2024-2025學年黑龍江省齊齊哈爾市普通高中聯(lián)誼校春季普通高中會考數(shù)學試題試卷含解析_第1頁
2024-2025學年黑龍江省齊齊哈爾市普通高中聯(lián)誼校春季普通高中會考數(shù)學試題試卷含解析_第2頁
2024-2025學年黑龍江省齊齊哈爾市普通高中聯(lián)誼校春季普通高中會考數(shù)學試題試卷含解析_第3頁
2024-2025學年黑龍江省齊齊哈爾市普通高中聯(lián)誼校春季普通高中會考數(shù)學試題試卷含解析_第4頁
2024-2025學年黑龍江省齊齊哈爾市普通高中聯(lián)誼校春季普通高中會考數(shù)學試題試卷含解析_第5頁
已閱讀5頁,還剩17頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2024-2025學年黑龍江省齊齊哈爾市普通高中聯(lián)誼校春季普通高中會考數(shù)學試題試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設(shè),是雙曲線的左,右焦點,是坐標原點,過點作的一條漸近線的垂線,垂足為.若,則的離心率為()A. B. C. D.2.已知變量的幾組取值如下表:12347若與線性相關(guān),且,則實數(shù)()A. B. C. D.3.已知函數(shù),其中表示不超過的最大正整數(shù),則下列結(jié)論正確的是()A.的值域是 B.是奇函數(shù)C.是周期函數(shù) D.是增函數(shù)4.已知是邊長為的正三角形,若,則A. B.C. D.5.如圖,圓的半徑為,,是圓上的定點,,是圓上的動點,點關(guān)于直線的對稱點為,角的始邊為射線,終邊為射線,將表示為的函數(shù),則在上的圖像大致為()A. B. C. D.6.已知是函數(shù)圖象上的一點,過作圓的兩條切線,切點分別為,則的最小值為()A. B. C.0 D.7.已知過點且與曲線相切的直線的條數(shù)有().A.0 B.1 C.2 D.38.窗花是貼在窗紙或窗戶玻璃上的剪紙,是中國古老的傳統(tǒng)民間藝術(shù)之一,它歷史悠久,風格獨特,神獸人們喜愛.下圖即是一副窗花,是把一個邊長為12的大正方形在四個角處都剪去邊長為1的小正方形后剩余的部分,然后在剩余部分中的四個角處再剪出邊長全為1的一些小正方形.若在這個窗花內(nèi)部隨機取一個點,則該點不落在任何一個小正方形內(nèi)的概率是()A. B. C. D.9.已知定義在上的函數(shù)滿足,且當時,.設(shè)在上的最大值為(),且數(shù)列的前項的和為.若對于任意正整數(shù)不等式恒成立,則實數(shù)的取值范圍為()A. B. C. D.10.已知函數(shù)的圖像的一條對稱軸為直線,且,則的最小值為()A. B.0 C. D.11.已知為等差數(shù)列,若,,則()A.1 B.2 C.3 D.612.函數(shù)的圖象與軸交點的橫坐標構(gòu)成一個公差為的等差數(shù)列,要得到函數(shù)的圖象,只需將的圖象()A.向左平移個單位 B.向右平移個單位C.向左平移個單位 D.向右平移個單位二、填空題:本題共4小題,每小題5分,共20分。13.執(zhí)行如圖所示的偽代碼,若輸出的y的值為13,則輸入的x的值是_______.14.已知等邊三角形的邊長為1.,點、分別為線段、上的動點,則取值的集合為__________.15.已知函數(shù)f(x)=若關(guān)于x的方程f(x)=kx有兩個不同的實根,則實數(shù)k的取值范圍是________.16.設(shè)函數(shù),若存在實數(shù)m,使得關(guān)于x的方程有4個不相等的實根,且這4個根的平方和存在最小值,則實數(shù)a的取值范圍是______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知點P在拋物線上,且點P的橫坐標為2,以P為圓心,為半徑的圓(O為原點),與拋物線C的準線交于M,N兩點,且.(1)求拋物線C的方程;(2)若拋物線的準線與y軸的交點為H.過拋物線焦點F的直線l與拋物線C交于A,B,且,求的值.18.(12分)在四棱錐的底面中,,,平面,是的中點,且(Ⅰ)求證:平面;(Ⅱ)求二面角的余弦值;(Ⅲ)線段上是否存在點,使得,若存在指出點的位置,若不存在請說明理由.19.(12分)在最新公布的湖南新高考方案中,“”模式要求學生在語數(shù)外3門全國統(tǒng)考科目之外,在歷史和物理2門科目中必選且只選1門,再從化學、生物、地理、政治4門科目中任選2門,后三科的高考成績按新的規(guī)則轉(zhuǎn)換后計入高考總分.相應地,高校在招生時可對特定專業(yè)設(shè)置具體的選修科目要求.雙超中學高一年級有學生1200人,現(xiàn)從中隨機抽取40人進行選科情況調(diào)查,用數(shù)字1~6分別依次代表歷史、物理、化學、生物、地理、政治6科,得到如下的統(tǒng)計表:序號選科情況序號選科情況序號選科情況序號選科情況11341123621156312352235122342223532236323513145232453323541451413524235341355156152362525635156624516236261563623672561715627134371568235182362823538134923519145292463923510236202353015640245(1)雙超中學規(guī)定:每個選修班最多編排50人且盡量滿額編班,每位老師執(zhí)教2個選修班(當且僅當一門科目的選課班級總數(shù)為奇數(shù)時,允許這門科目的1位老師只教1個班).已知雙超中學高一年級現(xiàn)有化學、生物科目教師每科各8人,用樣本估計總體,則化學、生物兩科的教師人數(shù)是否需要調(diào)整?如果需要調(diào)整,各需增加或減少多少人?(2)請創(chuàng)建列聯(lián)表,運用獨立性檢驗的知識進行分析,探究是否有的把握判斷學生“選擇化學科目”與“選擇物理科目”有關(guān).附:0.1000.0500.0100.0012.7063.8416.63510.828(3)某高校在其熱門人文專業(yè)的招生簡章中明確要求,僅允許選修了歷史科目,且在政治和地理2門中至少選修了1門的考生報名.現(xiàn)從雙超中學高一新生中隨機抽取3人,設(shè)具備高校專業(yè)報名資格的人數(shù)為,用樣本的頻率估計概率,求的分布列與期望.20.(12分)在①;②;③這三個條件中任選一個,補充在下面問題中的橫線上,并解答相應的問題.在中,內(nèi)角A,B,C的對邊分別為a,b,c,且滿足________________,,求的面積.21.(12分)在平面直角坐標系中,已知直線的參數(shù)方程為(為參數(shù)),圓的方程為,以坐標原點為極點,軸正半軸為極軸建立極坐標系.(1)求和的極坐標方程;(2)過且傾斜角為的直線與交于點,與交于另一點,若,求的取值范圍.22.(10分)在直角坐標系中,直線的參數(shù)方程為(為參數(shù)),以為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.(1)求的普通方程和的直角坐標方程;(2)把曲線向下平移個單位,然后各點橫坐標變?yōu)樵瓉淼谋兜玫角€(縱坐標不變),設(shè)點是曲線上的一個動點,求它到直線的距離的最小值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.B【解析】

設(shè)過點作的垂線,其方程為,聯(lián)立方程,求得,,即,由,列出相應方程,求出離心率.【詳解】解:不妨設(shè)過點作的垂線,其方程為,由解得,,即,由,所以有,化簡得,所以離心率.故選:B.本題主要考查雙曲線的概念、直線與直線的位置關(guān)系等基礎(chǔ)知識,考查運算求解、推理論證能力,屬于中檔題.2.B【解析】

求出,把坐標代入方程可求得.【詳解】據(jù)題意,得,所以,所以.故選:B.本題考查線性回歸直線方程,由性質(zhì)線性回歸直線一定過中心點可計算參數(shù)值.3.C【解析】

根據(jù)表示不超過的最大正整數(shù),可構(gòu)建函數(shù)圖象,即可分別判斷值域、奇偶性、周期性、單調(diào)性,進而下結(jié)論.【詳解】由表示不超過的最大正整數(shù),其函數(shù)圖象為選項A,函數(shù),故錯誤;選項B,函數(shù)為非奇非偶函數(shù),故錯誤;選項C,函數(shù)是以1為周期的周期函數(shù),故正確;選項D,函數(shù)在區(qū)間上是增函數(shù),但在整個定義域范圍上不具備單調(diào)性,故錯誤.故選:C本題考查對題干的理解,屬于函數(shù)新定義問題,可作出圖象分析性質(zhì),屬于較難題.4.A【解析】

由可得,因為是邊長為的正三角形,所以,故選A.5.B【解析】

根據(jù)圖象分析變化過程中在關(guān)鍵位置及部分區(qū)域,即可排除錯誤選項,得到函數(shù)圖象,即可求解.【詳解】由題意,當時,P與A重合,則與B重合,所以,故排除C,D選項;當時,,由圖象可知選B.故選:B本題主要考查三角函數(shù)的圖像與性質(zhì),正確表示函數(shù)的表達式是解題的關(guān)鍵,屬于中檔題.6.C【解析】

先畫出函數(shù)圖像和圓,可知,若設(shè),則,所以,而要求的最小值,只要取得最大值,若設(shè)圓的圓心為,則,所以只要取得最小值,若設(shè),則,然后構(gòu)造函數(shù),利用導數(shù)求其最小值即可.【詳解】記圓的圓心為,設(shè),則,設(shè),記,則,令,因為在上單調(diào)遞增,且,所以當時,;當時,,則在上單調(diào)遞減,在上單調(diào)遞增,所以,即,所以(當時等號成立).故選:C此題考查的是兩個向量的數(shù)量積的最小值,利用了導數(shù)求解,考查了轉(zhuǎn)化思想和運算能力,屬于難題.7.C【解析】

設(shè)切點為,則,由于直線經(jīng)過點,可得切線的斜率,再根據(jù)導數(shù)的幾何意義求出曲線在點處的切線斜率,建立關(guān)于的方程,從而可求方程.【詳解】若直線與曲線切于點,則,又∵,∴,∴,解得,,∴過點與曲線相切的直線方程為或,故選C.本題主要考查了利用導數(shù)求曲線上過某點切線方程的斜率,求解曲線的切線的方程,其中解答中熟記利用導數(shù)的幾何意義求解切線的方程是解答的關(guān)鍵,著重考查了運算與求解能力,屬于基礎(chǔ)題.8.D【解析】

由幾何概型可知,概率應為非小正方形面積與窗花面積的比,即可求解.【詳解】由題,窗花的面積為,其中小正方形的面積為,所以所求概率,故選:D本題考查幾何概型的面積公式的應用,屬于基礎(chǔ)題.9.C【解析】

由已知先求出,即,進一步可得,再將所求問題轉(zhuǎn)化為對于任意正整數(shù)恒成立,設(shè),只需找到數(shù)列的最大值即可.【詳解】當時,則,,所以,,顯然當時,,故,,若對于任意正整數(shù)不等式恒成立,即對于任意正整數(shù)恒成立,即對于任意正整數(shù)恒成立,設(shè),,令,解得,令,解得,考慮到,故有當時,單調(diào)遞增,當時,有單調(diào)遞減,故數(shù)列的最大值為,所以.故選:C.本題考查數(shù)列中的不等式恒成立問題,涉及到求函數(shù)解析、等比數(shù)列前n項和、數(shù)列單調(diào)性的判斷等知識,是一道較為綜合的數(shù)列題.10.D【解析】

運用輔助角公式,化簡函數(shù)的解析式,由對稱軸的方程,求得的值,得出函數(shù)的解析式,集合正弦函數(shù)的最值,即可求解,得到答案.【詳解】由題意,函數(shù)為輔助角,由于函數(shù)的對稱軸的方程為,且,即,解得,所以,又由,所以函數(shù)必須取得最大值和最小值,所以可設(shè),,所以,當時,的最小值,故選D.本題主要考查了正弦函數(shù)的圖象與性質(zhì),其中解答中利用三角恒等變換的公式,化簡函數(shù)的解析式,合理利用正弦函數(shù)的對稱性與最值是解答的關(guān)鍵,著重考查了分析問題和解答問題的能力,屬于中檔試題.11.B【解析】

利用等差數(shù)列的通項公式列出方程組,求出首項和公差,由此能求出.【詳解】∵{an}為等差數(shù)列,,∴,解得=﹣10,d=3,∴=+4d=﹣10+11=1.故選:B.本題考查等差數(shù)列通項公式求法,考查等差數(shù)列的性質(zhì)等基礎(chǔ)知識,考查運算求解能力,是基礎(chǔ)題.12.A【解析】依題意有的周期為.而,故應左移.二、填空題:本題共4小題,每小題5分,共20分。13.8【解析】

根據(jù)偽代碼逆向運算求得結(jié)果.【詳解】輸入,若,則,不合題意若,則,滿足題意本題正確結(jié)果:本題考查算法中的語言,屬于基礎(chǔ)題.14.【解析】

根據(jù)題意建立平面直角坐標系,設(shè)三角形各點的坐標,依題意求出,,,的表達式,再進行數(shù)量積的運算,最后求和即可得出結(jié)果.【詳解】解:以的中點為坐標原點,所在直線為軸,線段的垂直平分線為軸建立平面直角坐標系,如圖所示,則,,,,則,,,設(shè),,,即點的坐標為,則,,,所以故答案為:本題考查平面向量的坐標表示和線性運算,以及平面向量基本定理和數(shù)量積的運算,是中檔題.15.【解析】由圖可知,當直線y=kx在直線OA與x軸(不含它們)之間時,y=kx與y=f(x)的圖像有兩個不同交點,即方程有兩個不相同的實根.16.【解析】

先確定關(guān)于x的方程當a為何值時有4個不相等的實根,再將這四個根的平方和表示出來,利用函數(shù)思想來判斷當a為何值時這4個根的平方和存在最小值即可.【詳解】由題意,當時,,此時,此時函數(shù)在單調(diào)遞減,在單調(diào)遞增,方程最多2個不相等的實根,舍;當時,函數(shù)圖象如下所示:從左到右方程,有4個不相等的實根,依次為,,,,即,由圖可知,故,且,,從而,令,顯然,,要使該式在時有最小值,則對稱軸,解得.綜上所述,實數(shù)a的取值范圍是.本題考查了函數(shù)和方程的知識,但需要一定的邏輯思維能力,屬于較難題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1)(2)4【解析】

(1)將點P橫坐標代入拋物線中求得點P的坐標,利用點P到準線的距離d和勾股定理列方程求出p的值即可;(2)設(shè)A、B點坐標以及直線AB的方程,代入拋物線方程,利用根與系數(shù)的關(guān)系,以及垂直關(guān)系,得出關(guān)系式,計算的值即可.【詳解】(1)將點P橫坐標代入中,求得,∴P(2,),,點P到準線的距離為,∴,∴,解得,∴,∴拋物線C的方程為:;(2)拋物線的焦點為F(0,1),準線方程為,;設(shè),直線AB的方程為,代入拋物線方程可得,∴,…①由,可得,又,,∴,∴,即,∴,…②把①代入②得,,則.本題考查直線與拋物線的位置關(guān)系,以及拋物線與圓的方程應用問題,考查轉(zhuǎn)化思想以及計算能力,是中檔題.18.(Ⅰ)詳見解析;(Ⅱ);(Ⅲ)存在,點為線段的中點.【解析】

(Ⅰ)連結(jié),,,則四邊形為平行四邊形,得到證明.(Ⅱ)建立如圖所示坐標系,平面法向量為,平面的法向量,計算夾角得到答案.(Ⅲ)設(shè),計算,,根據(jù)垂直關(guān)系得到答案.【詳解】(Ⅰ)連結(jié),,,則四邊形為平行四邊形.平面.(Ⅱ)平面,四邊形為正方形.所以,,兩兩垂直,建立如圖所示坐標系,則,,,,設(shè)平面法向量為,則,連結(jié),可得,又所以,平面,平面的法向量,設(shè)二面角的平面角為,則.(Ⅲ)線段上存在點使得,設(shè),,,,所以點為線段的中點.本題考查了線面平行,二面角,根據(jù)垂直關(guān)系確定位置,意在考查學生的計算能力和空間想象能力.19.(1)不需調(diào)整(2)列聯(lián)表見解析;有的把握判斷學生“選擇化學科目”與“選擇物理科目”有關(guān)(3)詳見解析【解析】

(1)可估計高一年級選修相應科目的人數(shù)分別為120,2,推理得對應開設(shè)選修班的數(shù)目分別為15,1.推理知生物科目需要減少4名教師,化學科目不需要調(diào)整.(2)根據(jù)列聯(lián)表計算觀測值,根據(jù)臨界值表可得結(jié)論.(3)經(jīng)統(tǒng)計,樣本中選修了歷史科目且在政治和地理2門中至少選修了一門的人數(shù)為12,頻率為.用頻率估計概率,則,根據(jù)二項分布概率公式可得分布列和數(shù)學期望.【詳解】(1)經(jīng)統(tǒng)計可知,樣本40人中,選修化學、生物的人數(shù)分別為24,11,則可估計高一年級選修相應科目的人數(shù)分別為120,2.根據(jù)每個選修班最多編排50人,且盡量滿額編班,得對應開設(shè)選修班的數(shù)目分別為15,1.現(xiàn)有化學、生物科目教師每科各8人,根據(jù)每位教師執(zhí)教2個選修班,當且僅當一門科目的選課班級總數(shù)為奇數(shù)時,允許這門科目的一位教師執(zhí)教一個班的條件,知生物科目需要減少4名教師,化學科目不需要調(diào)整.(2)根據(jù)表格中的數(shù)據(jù)進行統(tǒng)計后,制作列聯(lián)表如下:選物理不選物理合計選化學19524不選化學61016合計251540則,有的把握判斷學生”選擇化學科目”與“選擇物理科目”有關(guān).(3)經(jīng)統(tǒng)計,樣本中選修了歷史科目且在政治和地理2門中至少選修了一門的人數(shù)為12,頻率為.用頻率估計概率,則,分布列如下:01230.3430.4410.1890.021數(shù)學期望為.本題主要考查了離散型隨機變量的期望與方差,考查獨立性檢驗,意在考查學生對這些知識的理解掌握水平和分析推理能力.20.橫線處任填一個都可以,面積為.【解析】

無論選哪一個,都先由正弦定理化邊為角后,由誘導公式,展開后,可求得角,再由余弦定理求得,從而易求得三角形面積.【詳解】在橫線上填寫“”.解:由正弦定理,得.由,得.由,得.所以.又(若,則這與矛盾),所以.又,得.由余弦定理及,得,即.將代入,解得.所以.在橫線上填寫“”.解:由及正弦定理,得.又,所以有.因為,所以.從而有.又,所以由余弦定理及,得即.將代入,解得.所以.在橫線上填寫“”解:由正弦定理,得.由,得,所以由二倍角公式,得.由,得,所以.所以,即.由余弦定理及,得.即.

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論