為直線(xiàn)SKIPIF1<0上的動(dòng)點(diǎn),則SKIPIF1<0的最大值為.【答案】SKIPIF1<0【解析】設(shè)SKIPIF1<0關(guān)于直線(xiàn)SKIPIF1<0的對(duì)稱(chēng)點(diǎn)為SKIPIF1<0,則SKIPIF1<0,解得SKIPIF1<0,故SKIPIF1<0,則圓SKIPIF1<0關(guān)于SKIPIF1<0對(duì)稱(chēng)的圓SKIPIF1<0的方程為SKIPIF1<0,要使SKIPIF1<0的值最大,則SKIPIF1<0(其中SKIPIF1<0為SKIPIF1<0關(guān)于直線(xiàn)SKIPIF1<0的對(duì)稱(chēng)圓SKIPIF1<0上的點(diǎn))三點(diǎn)共線(xiàn),且該直線(xiàn)過(guò)SKIPIF1<0兩點(diǎn),如圖,其最大值為SKIPIF1<0.【變式5-2】(2023·江蘇蘇州·高三??茧A段練習(xí))已知點(diǎn)SKIPIF1<0,點(diǎn)O是坐標(biāo)原點(diǎn),點(diǎn)Q是圓SKIPIF1<0上的動(dòng)點(diǎn),則SKIPIF1<0的最大值為.【答案】SKIPIF1<0【解析】由圓SKIPIF1<0,可得圓心SKIPIF1<0,半徑為SKIPIF1<0,又由點(diǎn)SKIPIF1<0,可得點(diǎn)SKIPIF1<0在直線(xiàn)SKIPIF1<0上的動(dòng)點(diǎn),因?yàn)辄c(diǎn)O是坐標(biāo)原點(diǎn),點(diǎn)Q是圓SKIPIF1<0上的動(dòng)點(diǎn),則SKIPIF1<0,如圖所示,設(shè)點(diǎn)SKIPIF1<0關(guān)于直線(xiàn)SKIPIF1<0的對(duì)稱(chēng)點(diǎn)為SKIPIF1<0,可得SKIPIF1<0,解得SKIPIF1<0,即SKIPIF1<0,設(shè)直線(xiàn)SKIPIF1<0與直線(xiàn)SKIPIF1<0的交點(diǎn)為SKIPIF1<0,則直線(xiàn)SKIPIF1<0的方程為SKIPIF1<0,聯(lián)立方程組SKIPIF1<0,解得SKIPIF1<0,即SKIPIF1<0,則SKIPIF1<0,當(dāng)點(diǎn)SKIPIF1<0與SKIPIF1<0重合時(shí),此時(shí)SKIPIF1<0,則SKIPIF1<0,此時(shí)SKIPIF1<0取得最大值,最大值為SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0的最大值為SKIPIF1<0.【變式5-3】(2023·上海青浦·高三校考期中)在平面直角坐標(biāo)系SKIPIF1<0中,點(diǎn)SKIPIF1<0,若點(diǎn)SKIPIF1<0滿(mǎn)足SKIPIF1<0,則SKIPIF1<0的最小值為().A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0【答案】C【解析】設(shè)SKIPIF1<0,由SKIPIF1<0,得SKIPIF1<0,化簡(jiǎn)整理得SKIPIF1<0,故點(diǎn)SKIPIF1<0的軌跡是以SKIPIF1<0為圓心,SKIPIF1<0為半徑的圓,SKIPIF1<0SKIPIF1<0,設(shè)SKIPIF1<0,則SKIPIF1<0,故SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0三點(diǎn)共線(xiàn)時(shí)取等號(hào),所以SKIPIF1<0的最小值為SKIPIF1<0.故選:C.【變式5-4】(2023·河南鄭州·高三鄭州市宇華實(shí)驗(yàn)學(xué)校??计谥校┮阎獔AO:SKIPIF1<0和點(diǎn)SKIPIF1<0,點(diǎn)SKIPIF1<0,M為圓O上的動(dòng)點(diǎn),則SKIPIF1<0的最小值為()A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0【答案】C【解析】取SKIPIF1<0,連接SKIPIF1<0,則SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0,又SKIPIF1<0,故SKIPIF1<0∽SKIPIF1<0,故SKIPIF1<0,從而SKIPIF1<0,所以SKIPIF1<0,當(dāng)SKIPIF1<0三點(diǎn)共線(xiàn)時(shí),SKIPIF1<0取得最小值,最小值為SKIPIF1<0.故選:C【題型6與角度有關(guān)的最值范圍】滿(mǎn)分技巧與角度有關(guān)的最值范圍問(wèn)題的處理方法:利用三角函數(shù)定義,將三角函數(shù)值轉(zhuǎn)化為邊的比值,觀(guān)察線(xiàn)段之間的關(guān)系再進(jìn)行處理?!纠?】(2024·全國(guó)·模擬預(yù)測(cè))設(shè)點(diǎn)SKIPIF1<0是圓SKIPIF1<0上的動(dòng)點(diǎn),過(guò)點(diǎn)SKIPIF1<0與圓SKIPIF1<0相切的兩條直線(xiàn)的夾角為SKIPIF1<0,則SKIPIF1<0的最大值為.【答案】SKIPIF1<0【解析】如圖所示,圓SKIPIF1<0可化為SKIPIF1<0,則圓心SKIPIF1<0,半徑SKIPIF1<0.設(shè)切線(xiàn)為SKIPIF1<0,連接SKIPIF1<0,因?yàn)閳ASKIPIF1<0的半徑為2,所以在SKIPIF1<0中,SKIPIF1<0.所以SKIPIF1<0.當(dāng)點(diǎn)SKIPIF1<0是線(xiàn)段SKIPIF1<0的延長(zhǎng)線(xiàn)與圓SKIPIF1<0的交點(diǎn)時(shí),線(xiàn)段SKIPIF1<0的長(zhǎng)最大,此時(shí)SKIPIF1<0,所以SKIPIF1<0的最大值為SKIPIF1<0.【變式6-1】(2024·江蘇·徐州市第一中學(xué)校聯(lián)考模擬預(yù)測(cè))已知SKIPIF1<0為拋物線(xiàn)SKIPIF1<0上一點(diǎn),過(guò)SKIPIF1<0作圓SKIPIF1<0的兩條切線(xiàn),切點(diǎn)分別為SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0的最小值為()A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0【答案】C【解析】如圖所示:因?yàn)镾KIPIF1<0,SKIPIF1<0,設(shè)SKIPIF1<0,則SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0取得最小值SKIPIF1<0,此時(shí)SKIPIF1<0最大,SKIPIF1<0最小,且SKIPIF1<0,故C正確.故選:C【變式6-2】(2024·湖南長(zhǎng)沙·長(zhǎng)沙一中校聯(lián)考模擬預(yù)測(cè))在平面直角坐標(biāo)系SKIPIF1<0中,設(shè)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,動(dòng)點(diǎn)SKIPIF1<0滿(mǎn)足SKIPIF1<0,則SKIPIF1<0最大值為()A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0【答案】B【解析】設(shè)點(diǎn)SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,整理可得SKIPIF1<0,動(dòng)點(diǎn)SKIPIF1<0的軌跡是以SKIPIF1<0為圓心,2為半徑的圓,SKIPIF1<0,SKIPIF1<0,故SKIPIF1<0三點(diǎn)共線(xiàn),如圖所示,當(dāng)SKIPIF1<0與圓相切時(shí),SKIPIF1<0為銳角且最大,SKIPIF1<0最大,SKIPIF1<0即SKIPIF1<0,由SKIPIF1<0,此時(shí)SKIPIF1<0,則SKIPIF1<0.故選:B【變式6-3】(2024·云南昆明·高三云南師大附中??茧A段練習(xí))已知圓SKIPIF1<0:SKIPIF1<0與直線(xiàn)SKIPIF1<0:SKIPIF1<0(SKIPIF1<0),過(guò)SKIPIF1<0上任意一點(diǎn)SKIPIF1<0向圓SKIPIF1<0引切線(xiàn),切點(diǎn)為SKIPIF1<0,SKIPIF1<0,若SKIPIF1<0的最小值為SKIPIF1<0,則實(shí)數(shù)SKIPIF1<0的值為()A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0【答案】D【解析】圓SKIPIF1<0:SKIPIF1<0,圓心SKIPIF1<0,半徑SKIPIF1<0,由SKIPIF1<0的最小值為SKIPIF1<0,可得SKIPIF1<0.又SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0的最小值為2,而圓心SKIPIF1<0到直線(xiàn)SKIPIF1<0:SKIPIF1<0(SKIPIF1<0)的距離等于2,即SKIPIF1<0,解得SKIPIF1<0,故選:D.【變式6-4】(2024·江西贛州·南康中學(xué)校聯(lián)考模擬預(yù)測(cè))在SKIPIF1<0中,已知D為邊BC上一點(diǎn),SKIPIF1<0,SKIPIF1<0.若SKIPIF1<0的最大值為2,則常數(shù)SKIPIF1<0的值為()A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0【答案】D【解析】令SKIPIF1<0且SKIPIF1<0,即SKIPIF1<0,則SKIPIF1<0外接圓半徑為SKIPIF1<0,若SKIPIF1<0,SKIPIF1<0的外接圓方程為SKIPIF1<0,所以SKIPIF1<0,令圓心SKIPIF1<0為SKIPIF1<0,即點(diǎn)SKIPIF1<0在圓SKIPIF1<0被SKIPIF1<0分割的優(yōu)弧上運(yùn)動(dòng),如下圖,要使SKIPIF1<0的最大,只需SKIPIF1<0與圓相切,由上易知SKIPIF1<0,則SKIPIF1<0,而SKIPIF1<0,由圓的性質(zhì)有SKIPIF1<0,SKIPIF1<0中SKIPIF1<0,SKIPIF1<0,顯然SKIPIF1<0,由SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0,可得SKIPIF1<0(負(fù)值舍),故SKIPIF1<0,而SKIPIF1<0,所以SKIPIF1<0,整理得SKIPIF1<0,則SKIPIF1<0.故選:D【題型7代數(shù)式幾何意義的最值范圍】滿(mǎn)分技巧利用代數(shù)法的幾何意義求最值1、形如的最值問(wèn)題,可以轉(zhuǎn)化為過(guò)點(diǎn)和點(diǎn)的動(dòng)直線(xiàn)斜率的最值問(wèn)題;2、形如的最值問(wèn)題,可以轉(zhuǎn)化為點(diǎn)和點(diǎn)距離的平方的最值問(wèn)題;3、形如的最值問(wèn)題,可以轉(zhuǎn)化為動(dòng)直線(xiàn)縱截距的最值問(wèn)題【例7】(2023·河南駐馬店·高三河南省駐馬店高級(jí)中學(xué)校聯(lián)考期末)若點(diǎn)SKIPIF1<0是圓SKIPIF1<0:SKIPIF1<0上一點(diǎn),則SKIPIF1<0的最小值為()A.2B.4C.6D.8【答案】B【解析】圓SKIPIF1<0:SKIPIF1<0可化為SKIPIF1<0SKIPIF1<0表示點(diǎn)SKIPIF1<0到點(diǎn)SKIPIF1<0的距離的平方,因?yàn)镾KIPIF1<0,所以SKIPIF1<0的最小值為SKIPIF1<0.故選:B.【變式7-1】(2023·江蘇·高三泰州中學(xué)校聯(lián)考階段練習(xí))已知平面四邊形SKIPIF1<0中,點(diǎn)SKIPIF1<0,坐標(biāo)平面內(nèi)的點(diǎn)SKIPIF1<0滿(mǎn)足SKIPIF1<0,則SKIPIF1<0的取值范圍是【答案】SKIPIF1<0【解析】設(shè)SKIPIF1<0,則SKIPIF1<0,由SKIPIF1<0得SKIPIF1<0,整理得SKIPIF1<0,SKIPIF1<0SKIPIF1<0SKIPIF1<0.SKIPIF1<0表示SKIPIF1<0到點(diǎn)SKIPIF1<0的距離平方,SKIPIF1<0,所以SKIPIF1<0到圓上的點(diǎn)的距離的最小值為SKIPIF1<0,最大值為SKIPIF1<0,所以SKIPIF1<0的范圍是SKIPIF1<0,所以SKIPIF1<0的范圍是SKIPIF1<0,也即SKIPIF1<0的取值范圍是SKIPIF1<0.【變式7-2】(2023·四川涼山·統(tǒng)考一模)已知SKIPIF1<0是曲線(xiàn)SKIPIF1<0上的點(diǎn),則SKIPIF1<0的取值范圍是.【答案】SKIPIF1<0【解析】SKIPIF1<0,由題意可知,作出圖形,如圖所示,因?yàn)镾KIPIF1<0是曲線(xiàn)SKIPIF1<0上的點(diǎn),則SKIPIF1<0表示過(guò)點(diǎn)SKIPIF1<0兩點(diǎn)直線(xiàn)的斜率,顯然當(dāng)SKIPIF1<0位于SKIPIF1<0處時(shí),SKIPIF1<0有最大值SKIPIF1<0,顯然當(dāng)SKIPIF1<0位于SKIPIF1<0處時(shí),SKIPIF1<0有最小值SKIPIF1<0,所以SKIPIF1<0所以SKIPIF1<0故SKIPIF1<0的取值范圍是SKIPIF1<0【變式7-3】(2023·全國(guó)·高三專(zhuān)題練習(xí))已知實(shí)數(shù)SKIPIF1<0,SKIPIF1<0滿(mǎn)足方程SKIPIF1<0,則SKIPIF1<0的最大值為;SKIPIF1<0的最大值為.【答案】SKIPIF1<0;SKIPIF1<0【解析】由題意得:將方程轉(zhuǎn)化為標(biāo)準(zhǔn)方程:SKIPIF1<0,故SKIPIF1<0的軌跡是以SKIPIF1<0為圓心、1為半徑的圓;SKIPIF1<0的幾何意義為SKIPIF1<0到SKIPIF1<0距離SKIPIF1<0的平方;如上圖可知:當(dāng)點(diǎn)SKIPIF1<0與SKIPIF1<0重合時(shí),SKIPIF1<0到SKIPIF1<0距離SKIPIF1<0最大,此時(shí)SKIPIF1<0,故SKIPIF1<0;因?yàn)椋篠KIPIF1<0,故可設(shè):SKIPIF1<0,所以圓與直線(xiàn)SKIPIF1<0需有交點(diǎn),即圓心SKIPIF1<0到直線(xiàn)SKIPIF1<0的距離:SKIPIF1<0,解得:SKIPIF1<0,所以:SKIPIF1<0最大值為SKIPIF1<0.【變式7-4】(2024·安徽合肥·合肥一六八中學(xué)??家荒#┮阎本€(xiàn)SKIPIF1<0交圓SKIPIF1<0于SKIPIF1<0兩點(diǎn),則SKIPIF1<0的最小值為()A.9B.16C.27D.30【答案】D【解析】由題設(shè)直線(xiàn)與SKIPIF1<0軸的交點(diǎn)為SKIPIF1<0,設(shè)弦SKIPIF1<0的中點(diǎn)為SKIPIF1<0,連接SKIPIF1<0,則SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,所以點(diǎn)SKIPIF1<0的軌跡方程為SKIPIF1<0,即SKIPIF1<0的軌跡是以SKIPIF1<0為圓心,1為半徑的圓,設(shè)直線(xiàn)SKIPIF1<0為SKIPIF1<0,則SKIPIF1<0到SKIPIF1<0的最小距離為SKIPIF1<0,過(guò)SKIPIF1<0分別作直線(xiàn)SKIPIF1<0的垂線(xiàn),垂足分別為SKIPIF1<0,則四邊形SKIPIF1<0是直角梯形,且SKIPIF1<0是SKIPIF1<0的中點(diǎn),則SKIPIF1<0是直角梯形的中位線(xiàn),所以SKIPIF1<0,即SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0的最小值為30.故選:D.【題型8圓中面積的最值范圍】滿(mǎn)分技巧與圓有關(guān)的面積最值問(wèn)題一般轉(zhuǎn)化為尋求圓的半徑相關(guān)的函數(shù)關(guān)系或者幾何圖形的關(guān)系,借助函數(shù)求最值的方法,如配方法、基本不等式法等求解,有時(shí)可以通過(guò)轉(zhuǎn)化思想,利用數(shù)形結(jié)合思想求解。【例8】(2023·云南昆明·高三昆明一中??茧A段練習(xí))直線(xiàn)SKIPIF1<0分別與SKIPIF1<0軸,SKIPIF1<0軸交于SKIPIF1<0,SKIPIF1<0兩點(diǎn),點(diǎn)SKIPIF1<0在圓SKIPIF1<0上,則SKIPIF1<0面積的取值范圍是()A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0【答案】C【解析】依題意,直線(xiàn)SKIPIF1<0交SKIPIF1<0軸于SKIPIF1<0,交SKIPIF1<0軸于SKIPIF1<0,則SKIPIF1<0,圓SKIPIF1<0的圓心SKIPIF1<0到直線(xiàn)SKIPIF1<0的距離SKIPIF1<0,而圓的半徑為SKIPIF1<0,于是圓SKIPIF1<0上的點(diǎn)SKIPIF1<0到直線(xiàn)SKIPIF1<0的距離SKIPIF1<0的范圍為SKIPIF1<0,所以SKIPIF1<0的面積SKIPIF1<0.故選:C【變式8-1】(2024·廣東廣州·高三玉巖中學(xué)??奸_(kāi)學(xué)考試)已知點(diǎn)SKIPIF1<0是直線(xiàn)SKIPIF1<0上的一點(diǎn),過(guò)點(diǎn)P作圓SKIPIF1<0的兩條切線(xiàn),切點(diǎn)分別是點(diǎn)A,B,則四邊形PACB的面積的最小值為()A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0【答案】B【解析】圓C:SKIPIF1<0,即圓C:SKIPIF1<0,圓心坐標(biāo)SKIPIF1<0,半徑為3;由題意過(guò)點(diǎn)P作圓C:SKIPIF1<0的兩條切線(xiàn),切點(diǎn)分別為A,B,可知四邊形PACB的面積是兩個(gè)全等的三角形的面積的和,因?yàn)镾KIPIF1<0,SKIPIF1<0,顯然PC最小時(shí)四邊形面積最小,即SKIPIF1<0,所以SKIPIF1<0所以四邊形PACB的面積的最小值為SKIPIF1<0,故選:B.【變式8-2】(2023·全國(guó)·模擬預(yù)測(cè))設(shè)點(diǎn)P是圓SKIPIF1<0上的動(dòng)點(diǎn),過(guò)點(diǎn)P作圓SKIPIF1<0的兩條切線(xiàn),切點(diǎn)分別為A,B,則四邊形PACB面積的最大值為.【答案】SKIPIF1<0【解析】圓C的方程SKIPIF1<0可化為SKIPIF1<0,則圓心為SKIPIF1<0,半徑為2,連接PC,則在SKIPIF1<0中,SKIPIF1<0,所以四邊形PACB的面積SKIPIF1<0,(由切線(xiàn)長(zhǎng)定理知SKIPIF1<
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 湖北三峽職業(yè)技術(shù)學(xué)院《概率與統(tǒng)計(jì)》2023-2024學(xué)年第二學(xué)期期末試卷
- 云南水利水電職業(yè)學(xué)院《工程應(yīng)用數(shù)學(xué):化工》2023-2024學(xué)年第二學(xué)期期末試卷
- 高端裝備研發(fā)與制造項(xiàng)目合作合同
- 甘肅機(jī)電職業(yè)技術(shù)學(xué)院《基礎(chǔ)代數(shù)幾何》2023-2024學(xué)年第二學(xué)期期末試卷
- 湘中幼兒師范高等專(zhuān)科學(xué)?!豆I(yè)工程數(shù)學(xué)方法》2023-2024學(xué)年第二學(xué)期期末試卷
- 海口經(jīng)濟(jì)學(xué)院《數(shù)學(xué)之美》2023-2024學(xué)年第二學(xué)期期末試卷
- 北京衛(wèi)生職業(yè)學(xué)院《大氣污染控制工程設(shè)計(jì)》2023-2024學(xué)年第二學(xué)期期末試卷
- 北京外國(guó)語(yǔ)大學(xué)《工業(yè)工程導(dǎo)論》2023-2024學(xué)年第二學(xué)期期末試卷
- 北京體育大學(xué)《微電影創(chuàng)作》2023-2024學(xué)年第二學(xué)期期末試卷
- 北京師范大學(xué)-香港浸會(huì)大學(xué)聯(lián)合國(guó)際學(xué)院《Web前端設(shè)計(jì)》2023-2024學(xué)年第二學(xué)期期末試卷
- 稀土配合物和量子點(diǎn)共摻雜構(gòu)筑發(fā)光軟材料及其熒光性能研究
- 衛(wèi)生部手術(shù)分級(jí)目錄(2023年1月份修訂)
- JJG 921-2021環(huán)境振動(dòng)分析儀
- 中藥炮制學(xué)-第五、六章
- 中國(guó)風(fēng)軍令狀誓師大會(huì)PPT模板
- 小兒高熱驚厥精品課件
- 2023機(jī)械工程師考試試題及答案
- 2022年電拖實(shí)驗(yàn)報(bào)告伍宏淳
- 豐田汽車(chē)戰(zhàn)略規(guī)劃與戰(zhàn)略管理體系研究(2021)
- 即興口語(yǔ)(姜燕)-課件-即興口語(yǔ)第一章PPT-中國(guó)傳媒大學(xué)
- 冷卻塔是利用水和空氣的接觸
評(píng)論
0/150
提交評(píng)論