版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2024-2025學(xué)年湖南省株洲市茶陵縣茶陵三中高三5月質(zhì)量檢測(cè)試題鞏固卷數(shù)學(xué)試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請(qǐng)按要求用筆。3.請(qǐng)按照題號(hào)順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無(wú)效;在草稿紙、試卷上答題無(wú)效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.設(shè)拋物線上一點(diǎn)到軸的距離為,到直線的距離為,則的最小值為()A.2 B. C. D.32.如圖是來(lái)自古希臘數(shù)學(xué)家希波克拉底所研究的幾何圖形,此圖由三個(gè)半圓構(gòu)成,三個(gè)半圓的直徑分別為直角三角形的斜邊,直角邊.已知以直角邊為直徑的半圓的面積之比為,記,則()A. B. C. D.3.一個(gè)幾何體的三視圖如圖所示,則該幾何體的體積為()A. B.C. D.4.設(shè)等差數(shù)列的前項(xiàng)和為,若,,則()A.21 B.22 C.11 D.125.已知變量,滿足不等式組,則的最小值為()A. B. C. D.6.記為數(shù)列的前項(xiàng)和數(shù)列對(duì)任意的滿足.若,則當(dāng)取最小值時(shí),等于()A.6 B.7 C.8 D.97.已知為正項(xiàng)等比數(shù)列,是它的前項(xiàng)和,若,且與的等差中項(xiàng)為,則的值是()A.29 B.30 C.31 D.328.若函數(shù)有兩個(gè)極值點(diǎn),則實(shí)數(shù)的取值范圍是()A. B. C. D.9.設(shè)分別為的三邊的中點(diǎn),則()A. B. C. D.10.已知二次函數(shù)的部分圖象如圖所示,則函數(shù)的零點(diǎn)所在區(qū)間為()A. B. C. D.11.已知平面向量,滿足,且,則與的夾角為()A. B. C. D.12.已知與之間的一組數(shù)據(jù):12343.24.87.5若關(guān)于的線性回歸方程為,則的值為()A.1.5 B.2.5 C.3.5 D.4.5二、填空題:本題共4小題,每小題5分,共20分。13.如果復(fù)數(shù)滿足,那么______(為虛數(shù)單位).14.已知非零向量的夾角為,且,則______.15.已知某幾何體的三視圖如圖所示,則該幾何體外接球的表面積是______.16.已知為偶函數(shù),當(dāng)時(shí),,則__________.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)運(yùn)輸一批海鮮,可在汽車、火車、飛機(jī)三種運(yùn)輸工具中選擇,它們的速度分別為60千米/小時(shí)、120千米/小時(shí)、600千米/小時(shí),每千米的運(yùn)費(fèi)分別為20元、10元、50元.這批海鮮在運(yùn)輸過(guò)程中每小時(shí)的損耗為m元(),運(yùn)輸?shù)穆烦虨镾(千米).設(shè)用汽車、火車、飛機(jī)三種運(yùn)輸工具運(yùn)輸時(shí)各自的總費(fèi)用(包括運(yùn)費(fèi)和損耗費(fèi))分別為(元)、(元)、(元).(1)請(qǐng)分別寫出、、的表達(dá)式;(2)試確定使用哪種運(yùn)輸工具總費(fèi)用最省.18.(12分)某公園準(zhǔn)備在一圓形水池里設(shè)置兩個(gè)觀景噴泉,觀景噴泉的示意圖如圖所示,兩點(diǎn)為噴泉,圓心為的中點(diǎn),其中米,半徑米,市民可位于水池邊緣任意一點(diǎn)處觀賞.(1)若當(dāng)時(shí),,求此時(shí)的值;(2)設(shè),且.(i)試將表示為的函數(shù),并求出的取值范圍;(ii)若同時(shí)要求市民在水池邊緣任意一點(diǎn)處觀賞噴泉時(shí),觀賞角度的最大值不小于,試求兩處噴泉間距離的最小值.19.(12分)在平面直角坐標(biāo)系xOy中,直線l的參數(shù)方程為(t為參數(shù)),以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,圓C的極坐標(biāo)方程為.(1)求直線l的普通方程和圓C的直角坐標(biāo)方程;(2)直線l與圓C交于A,B兩點(diǎn),點(diǎn)P(2,1),求|PA|?|PB|的值.20.(12分)已知點(diǎn)、分別在軸、軸上運(yùn)動(dòng),,.(1)求點(diǎn)的軌跡的方程;(2)過(guò)點(diǎn)且斜率存在的直線與曲線交于、兩點(diǎn),,求的取值范圍.21.(12分)已知函數(shù).(1)若在上單調(diào)遞增,求實(shí)數(shù)的取值范圍;(2)若,對(duì),恒有成立,求實(shí)數(shù)的最小值.22.(10分)已知函數(shù)的最大值為2.(Ⅰ)求函數(shù)在上的單調(diào)遞減區(qū)間;(Ⅱ)中,,角所對(duì)的邊分別是,且,求的面積.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.A【解析】
分析:題設(shè)的直線與拋物線是相離的,可以化成,其中是點(diǎn)到準(zhǔn)線的距離,也就是到焦點(diǎn)的距離,這樣我們從幾何意義得到的最小值,從而得到的最小值.詳解:由①得到,,故①無(wú)解,所以直線與拋物線是相離的.由,而為到準(zhǔn)線的距離,故為到焦點(diǎn)的距離,從而的最小值為到直線的距離,故的最小值為,故選A.點(diǎn)睛:拋物線中與線段的長(zhǎng)度相關(guān)的最值問(wèn)題,可利用拋物線的幾何性質(zhì)把動(dòng)線段的長(zhǎng)度轉(zhuǎn)化為到準(zhǔn)線或焦點(diǎn)的距離來(lái)求解.2.D【解析】
由半圓面積之比,可求出兩個(gè)直角邊的長(zhǎng)度之比,從而可知,結(jié)合同角三角函數(shù)的基本關(guān)系,即可求出,由二倍角公式即可求出.【詳解】解:由題意知,以為直徑的半圓面積,以為直徑的半圓面積,則,即.由,得,所以.故選:D.本題考查了同角三角函數(shù)的基本關(guān)系,考查了二倍角公式.本題的關(guān)鍵是由面積比求出角的正切值.3.A【解析】
根據(jù)題意,可得幾何體,利用體積計(jì)算即可.【詳解】由題意,該幾何體如圖所示:該幾何體的體積.故選:A.本題考查了常見幾何體的三視圖和體積計(jì)算,屬于基礎(chǔ)題.4.A【解析】
由題意知成等差數(shù)列,結(jié)合等差中項(xiàng),列出方程,即可求出的值.【詳解】解:由為等差數(shù)列,可知也成等差數(shù)列,所以,即,解得.故選:A.本題考查了等差數(shù)列的性質(zhì),考查了等差中項(xiàng).對(duì)于等差數(shù)列,一般用首項(xiàng)和公差將已知量表示出來(lái),繼而求出首項(xiàng)和公差.但是這種基本量法計(jì)算量相對(duì)比較大,如果能結(jié)合等差數(shù)列性質(zhì),可使得計(jì)算量大大減少.5.B【解析】
先根據(jù)約束條件畫出可行域,再利用幾何意義求最值.【詳解】解:由變量,滿足不等式組,畫出相應(yīng)圖形如下:可知點(diǎn),,在處有最小值,最小值為.故選:B.本題主要考查簡(jiǎn)單的線性規(guī)劃,運(yùn)用了數(shù)形結(jié)合的方法,屬于基礎(chǔ)題.6.A【解析】
先令,找出的關(guān)系,再令,得到的關(guān)系,從而可求出,然后令,可得,得出數(shù)列為等差數(shù)列,得,可求出取最小值.【詳解】解法一:由,所以,由條件可得,對(duì)任意的,所以是等差數(shù)列,,要使最小,由解得,則.解法二:由賦值法易求得,可知當(dāng)時(shí),取最小值.故選:A此題考查的是由數(shù)列的遞推式求數(shù)列的通項(xiàng),采用了賦值法,屬于中檔題.7.B【解析】
設(shè)正項(xiàng)等比數(shù)列的公比為q,運(yùn)用等比數(shù)列的通項(xiàng)公式和等差數(shù)列的性質(zhì),求出公比,再由等比數(shù)列的求和公式,計(jì)算即可得到所求.【詳解】設(shè)正項(xiàng)等比數(shù)列的公比為q,則a4=16q3,a7=16q6,a4與a7的等差中項(xiàng)為,即有a4+a7=,即16q3+16q6,=,解得q=(負(fù)值舍去),則有S5===1.故選C.本題考查等比數(shù)列的通項(xiàng)和求和公式的運(yùn)用,同時(shí)考查等差數(shù)列的性質(zhì),考查運(yùn)算能力,屬于中檔題.8.A【解析】試題分析:由題意得有兩個(gè)不相等的實(shí)數(shù)根,所以必有解,則,且,∴.考點(diǎn):利用導(dǎo)數(shù)研究函數(shù)極值點(diǎn)【方法點(diǎn)睛】函數(shù)極值問(wèn)題的常見類型及解題策略(1)知圖判斷函數(shù)極值的情況.先找導(dǎo)數(shù)為0的點(diǎn),再判斷導(dǎo)數(shù)為0的點(diǎn)的左、右兩側(cè)的導(dǎo)數(shù)符號(hào).(2)已知函數(shù)求極值.求f′(x)―→求方程f′(x)=0的根―→列表檢驗(yàn)f′(x)在f′(x)=0的根的附近兩側(cè)的符號(hào)―→下結(jié)論.(3)已知極值求參數(shù).若函數(shù)f(x)在點(diǎn)(x0,y0)處取得極值,則f′(x0)=0,且在該點(diǎn)左、右兩側(cè)的導(dǎo)數(shù)值符號(hào)相反.9.B【解析】
根據(jù)題意,畫出幾何圖形,根據(jù)向量加法的線性運(yùn)算即可求解.【詳解】根據(jù)題意,可得幾何關(guān)系如下圖所示:,故選:B本題考查了向量加法的線性運(yùn)算,屬于基礎(chǔ)題.10.B【解析】由函數(shù)f(x)的圖象可知,0<f(0)=a<1,f(1)=1-b+a=0,所以1<b<2.又f′(x)=2x-b,所以g(x)=ex+2x-b,所以g′(x)=ex+2>0,所以g(x)在R上單調(diào)遞增,又g(0)=1-b<0,g(1)=e+2-b>0,根據(jù)函數(shù)的零點(diǎn)存在性定理可知,函數(shù)g(x)的零點(diǎn)所在的區(qū)間是(0,1),故選B.11.C【解析】
根據(jù),兩邊平方,化簡(jiǎn)得,再利用數(shù)量積定義得到求解.【詳解】因?yàn)槠矫嫦蛄浚瑵M足,且,所以,所以,所以,所以,所以與的夾角為.故選:C本題主要考查平面向量的模,向量的夾角和數(shù)量積運(yùn)算,屬于基礎(chǔ)題.12.D【解析】
利用表格中的數(shù)據(jù),可求解得到代入回歸方程,可得,再結(jié)合表格數(shù)據(jù),即得解.【詳解】利用表格中數(shù)據(jù),可得又,.解得故選:D本題考查了線性回歸方程過(guò)樣本中心點(diǎn)的性質(zhì),考查了學(xué)生概念理解,數(shù)據(jù)處理,數(shù)學(xué)運(yùn)算的能力,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
把已知等式變形,再由復(fù)數(shù)代數(shù)形式的乘除運(yùn)算化簡(jiǎn),然后利用復(fù)數(shù)模的計(jì)算公式求解.【詳解】∵,∴,∴,故答案為:.本小題主要考查復(fù)數(shù)除法運(yùn)算,考查復(fù)數(shù)的模的求法,屬于基礎(chǔ)題.14.1【解析】
由已知條件得出,可得,解之可得答案.【詳解】向量的夾角為,且,,可得:,
可得,
解得,
故答案為:1.本題考查根據(jù)向量的數(shù)量積運(yùn)算求向量的模,關(guān)鍵在于將所求的向量的模平方,利用向量的數(shù)量積化簡(jiǎn)求解即可,屬于基礎(chǔ)題.15.【解析】
先由三視圖在長(zhǎng)方體中將其還原成直觀圖,再利用球的直徑是長(zhǎng)方體體對(duì)角線即可解決.【詳解】由三視圖知該幾何體是一個(gè)三棱錐,如圖所示長(zhǎng)方體對(duì)角線長(zhǎng)為,所以三棱錐外接球半徑為,故所求外接球的表面積.故答案為:.本題考查幾何體三視圖以及幾何體外接球的表面積,考查學(xué)生空間想象能力以及基本計(jì)算能力,是一道基礎(chǔ)題.16.【解析】
由偶函數(shù)的性質(zhì)直接求解即可【詳解】.故答案為本題考查函數(shù)的奇偶性,對(duì)數(shù)函數(shù)的運(yùn)算,考查運(yùn)算求解能力三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(1),,.(2)當(dāng)時(shí),此時(shí)選擇火車運(yùn)輸費(fèi)最?。划?dāng)時(shí),此時(shí)選擇飛機(jī)運(yùn)輸費(fèi)用最省;當(dāng)時(shí),此時(shí)選擇火車或飛機(jī)運(yùn)輸費(fèi)用最省.【解析】
(1)將運(yùn)費(fèi)和損耗費(fèi)相加得出總費(fèi)用的表達(dá)式.(2)作差比較、的大小關(guān)系得出結(jié)論.【詳解】(1),,.(2),故,恒成立,故只需比較與的大小關(guān)系即可,令,故當(dāng),即時(shí),,即,此時(shí)選擇火車運(yùn)輸費(fèi)最省,當(dāng),即時(shí),,即,此時(shí)選擇飛機(jī)運(yùn)輸費(fèi)用最省.當(dāng),即時(shí),,,此時(shí)選擇火車或飛機(jī)運(yùn)輸費(fèi)用最省.本題考查了常見函數(shù)的模型,考查了分類討論的思想,屬于基礎(chǔ)題.18.(1);(2)(i),;(ii).【解析】
(1)在中,由正弦定理可得所求;(2)(i)由余弦定理得,兩式相加可得所求解析式.(ii)在中,由余弦定理可得,根據(jù)的最大值不小于可得關(guān)于的不等式,解不等式可得所求.【詳解】(1)在中,由正弦定理得,所以,即.(2)(i)在中,由余弦定理得,在中,由余弦定理得,又所以,即.又,解得,所以所求關(guān)系式為,.(ii)當(dāng)觀賞角度的最大時(shí),取得最小值.在中,由余弦定理可得,因?yàn)榈淖畲笾挡恍∮?,所以,解得,?jīng)驗(yàn)證知,所以.即兩處噴泉間距離的最小值為.本題考查解三角形在實(shí)際中的應(yīng)用,解題時(shí)要注意把條件轉(zhuǎn)化為三角形的邊或角,然后借助正余弦定理進(jìn)行求解.解題時(shí)要注意三角形邊角關(guān)系的運(yùn)用,同時(shí)還要注意所得結(jié)果要符合實(shí)際意義.19.(1)直線的普通方程,圓的直角坐標(biāo)方程:.(2)【解析】
(1)直接利用轉(zhuǎn)換關(guān)系的應(yīng)用,把參數(shù)方程極坐標(biāo)方程和直角坐標(biāo)方程之間進(jìn)行轉(zhuǎn)換.(2)將直線的參數(shù)方程代入圓的直角坐標(biāo)方程,利用一元二次方程根和系數(shù)關(guān)系式即可求解.【詳解】(1)直線l的參數(shù)方程為(t為參數(shù)),轉(zhuǎn)換為直角坐標(biāo)方程為x+y﹣3=0.圓C的極坐標(biāo)方程為ρ2﹣4ρcosθ=3,轉(zhuǎn)換為直角坐標(biāo)方程為x2+y2﹣4x﹣3=0.(2)把直線l的參數(shù)方程為(t為參數(shù)),代入圓的直角坐標(biāo)方程x2+y2﹣4x﹣3=0,得到,所以|PA||PB|=|t1t2|=6.本題考查參數(shù)方程極坐標(biāo)方程和直角坐標(biāo)方程之間的轉(zhuǎn)換,一元二次方程根和系數(shù)關(guān)系式的應(yīng)用,主要考查學(xué)生的運(yùn)算能力和轉(zhuǎn)換能力及思維能力,屬于基礎(chǔ)題型.20.(1)(2)【解析】
(1)設(shè)坐標(biāo)后根據(jù)向量的坐標(biāo)運(yùn)算即可得到軌跡方程.(2)聯(lián)立直線和橢圓方程,用坐標(biāo)表示出,得到,所以,代入韋達(dá)定理即可求解.【詳解】(1)設(shè),,則,設(shè),由得.又由于,化簡(jiǎn)得的軌跡的方程為.(2)設(shè)直線的方程為,與的方程聯(lián)立,消去得,,設(shè),,則,,由已知,,則,故直線.,令,則,由于,,.所以,的取值范圍為.此題考查軌跡問(wèn)題,橢圓和直線相交,注意坐標(biāo)表示向量進(jìn)行轉(zhuǎn)化的處理技巧,屬于較難題目.21.(1)(2)【解析】
(1)求得,根據(jù)已知條件得到在恒成立,由此得到在恒成立,利用分離常數(shù)法求得的取值范圍.(2)構(gòu)造函數(shù)設(shè),利用求二階導(dǎo)數(shù)的方法,結(jié)合恒成立,求得的取值范圍,由此求得的最小值.【詳解】(1)因?yàn)樵谏蠁握{(diào)遞增,所以在恒成立,即在恒成立,當(dāng)時(shí),上式成立,當(dāng),有,需,而,,,,故綜上,實(shí)數(shù)的取值范圍是(2)設(shè),,則,令,,在單調(diào)遞增,也就是在單調(diào)遞增,所以.當(dāng)即時(shí),,不符合;當(dāng)即時(shí),,符合當(dāng)即時(shí),根據(jù)零點(diǎn)存在定理,,使,有時(shí),,在單調(diào)遞減,時(shí),,在單調(diào)遞增,成立,故只需即可,有,得,符合綜上得,,實(shí)數(shù)的最小值為本小題
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度出租車承包運(yùn)營(yíng)人力資源配置合同3篇
- 2025年度智能電網(wǎng)建設(shè)與運(yùn)營(yíng)管理協(xié)議4篇
- 2025年度數(shù)字化車間承包經(jīng)營(yíng)合作協(xié)議4篇
- 方形母端快接式端子行業(yè)深度研究報(bào)告
- 2025年叉車電器項(xiàng)目可行性研究報(bào)告
- 2025年度個(gè)人股權(quán)分割與轉(zhuǎn)讓合同范本3篇
- 2025年度個(gè)人心理咨詢服務(wù)合同范本4篇
- 2025年度個(gè)人房源信息在線交易安全保障協(xié)議4篇
- 2025年江蘇國(guó)經(jīng)控股集團(tuán)有限公司招聘筆試參考題庫(kù)含答案解析
- 2025年福建中閩海上風(fēng)電有限公司招聘筆試參考題庫(kù)含答案解析
- 河南省鄭州市2023-2024學(xué)年高二上學(xué)期期末考試 數(shù)學(xué) 含答案
- 2024年資格考試-WSET二級(jí)認(rèn)證考試近5年真題集錦(頻考類試題)帶答案
- 試卷中國(guó)電子學(xué)會(huì)青少年軟件編程等級(jí)考試標(biāo)準(zhǔn)python三級(jí)練習(xí)
- 公益慈善機(jī)構(gòu)數(shù)字化轉(zhuǎn)型行業(yè)三年發(fā)展洞察報(bào)告
- 飼料廠現(xiàn)場(chǎng)管理類隱患排查治理清單
- 2024年公需科目培訓(xùn)考試題及答案
- 【名著閱讀】《紅巖》30題(附答案解析)
- Starter Unit 2 同步練習(xí)人教版2024七年級(jí)英語(yǔ)上冊(cè)
- 分?jǐn)?shù)的加法、減法、乘法和除法運(yùn)算規(guī)律
- 2024年江蘇鑫財(cái)國(guó)有資產(chǎn)運(yùn)營(yíng)有限公司招聘筆試沖刺題(帶答案解析)
- 2024年遼寧石化職業(yè)技術(shù)學(xué)院?jiǎn)握新殬I(yè)適應(yīng)性測(cè)試題庫(kù)含答案
評(píng)論
0/150
提交評(píng)論