StochasticandDeterministicTrendModels隨機(jī)和確定性趨勢(shì)模型_第1頁(yè)
StochasticandDeterministicTrendModels隨機(jī)和確定性趨勢(shì)模型_第2頁(yè)
StochasticandDeterministicTrendModels隨機(jī)和確定性趨勢(shì)模型_第3頁(yè)
StochasticandDeterministicTrendModels隨機(jī)和確定性趨勢(shì)模型_第4頁(yè)
StochasticandDeterministicTrendModels隨機(jī)和確定性趨勢(shì)模型_第5頁(yè)
已閱讀5頁(yè),還剩1頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

PAGE

PAGE

6

StochasticandDeterministicTrendModels

Inthissection,weconsidermodelsofnonstationarytimeseries,i.e.,series{yt}whosefirstandsecondmoments(meansandcovariances)arefunctionsoftime.Theseincludeallserieswithatrend.Trends,whichcanbeeitherdeterministic(likeatimetrend)orstochastic,willobviouslyproducenonstationarities.Classicalestimationmethods,however,arevalidforstationaryseries.Therefore,trendsmustberemovedfromnonstationaryseries(thusmakingthemstationary)beforeapplyingthemethodsofBoxandJenkins.Removal,however,dependsonidentifyingthetypeoftrendfirst.Generally,stationarityisachievedthroughdifferencingtheseries{D.yt}–differencestationary–orthroughremovalofadeterministictrendbyfirstestimatingthattrendinaseparateregression–trendstationarity.Wewilllookatbothmethods.First,however,let’sconsiderwhatnonstationaritymeans.

RandomWalk

SomeStatacodewasprovidedinthenotesondifferenceequationsandtheirsolutionsthatsimulatedrandomwalks.Youshouldrunthatprogramseveraltimestogetafeelforwhatarandomwalklookslike.Basically,arandomwalkisatimeserieswhosechangeisrandom.Specifically,thechangeiswhitenoise,viz.,

yt=yt-1+tinlevelsor

yt=twheret~N(0,1).

Solvingtheequationinlevelsbackwards(therearetperiods)

yt=y0+iwherethesummationisfromi=1,…,tforstartingvaluey0.

Whatarethestatisticalpropertiesofarandomwalk?Theunconditionalmeanistheexpectedvalue:

Eyt=y0+E(i)=y0.Theunconditionalvarianceis

E(i2)=t2whichisafunctionoftime.Let’snowconstructthe“forecastfunction”forarandomwalk.

Etyt+1=Et[yt+t+1]=ytThisistheconditionalmean.Noticealsothatthes-periodaheadforecastisthesame:

Etyt+s=Et[yt+s-1+t+s]=yt.(Substitutesuccessivelyforyt+s-1).Basically,theconditionalforecast(conditionaloninformationattimet)isthelastrealization.Thisshouldmakesensehoweverbecausechangesinyarewhitenoise.

Howaboutthevarianceofyt+s?(Thisisthesameasthevarianceforyt-s).Weknow

Var(yt)=Var(t+t-1+…+1)=t2.Similarly,

Var(yt-s)=Var(t-s+t-s-1+…+1)=(t-s)2.Alsoafunctionoftime.Ingeneral,wecanconcludethenthatthestandarddeviation(usedtoconstructconfidenceintervalsforforecasts)is2t.

Covariances?Theunconditionalmeanisy0.Thus,

E[(yt-y0)(yt-s-y0)]=(t-s)andsincey0isaconstant,

E[(t+t-1+…+1)(t-s+t-s-1+…+1)]=(t-s)2.

Thecorrelationcoefficientisthisnumberdividedbytheproductofthestandarddeviations:

s=(t-s)2/(t2(t-s)2)?=[(t-s)/t]?.Alsoafunctionoftime.Forlarget,onecaneasilyobservethepatternovers.Thepointhereisthatcorrelationsdonotgotozeroastheywouldinastationaryseries.Thereasonisthattheimpactofashockonfuturevaluesofyispermanent.Youcanreadilyseethatbylookingatthedifferencesolution,ytisreallyjusttheaccumulatedsumofpastshocks.Thus,ihaspermanenteffectsandiconstituteapermanentrandomchangeintheconditionalmean.

Thusythasastochastictrend.

RandomWalkplusDrift

yt=yt-1+a0+twherea0istheconstant“drift”.Solvingthedifferenceequation–

yt=y0+a0t+iwhere,again,thesummationisovert.Thetermsa0t+iarebothnonstationary.Now,wehaveadeterministicplusastochastictrend.Bytheway,

yt-yt-1=yt=a0+tisstationary.

TheunconditionalexpectationisEt(yt+s)=y0+a0(t+s).Theforecastfunction(whichisconditionalonpastyt)is:

Andthishasexpectedvalueequaltoyt+a0s.Youshouldconvinceyourselfthatthisisindeedtrue.

RandomWalkplusNoise

yt=t+t t~N(0,2)andE(tt-s)=0.

t=t-1+t.

Soytisarandomwalkt-1+tplusnoiset.Thisisaseriesthathasastochastictrendplusanoisecomponent.Therandomwalkcomponentisafirstorderdifferenceequationthatcanbesolvedas:

t=0+iwhere,again,thesummationisovert.Therefore:

yt=0+i+t.

Now,att0,solvey0=0+0implyingthat0=y0-0.Substituting,

yt=(y0-0)+i+t.

Theunconditionalmeanis

E(yt)=E(yt+s)=y0-0whichisconstant.Shocks,however,haveapermanenteffect.Noticethatnoiseistransitory,i.e.,ithasatemporaryeffectonytbutnotonyt+s.Furthermore,Var(yt+s)=t2+2which,naturally,includesthenoisecomponent.

Thenoisecomponentwillreducethecorrelationcoefficientbetweenytandyt-srelativetotherandomwalkimplyingthatthecorrelogramwillhavesomewhatfasterdecay(dependingonthenoise).

Howabouttheforecastfunction?

Thishasexpectedvalue(conditionalmean)yt-t.Noticethetransitorynatureofthenoise.Moreover,differencingyields

yt=yt-1+t+t-t-1.(thislookslikeanARMA(1,1)doesn’tit?)

NoiseandDrift

Wecancombinenoiseanddrifteasilyenough.

t=t-1+a0+t.

t=0+a0t+iwhere,again,thesummationisovert.Therefore:

yt=0+a0t+{i+t}.

Deterministictrend Stochastictrend

Bothtrendsarepermanent.TheStochastictrendincludesatransitorynoisecomponentaswell.

Imposingtheinitialconditiony0=0+0again,

yt=(y0-0)+a0t+i+t.Summationovert.

yt+s=(yt-t)+a0s+i+t.Summationovers.

LocalLinearTrendModel

Finally,weconsiderageneralformforwhichalloftheabovearespecialcases.

yt=t+t

t=t-1+at+t randomwalkplusdrift(thetrend)

at=at-1+t randomwalk

If{at}=0,thenwehavetherandomwalkplusnoise.Witht=0foralltime,thenit’sjustarandomwalk.If,ontheotherhand,Var()=0,thenitmustbethattheatareequalforalltime.Thus,ifatisnonzero,thetrendisarandomwalkplusdriftandytisanoisyrandomwalkplusdrift.

Wecansolvethesedifferenceequationstogettheparticularsolution:

at=a0+i.

t=t-1+a0+i+t

=0+i+t(a0+1)+(t-1)2+(t-2)3+…+1.Sincey0=0+0,then

yt=y0+(t-0)+i+t(a0+1)+(t-1)2+(t-2)3+…+1

irregular stochas tic notentirelydeterministic

term trend

Youcanupdatethistosolvefortheforecastfunction:

Etyt+s=(yt-t)+s(a0+1+2+…+t).

Thefirsttermistransitoryandthesecondtermisthetrend.

Removingthetrend

Theforegoingwasmeanttoillustratesomeofthepropertiesofnonstationaryseries.Inordertoestimatethese,wemustmakethemstationaryandthatisachievedbyremovingthetrend.Todothiscorrectly,wemustfirstknowwhetherthetrendisdeterministic(trendstationaryafterthetrendisremoved)orstochastic(differencestationaryafterthetrendisremoved).Thatisn’teasy.NelsonandPlosserwroteaninterestingseminalpaperin1992onthistopicandarguedthatmostmacroeconomicseriesaredifferencestationary(meaningtheyhavestochastictrendsandremovalusingtheestimatedtimetrendwouldhaveresultedinseriousandspuriousspecification).

So,whatdowemeanbytrendstationarity.Ifaserieshasadeterministictimetrend,thenwesimplyregressytonaninterceptandatimetrend(t=1,…,T)andsavetheresiduals.Theresidualsarethedetrendedseries.But,iftheseriesythasastochasticinsteadofdeterministictrendthenwedon’tnecessarilygetastationaryseries.Considertherandomwalkagain.Theresidualsfromthistimetrendregressionassumethatytgrowsataconstantrate.Itdoesnot.Rather,itgrowsatastochasticrate.Thus,theincorrectlydetrendedseriesmaydisplayspuriousbehavior,i.e.,itmaystillbenonstationary.Canyouprovideasimulatedexampleofthis?

Ifthetrendisstochastic,thendifferencing

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論