版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
PAGE
PAGE
6
StochasticandDeterministicTrendModels
Inthissection,weconsidermodelsofnonstationarytimeseries,i.e.,series{yt}whosefirstandsecondmoments(meansandcovariances)arefunctionsoftime.Theseincludeallserieswithatrend.Trends,whichcanbeeitherdeterministic(likeatimetrend)orstochastic,willobviouslyproducenonstationarities.Classicalestimationmethods,however,arevalidforstationaryseries.Therefore,trendsmustberemovedfromnonstationaryseries(thusmakingthemstationary)beforeapplyingthemethodsofBoxandJenkins.Removal,however,dependsonidentifyingthetypeoftrendfirst.Generally,stationarityisachievedthroughdifferencingtheseries{D.yt}–differencestationary–orthroughremovalofadeterministictrendbyfirstestimatingthattrendinaseparateregression–trendstationarity.Wewilllookatbothmethods.First,however,let’sconsiderwhatnonstationaritymeans.
RandomWalk
SomeStatacodewasprovidedinthenotesondifferenceequationsandtheirsolutionsthatsimulatedrandomwalks.Youshouldrunthatprogramseveraltimestogetafeelforwhatarandomwalklookslike.Basically,arandomwalkisatimeserieswhosechangeisrandom.Specifically,thechangeiswhitenoise,viz.,
yt=yt-1+tinlevelsor
yt=twheret~N(0,1).
Solvingtheequationinlevelsbackwards(therearetperiods)
yt=y0+iwherethesummationisfromi=1,…,tforstartingvaluey0.
Whatarethestatisticalpropertiesofarandomwalk?Theunconditionalmeanistheexpectedvalue:
Eyt=y0+E(i)=y0.Theunconditionalvarianceis
E(i2)=t2whichisafunctionoftime.Let’snowconstructthe“forecastfunction”forarandomwalk.
Etyt+1=Et[yt+t+1]=ytThisistheconditionalmean.Noticealsothatthes-periodaheadforecastisthesame:
Etyt+s=Et[yt+s-1+t+s]=yt.(Substitutesuccessivelyforyt+s-1).Basically,theconditionalforecast(conditionaloninformationattimet)isthelastrealization.Thisshouldmakesensehoweverbecausechangesinyarewhitenoise.
Howaboutthevarianceofyt+s?(Thisisthesameasthevarianceforyt-s).Weknow
Var(yt)=Var(t+t-1+…+1)=t2.Similarly,
Var(yt-s)=Var(t-s+t-s-1+…+1)=(t-s)2.Alsoafunctionoftime.Ingeneral,wecanconcludethenthatthestandarddeviation(usedtoconstructconfidenceintervalsforforecasts)is2t.
Covariances?Theunconditionalmeanisy0.Thus,
E[(yt-y0)(yt-s-y0)]=(t-s)andsincey0isaconstant,
E[(t+t-1+…+1)(t-s+t-s-1+…+1)]=(t-s)2.
Thecorrelationcoefficientisthisnumberdividedbytheproductofthestandarddeviations:
s=(t-s)2/(t2(t-s)2)?=[(t-s)/t]?.Alsoafunctionoftime.Forlarget,onecaneasilyobservethepatternovers.Thepointhereisthatcorrelationsdonotgotozeroastheywouldinastationaryseries.Thereasonisthattheimpactofashockonfuturevaluesofyispermanent.Youcanreadilyseethatbylookingatthedifferencesolution,ytisreallyjusttheaccumulatedsumofpastshocks.Thus,ihaspermanenteffectsandiconstituteapermanentrandomchangeintheconditionalmean.
Thusythasastochastictrend.
RandomWalkplusDrift
yt=yt-1+a0+twherea0istheconstant“drift”.Solvingthedifferenceequation–
yt=y0+a0t+iwhere,again,thesummationisovert.Thetermsa0t+iarebothnonstationary.Now,wehaveadeterministicplusastochastictrend.Bytheway,
yt-yt-1=yt=a0+tisstationary.
TheunconditionalexpectationisEt(yt+s)=y0+a0(t+s).Theforecastfunction(whichisconditionalonpastyt)is:
Andthishasexpectedvalueequaltoyt+a0s.Youshouldconvinceyourselfthatthisisindeedtrue.
RandomWalkplusNoise
yt=t+t t~N(0,2)andE(tt-s)=0.
t=t-1+t.
Soytisarandomwalkt-1+tplusnoiset.Thisisaseriesthathasastochastictrendplusanoisecomponent.Therandomwalkcomponentisafirstorderdifferenceequationthatcanbesolvedas:
t=0+iwhere,again,thesummationisovert.Therefore:
yt=0+i+t.
Now,att0,solvey0=0+0implyingthat0=y0-0.Substituting,
yt=(y0-0)+i+t.
Theunconditionalmeanis
E(yt)=E(yt+s)=y0-0whichisconstant.Shocks,however,haveapermanenteffect.Noticethatnoiseistransitory,i.e.,ithasatemporaryeffectonytbutnotonyt+s.Furthermore,Var(yt+s)=t2+2which,naturally,includesthenoisecomponent.
Thenoisecomponentwillreducethecorrelationcoefficientbetweenytandyt-srelativetotherandomwalkimplyingthatthecorrelogramwillhavesomewhatfasterdecay(dependingonthenoise).
Howabouttheforecastfunction?
Thishasexpectedvalue(conditionalmean)yt-t.Noticethetransitorynatureofthenoise.Moreover,differencingyields
yt=yt-1+t+t-t-1.(thislookslikeanARMA(1,1)doesn’tit?)
NoiseandDrift
Wecancombinenoiseanddrifteasilyenough.
t=t-1+a0+t.
t=0+a0t+iwhere,again,thesummationisovert.Therefore:
yt=0+a0t+{i+t}.
Deterministictrend Stochastictrend
Bothtrendsarepermanent.TheStochastictrendincludesatransitorynoisecomponentaswell.
Imposingtheinitialconditiony0=0+0again,
yt=(y0-0)+a0t+i+t.Summationovert.
yt+s=(yt-t)+a0s+i+t.Summationovers.
LocalLinearTrendModel
Finally,weconsiderageneralformforwhichalloftheabovearespecialcases.
yt=t+t
t=t-1+at+t randomwalkplusdrift(thetrend)
at=at-1+t randomwalk
If{at}=0,thenwehavetherandomwalkplusnoise.Witht=0foralltime,thenit’sjustarandomwalk.If,ontheotherhand,Var()=0,thenitmustbethattheatareequalforalltime.Thus,ifatisnonzero,thetrendisarandomwalkplusdriftandytisanoisyrandomwalkplusdrift.
Wecansolvethesedifferenceequationstogettheparticularsolution:
at=a0+i.
t=t-1+a0+i+t
=0+i+t(a0+1)+(t-1)2+(t-2)3+…+1.Sincey0=0+0,then
yt=y0+(t-0)+i+t(a0+1)+(t-1)2+(t-2)3+…+1
irregular stochas tic notentirelydeterministic
term trend
Youcanupdatethistosolvefortheforecastfunction:
Etyt+s=(yt-t)+s(a0+1+2+…+t).
Thefirsttermistransitoryandthesecondtermisthetrend.
Removingthetrend
Theforegoingwasmeanttoillustratesomeofthepropertiesofnonstationaryseries.Inordertoestimatethese,wemustmakethemstationaryandthatisachievedbyremovingthetrend.Todothiscorrectly,wemustfirstknowwhetherthetrendisdeterministic(trendstationaryafterthetrendisremoved)orstochastic(differencestationaryafterthetrendisremoved).Thatisn’teasy.NelsonandPlosserwroteaninterestingseminalpaperin1992onthistopicandarguedthatmostmacroeconomicseriesaredifferencestationary(meaningtheyhavestochastictrendsandremovalusingtheestimatedtimetrendwouldhaveresultedinseriousandspuriousspecification).
So,whatdowemeanbytrendstationarity.Ifaserieshasadeterministictimetrend,thenwesimplyregressytonaninterceptandatimetrend(t=1,…,T)andsavetheresiduals.Theresidualsarethedetrendedseries.But,iftheseriesythasastochasticinsteadofdeterministictrendthenwedon’tnecessarilygetastationaryseries.Considertherandomwalkagain.Theresidualsfromthistimetrendregressionassumethatytgrowsataconstantrate.Itdoesnot.Rather,itgrowsatastochasticrate.Thus,theincorrectlydetrendedseriesmaydisplayspuriousbehavior,i.e.,itmaystillbenonstationary.Canyouprovideasimulatedexampleofthis?
Ifthetrendisstochastic,thendifferencing
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024技術(shù)咨詢合同約定的服務(wù)內(nèi)容和咨詢費(fèi)用
- 2024廣告發(fā)布合同廣告標(biāo)的規(guī)范
- 2024年股權(quán)融資合同模板
- 2024年物流公司全面安全生產(chǎn)保障合同3篇
- 2024年螺桿式空壓機(jī)及配件一站式銷售合同3篇
- 2023-2024年公共營(yíng)養(yǎng)師之三級(jí)營(yíng)養(yǎng)師模擬考試試卷A卷(含答案)
- 2023-2024年一級(jí)人力資源管理師考試題庫(kù)(帶答案解析)
- 2022-2024年山東中考英語(yǔ)試題匯編:閱讀還原
- 2024年現(xiàn)代農(nóng)業(yè)大棚示范園購(gòu)銷合同3篇
- 全國(guó)各城市的50年一遇雪壓和風(fēng)壓
- 英語(yǔ)聽力技巧與應(yīng)用(山東聯(lián)盟)智慧樹知到課后章節(jié)答案2023年下濱州學(xué)院
- 2024屆甘肅省平?jīng)鍪徐o寧縣英語(yǔ)九年級(jí)第一學(xué)期期末教學(xué)質(zhì)量檢測(cè)模擬試題含解析
- 寧夏農(nóng)產(chǎn)品物流發(fā)展現(xiàn)狀的探究 物流管理專業(yè)
- 人教版八年級(jí)數(shù)學(xué)下冊(cè)課件【全冊(cè)】
- 隱患排查治理工作方案
- 七年級(jí)數(shù)學(xué)上冊(cè)專題18 一元一次方程有整數(shù)解(解析版)
- 酒店安全生產(chǎn)責(zé)任制
- 輔導(dǎo)員工作匯報(bào)課件
- 企業(yè)清產(chǎn)核資報(bào)表
- 漢字文化解密學(xué)習(xí)通超星課后章節(jié)答案期末考試題庫(kù)2023年
評(píng)論
0/150
提交評(píng)論