2024-2025學(xué)年吉林省吉林市豐滿區(qū)第五十五中學(xué)高三教學(xué)質(zhì)量監(jiān)測(一)數(shù)學(xué)試題理試卷含解析_第1頁
2024-2025學(xué)年吉林省吉林市豐滿區(qū)第五十五中學(xué)高三教學(xué)質(zhì)量監(jiān)測(一)數(shù)學(xué)試題理試卷含解析_第2頁
2024-2025學(xué)年吉林省吉林市豐滿區(qū)第五十五中學(xué)高三教學(xué)質(zhì)量監(jiān)測(一)數(shù)學(xué)試題理試卷含解析_第3頁
2024-2025學(xué)年吉林省吉林市豐滿區(qū)第五十五中學(xué)高三教學(xué)質(zhì)量監(jiān)測(一)數(shù)學(xué)試題理試卷含解析_第4頁
2024-2025學(xué)年吉林省吉林市豐滿區(qū)第五十五中學(xué)高三教學(xué)質(zhì)量監(jiān)測(一)數(shù)學(xué)試題理試卷含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2024-2025學(xué)年吉林省吉林市豐滿區(qū)第五十五中學(xué)高三教學(xué)質(zhì)量監(jiān)測(一)數(shù)學(xué)試題理試卷注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.如圖,圓的半徑為,,是圓上的定點,,是圓上的動點,點關(guān)于直線的對稱點為,角的始邊為射線,終邊為射線,將表示為的函數(shù),則在上的圖像大致為()A. B. C. D.2.若變量,滿足,則的最大值為()A.3 B.2 C. D.103.已知函數(shù)的圖像上有且僅有四個不同的點關(guān)于直線的對稱點在的圖像上,則實數(shù)的取值范圍是()A. B. C. D.4.函數(shù)的圖象大致為()A. B.C. D.5.已知雙曲線()的漸近線方程為,則()A. B. C. D.6.復(fù)數(shù)(i為虛數(shù)單位)的共軛復(fù)數(shù)是A.1+i B.1?i C.?1+i D.?1?i7.已知水平放置的△ABC是按“斜二測畫法”得到如圖所示的直觀圖,其中B′O′=C′O′=1,A′O′=,那么原△ABC的面積是()A. B.2C. D.8.已知數(shù)列,,,…,是首項為8,公比為得等比數(shù)列,則等于()A.64 B.32 C.2 D.49.“且”是“”的()A.充分非必要條件 B.必要非充分條件C.充要條件 D.既不充分也不必要條件10.在區(qū)間上隨機取一個實數(shù),使直線與圓相交的概率為()A. B. C. D.11.已知集合,則等于()A. B. C. D.12.的展開式中,滿足的的系數(shù)之和為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.設(shè)函數(shù),若存在實數(shù)m,使得關(guān)于x的方程有4個不相等的實根,且這4個根的平方和存在最小值,則實數(shù)a的取值范圍是______.14.已知復(fù)數(shù)滿足(為虛數(shù)單位),則復(fù)數(shù)的實部為____________.15.復(fù)數(shù)(其中i為虛數(shù)單位)的共軛復(fù)數(shù)為________.16.某校共有師生1600人,其中教師有1000人,現(xiàn)用分層抽樣的方法,從所有師生中抽取一個容量為80的樣本,則抽取學(xué)生的人數(shù)為_____.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知.(1)求的單調(diào)區(qū)間;(2)當(dāng)時,求證:對于,恒成立;(3)若存在,使得當(dāng)時,恒有成立,試求的取值范圍.18.(12分)如圖,點為圓:上一動點,過點分別作軸,軸的垂線,垂足分別為,,連接延長至點,使得,點的軌跡記為曲線.(1)求曲線的方程;(2)若點,分別位于軸與軸的正半軸上,直線與曲線相交于,兩點,且,試問在曲線上是否存在點,使得四邊形為平行四邊形,若存在,求出直線方程;若不存在,說明理由.19.(12分)設(shè)函數(shù)f(x)=|x﹣a|+|x|(a>0).(1)若不等式f(x)﹣|x|≥4x的解集為{x|x≤1},求實數(shù)a的值;(2)證明:f(x).20.(12分)已知數(shù)列是各項均為正數(shù)的等比數(shù)列,,且,,成等差數(shù)列.(Ⅰ)求數(shù)列的通項公式;(Ⅱ)設(shè),為數(shù)列的前項和,記,證明:.21.(12分)如圖,四棱錐中,底面是菱形,對角線交于點為棱的中點,.求證:(1)平面;(2)平面平面.22.(10分)已知函數(shù),.(1)當(dāng)時,討論函數(shù)的零點個數(shù);(2)若在上單調(diào)遞增,且求c的最大值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.B【解析】

根據(jù)圖象分析變化過程中在關(guān)鍵位置及部分區(qū)域,即可排除錯誤選項,得到函數(shù)圖象,即可求解.【詳解】由題意,當(dāng)時,P與A重合,則與B重合,所以,故排除C,D選項;當(dāng)時,,由圖象可知選B.故選:B本題主要考查三角函數(shù)的圖像與性質(zhì),正確表示函數(shù)的表達式是解題的關(guān)鍵,屬于中檔題.2.D【解析】

畫出約束條件的可行域,利用目標(biāo)函數(shù)的幾何意義求解最大值即可.【詳解】解:畫出滿足條件的平面區(qū)域,如圖示:如圖點坐標(biāo)分別為,目標(biāo)函數(shù)的幾何意義為,可行域內(nèi)點與坐標(biāo)原點的距離的平方,由圖可知到原點的距離最大,故.故選:D本題考查了簡單的線性規(guī)劃問題,考查數(shù)形結(jié)合思想,屬于中檔題.3.A【解析】

可將問題轉(zhuǎn)化,求直線關(guān)于直線的對稱直線,再分別討論兩函數(shù)的增減性,結(jié)合函數(shù)圖像,分析臨界點,進一步確定的取值范圍即可【詳解】可求得直線關(guān)于直線的對稱直線為,當(dāng)時,,,當(dāng)時,,則當(dāng)時,,單減,當(dāng)時,,單增;當(dāng)時,,,當(dāng),,當(dāng)時,單減,當(dāng)時,單增;根據(jù)題意畫出函數(shù)大致圖像,如圖:當(dāng)與()相切時,得,解得;當(dāng)與()相切時,滿足,解得,結(jié)合圖像可知,即,故選:A本題考查數(shù)形結(jié)合思想求解函數(shù)交點問題,導(dǎo)數(shù)研究函數(shù)增減性,找準(zhǔn)臨界是解題的關(guān)鍵,屬于中檔題4.A【解析】

根據(jù)函數(shù)的奇偶性和單調(diào)性,排除錯誤選項,從而得出正確選項.【詳解】因為,所以是偶函數(shù),排除C和D.當(dāng)時,,,令,得,即在上遞減;令,得,即在上遞增.所以在處取得極小值,排除B.故選:A本小題主要考查函數(shù)圖像的識別,考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)區(qū)間和極值,屬于中檔題.5.A【解析】

根據(jù)雙曲線方程(),確定焦點位置,再根據(jù)漸近線方程得到求解.【詳解】因為雙曲線(),所以,又因為漸近線方程為,所以,所以.故選:A.本題主要考查雙曲線的幾何性質(zhì),還考查了運算求解的能力,屬于基礎(chǔ)題.6.B【解析】分析:化簡已知復(fù)數(shù)z,由共軛復(fù)數(shù)的定義可得.詳解:化簡可得z=∴z的共軛復(fù)數(shù)為1﹣i.故選B.點睛:本題考查復(fù)數(shù)的代數(shù)形式的運算,涉及共軛復(fù)數(shù),屬基礎(chǔ)題.7.A【解析】

先根據(jù)已知求出原△ABC的高為AO=,再求原△ABC的面積.【詳解】由題圖可知原△ABC的高為AO=,∴S△ABC=×BC×OA=×2×=,故答案為A本題主要考查斜二測畫法的定義和三角形面積的計算,意在考察學(xué)生對這些知識的掌握水平和分析推理能力.8.A【解析】

根據(jù)題意依次計算得到答案.【詳解】根據(jù)題意知:,,故,,.故選:.本題考查了數(shù)列值的計算,意在考查學(xué)生的計算能力.9.A【解析】

畫出“,,,所表示的平面區(qū)域,即可進行判斷.【詳解】如圖,“且”表示的區(qū)域是如圖所示的正方形,記為集合P,“”表示的區(qū)域是單位圓及其內(nèi)部,記為集合Q,顯然是的真子集,所以答案是充分非必要條件,故選:.本題考查了不等式表示的平面區(qū)域問題,考查命題的充分條件和必要條件的判斷,難度較易.10.D【解析】

利用直線與圓相交求出實數(shù)的取值范圍,然后利用幾何概型的概率公式可求得所求事件的概率.【詳解】由于直線與圓相交,則,解得.因此,所求概率為.故選:D.本題考查幾何概型概率的計算,同時也考查了利用直線與圓相交求參數(shù),考查計算能力,屬于基礎(chǔ)題.11.C【解析】

先化簡集合A,再與集合B求交集.【詳解】因為,,所以.故選:C本題主要考查集合的基本運算以及分式不等式的解法,屬于基礎(chǔ)題.12.B【解析】

,有,,三種情形,用中的系數(shù)乘以中的系數(shù),然后相加可得.【詳解】當(dāng)時,的展開式中的系數(shù)為.當(dāng),時,系數(shù)為;當(dāng),時,系數(shù)為;當(dāng),時,系數(shù)為;故滿足的的系數(shù)之和為.故選:B.本題考查二項式定理,掌握二項式定理和多項式乘法是解題關(guān)鍵.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】

先確定關(guān)于x的方程當(dāng)a為何值時有4個不相等的實根,再將這四個根的平方和表示出來,利用函數(shù)思想來判斷當(dāng)a為何值時這4個根的平方和存在最小值即可.【詳解】由題意,當(dāng)時,,此時,此時函數(shù)在單調(diào)遞減,在單調(diào)遞增,方程最多2個不相等的實根,舍;當(dāng)時,函數(shù)圖象如下所示:從左到右方程,有4個不相等的實根,依次為,,,,即,由圖可知,故,且,,從而,令,顯然,,要使該式在時有最小值,則對稱軸,解得.綜上所述,實數(shù)a的取值范圍是.本題考查了函數(shù)和方程的知識,但需要一定的邏輯思維能力,屬于較難題.14.【解析】

利用復(fù)數(shù)的概念與復(fù)數(shù)的除法運算計算即可得到答案.【詳解】,所以復(fù)數(shù)的實部為2.故答案為:2本題考查復(fù)數(shù)的除法運算,考查學(xué)生的基本計算能力,是一道基礎(chǔ)題.15.【解析】

利用復(fù)數(shù)的乘法運算求出,再利用共軛復(fù)數(shù)的概念即可求解.【詳解】由,則.故答案為:本題考查了復(fù)數(shù)的四則運算以及共軛復(fù)數(shù)的概念,屬于基礎(chǔ)題.16.1【解析】

直接根據(jù)分層抽樣的比例關(guān)系得到答案.【詳解】分層抽樣的抽取比例為,∴抽取學(xué)生的人數(shù)為6001.故答案為:1.本題考查了分層抽樣的計算,屬于簡單題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1)單調(diào)減區(qū)間為,單調(diào)增區(qū)間為;(2)詳見解析;(3).【解析】

試題分析:(1)對函數(shù)求導(dǎo)后,利用導(dǎo)數(shù)和單調(diào)性的關(guān)系,可求得函數(shù)的單調(diào)區(qū)間.(2)構(gòu)造函數(shù),利用導(dǎo)數(shù)求得函數(shù)在上遞減,且,則,故原不等式成立.(3)同(2)構(gòu)造函數(shù),對分成三類,討論函數(shù)的單調(diào)性、極值和最值,由此求得的取值范圍.試題解析:(1),當(dāng)時,.解得.當(dāng)時,解得.所以單調(diào)減區(qū)間為,單調(diào)增區(qū)間為.(2)設(shè),當(dāng)時,由題意,當(dāng)時,恒成立.,∴當(dāng)時,恒成立,單調(diào)遞減.又,∴當(dāng)時,恒成立,即.∴對于,恒成立.(3)因為.由(2)知,當(dāng)時,恒成立,即對于,,不存在滿足條件的;當(dāng)時,對于,,此時.∴,即恒成立,不存在滿足條件的;當(dāng)時,令,可知與符號相同,當(dāng)時,,,單調(diào)遞減.∴當(dāng)時,,即恒成立.綜上,的取值范圍為.點睛:本題主要考查導(dǎo)數(shù)和單調(diào)區(qū)間,導(dǎo)數(shù)與不等式的證明,導(dǎo)數(shù)與恒成立問題的求解方法.第一問求函數(shù)的單調(diào)區(qū)間,這是導(dǎo)數(shù)問題的基本題型,也是基本功,先求定義域,然后求導(dǎo),要注意通分和因式分解.二、三兩問一個是恒成立問題,一個是存在性問題,要注意取值是最大值還是最小值.18.(1)(2)不存在;詳見解析【解析】

(1)設(shè),,,通過,即為的中點,轉(zhuǎn)化求解,點的軌跡的方程.(2)設(shè)直線的方程為,先根據(jù),可得,①,再根據(jù)韋達定理,點在橢圓上可得,②,將①代入②可得,該方程無解,問題得以解決【詳解】(1)設(shè),,則,,由題意知,所以為中點,由中點坐標(biāo)公式得,即,又點在圓:上,故滿足,得.曲線的方程.(2)由題意知直線的斜率存在且不為零,設(shè)直線的方程為,因為,故,即①,聯(lián)立,消去得:,設(shè),,,,,因為四邊形為平行四邊形,故,點在橢圓上,故,整理得②,將①代入②,得,該方程無解,故這樣的直線不存在.本題考查點的軌跡方程的求法、滿足條件的點是否存在的判斷與直線方程的求法,考查數(shù)學(xué)轉(zhuǎn)化思想方法,是中檔題.19.(1)a=1;(2)見解析【解析】

(1)由題意可得|x﹣a|≥4x,分類討論去掉絕對值,分別求得x的范圍即可求出a的值.(2)由條件利用絕對值三角不等式,基本不等式證得f(x)≥2..【詳解】(1)由f(x)﹣|x|≥4x,可得|x﹣a|≥4x,(a>0),當(dāng)x≥a時,x﹣a≥4x,解得x,這與x≥a>0矛盾,故不成立,當(dāng)x<a時,a﹣x≥4x,解得x,又不等式的解集是{x|x≤1},故1,解得a=1.(2)證明:f(x)=|x﹣a|+|x||x﹣a﹣(x)|=|a|,∵a>0,∴|a|=a22,當(dāng)且僅當(dāng)a時取等號,故f(x).本題主要考查絕對值三角不等式,基本不等式,絕對值不等式的解法,體現(xiàn)了轉(zhuǎn)化、分類討論的數(shù)學(xué)思想,屬于基礎(chǔ)題.20.(Ⅰ),;(Ⅱ)見解析【解析】

(Ⅰ)由,且成等差數(shù)列,可求得q,從而可得本題答案;(Ⅱ)化簡求得,然后求得,再用裂項相消法求,即可得到本題答案.【詳解】(Ⅰ)因為數(shù)列是各項均為正數(shù)的等比數(shù)列,,可設(shè)公比為q,,又成等差數(shù)列,所以,即,解得或(舍去),則,;(Ⅱ)證明:,,,則,因為,所以即.本題主要考查等差等比數(shù)列的綜合應(yīng)用,以及用裂項相消法求和并證明不等式,考查學(xué)生的運算求解能力和推理證明能力.21.(1)詳見解析;(2)詳見解析.【解析】

(1)連結(jié)根據(jù)中位線的性質(zhì)證明即可.(2)證明,再證明平面即可.【詳解】解:證明:連結(jié)是菱形對角線的交點,為的中點,是棱的中點,平面平面平面解:在菱形中,且為的中點,,,平面平面,平面平面.本題主要考查了線面平行與垂直的判定,屬于基礎(chǔ)題.22.(1)見解析(2)2【解析】

(1)將代入可得,令,則,設(shè),則轉(zhuǎn)化問題為與的交點問題,利用導(dǎo)函數(shù)判斷的圖象,即可求解;(2)由題可得在上恒成立,設(shè),利用導(dǎo)函數(shù)可得,則,即,再設(shè),利用導(dǎo)函數(shù)求得的最小值,則,進而求解.【詳解】(1)當(dāng)時,,定義域為,由可得,令,則,由,得;由,得,所以在上單調(diào)遞增,在上單調(diào)遞減,則的最大值為,且當(dāng)時,;當(dāng)時,,由此作出函數(shù)的大致圖

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論