![高考數(shù)學(xué)一輪復(fù)習(xí) 2.8 函數(shù)的圖象 理 蘇教版_第1頁(yè)](http://file4.renrendoc.com/view14/M03/0E/3C/wKhkGWa97nWAP-c9AAFhj6INHlw261.jpg)
![高考數(shù)學(xué)一輪復(fù)習(xí) 2.8 函數(shù)的圖象 理 蘇教版_第2頁(yè)](http://file4.renrendoc.com/view14/M03/0E/3C/wKhkGWa97nWAP-c9AAFhj6INHlw2612.jpg)
![高考數(shù)學(xué)一輪復(fù)習(xí) 2.8 函數(shù)的圖象 理 蘇教版_第3頁(yè)](http://file4.renrendoc.com/view14/M03/0E/3C/wKhkGWa97nWAP-c9AAFhj6INHlw2613.jpg)
![高考數(shù)學(xué)一輪復(fù)習(xí) 2.8 函數(shù)的圖象 理 蘇教版_第4頁(yè)](http://file4.renrendoc.com/view14/M03/0E/3C/wKhkGWa97nWAP-c9AAFhj6INHlw2614.jpg)
![高考數(shù)學(xué)一輪復(fù)習(xí) 2.8 函數(shù)的圖象 理 蘇教版_第5頁(yè)](http://file4.renrendoc.com/view14/M03/0E/3C/wKhkGWa97nWAP-c9AAFhj6INHlw2615.jpg)
版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2.9函數(shù)的圖象一、填空題1.函數(shù)的圖象可由的圖象向右平移個(gè)單位,再向下平移個(gè)單位而得到.解析因?yàn)樗蕴?,1.答案112.函數(shù)f(x)=eq\f(x+1,x)的圖象的對(duì)稱(chēng)中心為_(kāi)_______.解析f(x)=eq\f(x+1,x)=1+eq\f(1,x),故f(x)的對(duì)稱(chēng)中心為(0,1).答案(0,1)3.已知f(x)=eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,3)))x,若f(x)的圖象關(guān)于直線x=1對(duì)稱(chēng)的圖象對(duì)應(yīng)的函數(shù)為g(x),則g(x)的表達(dá)式為_(kāi)_______.解析在函數(shù)g(x)的圖象上任取一點(diǎn)(x,y),這一點(diǎn)關(guān)于x=1的對(duì)稱(chēng)點(diǎn)為(x0,y0),則eq\b\lc\{\rc\(\a\vs4\al\co1(x0=2-x,,y0=y(tǒng).))∴y=eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,3)))2-x=3x-2.答案g(x)=3x-24.函數(shù)f(x)=eq\b\lc\{\rc\(\a\vs4\al\co1(3x,x≤1,,log\f(1,3)x,x>1,))則y=f(x+1)的圖象大致是________.解析y=f(x+1)是由y=f(x)的圖象向左平移一個(gè)單位得到的,故為②.答案②5.已知函數(shù)y=f(x)(x∈R)滿(mǎn)足f(x+1)=f(x-1),且x∈[-1,1]時(shí),f(x)=x2,則函數(shù)y=f(x)與y=log5x的圖象交點(diǎn)的個(gè)數(shù)為_(kāi)_______.解析(數(shù)形結(jié)合法)根據(jù)f(x+1)=f(x-1),得f(x)=f(x+2),則函數(shù)f(x)是以2為周期的函數(shù),分別作出函數(shù)y=f(x)與y=log5x的圖象(如圖),可知函數(shù)y=f(x)與y=log5x的圖象的交點(diǎn)個(gè)數(shù)為4.答案4【點(diǎn)評(píng)】本題采用了數(shù)形結(jié)合法.數(shù)形結(jié)合,其實(shí)質(zhì)是將抽象的數(shù)學(xué)語(yǔ)言與直觀的圖形結(jié)合起來(lái),使抽象思維與形象思維結(jié)合起來(lái),通過(guò)對(duì)圖形的處理,發(fā)揮直觀對(duì)抽象的支持作用,實(shí)現(xiàn)抽象概念與具體形象的聯(lián)系和轉(zhuǎn)化,化難為易,化抽象為直觀6.若函數(shù)f(x)在區(qū)間[-2,3]上是增函數(shù),則函數(shù)f(x+5)的單調(diào)遞增區(qū)間是________.解析∵f(x+5)的圖象是f(x)的圖象向左平移5個(gè)單位得到的.∴f(x+5)的遞增區(qū)間就是[-2,3]向左平移5個(gè)單位得到的區(qū)間[-7,-2].答案[-7,-2]7.觀察相關(guān)的函數(shù)圖象,對(duì)下列命題中的真假情況進(jìn)行判斷.①10x=x有實(shí)數(shù)解;②10x=x2有實(shí)數(shù)解;③10x>x在x∈R上恒成立;④10x>x2在x∈(0,+∞)上恒成立;⑤10x=-x有兩個(gè)相異實(shí)數(shù)解.其中真命題的序號(hào)為_(kāi)_______.解析正確畫(huà)出相關(guān)函數(shù)的圖象即可判斷,y=10x與y=x的圖象如圖(1);y=10x與y=x2的圖象如圖(2);y=10x與y=-x的圖象如圖(3).答案②③④8.設(shè)f(x)表示-x+6和-2x2+4x+6中較小者,則函數(shù)f(x)的最大值是________.解析在同一坐標(biāo)系中,作出y=-x+6和y=-2x2+4x+6的圖象如右圖所示,可觀察出當(dāng)x=0時(shí)函數(shù)f(x)取得最大值6.答案69.甲、乙二人沿同一方向去B地,途中都使用兩種不同的速度v1與v2(v1<v2).甲一半的路程使用速度v1,另一半的路程使用速度v2;乙一半時(shí)間使用速度v1,另一半的時(shí)間使用速度v2.關(guān)于甲、乙二人從A地到達(dá)B地的路程與時(shí)間的函數(shù)圖象及關(guān)系,有下面圖中4個(gè)不同的圖示分析(其中橫軸t表示時(shí)間,縱軸s表示路程),則其中可能正確的圖示分析為_(kāi)_______.解析從A地到B地,甲用的時(shí)間t甲=eq\f(s,2v1)+eq\f(s,2v2)=eq\f(v1+v2,2v1v2)s,乙用的時(shí)間t乙滿(mǎn)足:eq\f(t乙,2)(v1+v2)=s,∴t乙=eq\f(2s,v1+v2),t甲-t乙=eq\f(v1-v22s,2v1v2v1+v2)>0.∴t甲>t乙,即甲、乙不會(huì)同時(shí)達(dá)到B地,∴排除③④,當(dāng)甲前一半路程速度是v1,后一半路程速度是v2,乙前一半時(shí)間速度是v1,后一半時(shí)間速度是v2時(shí),①正確.當(dāng)甲前一半路程速度是v2,后一半速度是v1,乙前一半時(shí)間的速度是v2,后一半時(shí)間的速度是v1時(shí),②正確.答案①②10.任取x1,x2∈(a,b),且x1≠x2,若feq\b\lc\(\rc\)(\a\vs4\al\co1(\f(x1+x2,2)))>eq\f(1,2)[f(x1)+f(x2)],則稱(chēng)f(x)是(a,b)上的凸函數(shù).在下列圖象中,是凸函數(shù)圖象的有________.答案④11.若直線x=1是函數(shù)y=f(2x)的圖象的一條對(duì)稱(chēng)軸,則f(3-2x)的圖象關(guān)于直線________對(duì)稱(chēng).答案x=eq\f(1,2)12.若0<a<1,則函數(shù)y=loga(x+5)的圖象不經(jīng)過(guò)第____象限.答案一13.已知定義在區(qū)間[0,1]上的函數(shù)y=f(x),圖象如圖所示.對(duì)滿(mǎn)足0<x1<x2<1的任意x1,x2,給出下列結(jié)論:①f(x1)-f(x2)>x1-x2;②x2f(x1)>x1f(x③eq\f(fx1+fx2,2)<feq\b\lc\(\rc\)(\a\vs4\al\co1(\f(x1+x2,2))).其中正確結(jié)論的序號(hào)是________.解析由f(x2)-f(x1)>x2-x1,可得eq\f(fx2-fx1,x2-x1)>1,即兩點(diǎn)(x1,f(x1))與(x2,f(x2))的連線斜率大小1,顯然①不正確;由x2f(x1)>x1f(x2)得eq\f(fx1,x1)>eq\f(fx2,x2),即表示兩點(diǎn)(x1,f(x1))、(x2,f(x2))與原點(diǎn)連線的斜率的大小,可以看出結(jié)論②正確;結(jié)合函數(shù)圖象,容易判斷③的結(jié)論是正確的.答案②③二、解答題14.作出函數(shù)y=eq\f(1-|x|,|1-x|)的圖象.解析函數(shù)的定義域是{x|x∈R,且x≠1}.當(dāng)x<0時(shí),有y=eq\f(1-|x|,|1-x|)=eq\f(1+x,1-x)=eq\f(1-x-2,x-1)=-1-eq\f(2,x-1);當(dāng)0≤x<1時(shí),有y=eq\f(1-|x|,|1-x|)=eq\f(1-x,1-x)=1;當(dāng)x>1時(shí),y=-1.綜上,有y=eq\b\lc\{\rc\(\a\vs4\al\co1(-1-\f(2,x-1),x<0,,1,0≤x<1,,-1,x>1.))函數(shù)的圖象由三部分組成:當(dāng)x<0時(shí)函數(shù)的圖象由函數(shù)y=-eq\f(2,x)的圖象向右平移1個(gè)單位長(zhǎng)度后再向下平移1個(gè)單位長(zhǎng)度得到;當(dāng)0≤x<1時(shí),函數(shù)的圖象是線段y=1(0≤x<1),不含點(diǎn)(1,1);當(dāng)x>1時(shí),函數(shù)的圖象是射線y=-1(x>1),不含射線的端點(diǎn)(1,-1).15.利用函數(shù)圖象討論方程|1-x|=kx的實(shí)數(shù)根的個(gè)數(shù).解析設(shè)y=|1-x|,y=kx,則方程的實(shí)根的個(gè)數(shù)就是函數(shù)y=|1-x|的圖象與y=kx的圖象交點(diǎn)的個(gè)數(shù).由右邊圖象可知:當(dāng)-1≤k<0時(shí),方程沒(méi)有實(shí)數(shù)根;當(dāng)k=0或k<-1或k≥1時(shí),方程只有一個(gè)實(shí)數(shù)根;當(dāng)0<k<1時(shí),方程有兩個(gè)不相等的實(shí)數(shù)根.16.已知函數(shù)f(x)=eq\r(1-x2),g(x)=x+2,若方程f(x+a)=g(x)有兩不同實(shí)根,求a的取值范圍.解析y=f(x+a)=eq\r(1-x+a2),方程可化為eq\b\lc\{\rc\(\a\vs4\al\co1(y≥0,,1-x+a2≥0,,y2=1-x+a2,))即eq\b\lc\{\rc\(\a\vs4\al\co1(y≥0,,x+a2+y2=1.))∴函數(shù)y=f(x+a)的圖象為以(-a,0)為圓心,半徑為1的圓在x軸上和x軸上方的部分,如右圖.設(shè)過(guò)(-2,0)點(diǎn)和與直線相切的半圓方程分別為y=f(x+a1)和y=f(x+a2),則可求出a1=1,a2=2-eq\r(2).由圖象可觀察出當(dāng)-a1≤-a<-a2,即a2<a≤a1時(shí),y=f(x+a)的圖象與y=g(x)的圖象有兩個(gè)不同交點(diǎn),即2-eq\r(2)<a≤1時(shí),方程f(x+a)=g(x)有兩個(gè)不同的實(shí)根.17.已知函數(shù)f(x)=|x2-4x+3|.(1)求函數(shù)f(x)的單調(diào)區(qū)間,并指出其增減性;(2)若關(guān)于x的方程f(x)-a=x至少有三個(gè)不相等的實(shí)數(shù)根,求實(shí)數(shù)a的取值范圍.思路分析分別作出函數(shù)y=f(x)與y=x+a的圖象,觀察它們的交點(diǎn)個(gè)數(shù).解析f(x)=eq\b\lc\{\rc\(\a\vs4\al\co1(x-22-1,x∈-∞,1]∪[3,+∞,,-x-22+1,x∈1,3,))作出圖象如圖所示.(1)遞增區(qū)間為[1,2],[3,+∞),遞減區(qū)間為(-∞,1),(2,3).(2)由題意|x2-4x+3|=x+a.于是,設(shè)y=x+a,在同一坐標(biāo)系下再作出y=x+a的圖象.如圖所示.則當(dāng)直線y=x+a過(guò)點(diǎn)(1,0)時(shí)a=-1;當(dāng)直線y=x+a與拋物線y=-x2+4x-3相切時(shí),由eq\b\lc\{\rc\(\a\vs4\al\co1(y=x+a,,y=-x2+4x-3))?x2-3x+a+3=0.由Δ=9-4(3+a)=0,得a=-eq\f(3,4).由圖象知當(dāng)a∈eq\b\lc\[\rc\](\a\vs4\al\co1(-1,-\f(3,4)))時(shí)方程至少有三個(gè)不等實(shí)根.【點(diǎn)評(píng)】數(shù)形結(jié)合思想是高考每年必考內(nèi)容,它對(duì)填空題、解答題均有很大的幫助,但對(duì)于解答題而言,圖形只是起到幫助分析問(wèn)題的作用,步驟還要有適當(dāng)數(shù)學(xué)語(yǔ)言來(lái)表示.18.已知函數(shù)y=f(x)的圖象關(guān)于原點(diǎn)對(duì)稱(chēng),且x>0時(shí),f(x)=x2-2x+3,試求f(x)在R上的表達(dá)式,并畫(huà)出它的圖象,根據(jù)圖象寫(xiě)出它的單調(diào)區(qū)間.解析∵f(x)的圖
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 人教版數(shù)學(xué)七年級(jí)上冊(cè)3.3《解一元一次方程二》聽(tīng)評(píng)課記錄3
- 新版湘教版秋八年級(jí)數(shù)學(xué)上冊(cè)第五章二次根式課題二次根式的混合運(yùn)算聽(tīng)評(píng)課記錄
- 蘇科版數(shù)學(xué)七年級(jí)下冊(cè)聽(tīng)評(píng)課記錄11.5用一元一次不等式解決問(wèn)題
- 湘教版數(shù)學(xué)九年級(jí)上冊(cè)《小結(jié)練習(xí)》聽(tīng)評(píng)課記錄8
- 湘教版數(shù)學(xué)七年級(jí)上冊(cè)2.1《用字母表示數(shù)》聽(tīng)評(píng)課記錄1
- s版語(yǔ)文三年級(jí)下冊(cè)聽(tīng)評(píng)課記錄
- 小學(xué)二年級(jí)口算題應(yīng)用題
- 五年級(jí)下冊(cè)數(shù)學(xué)解方程、口算、應(yīng)用題總匯
- 人教版七年級(jí)數(shù)學(xué)下冊(cè) 聽(tīng)評(píng)課記錄 9.1.2 第1課時(shí)《不等式的性質(zhì)》
- 華師大版數(shù)學(xué)八年級(jí)上冊(cè)《立方根》聽(tīng)評(píng)課記錄3
- 《農(nóng)機(jī)化促進(jìn)法解讀》課件
- 最高法院示范文本發(fā)布版3.4民事起訴狀答辯狀示范文本
- 2023-2024學(xué)年度上期七年級(jí)英語(yǔ)期末試題
- 2024年英語(yǔ)高考全國(guó)各地完形填空試題及解析
- 2024至2030年中國(guó)餐飲管理及無(wú)線自助點(diǎn)單系統(tǒng)數(shù)據(jù)監(jiān)測(cè)研究報(bào)告
- 2024年燃?xì)廨啓C(jī)值班員技能鑒定理論知識(shí)考試題庫(kù)-下(多選、判斷題)
- 2024年服裝門(mén)店批發(fā)管理系統(tǒng)軟件項(xiàng)目可行性研究報(bào)告
- 交通法規(guī)課件
- (優(yōu)化版)高中地理新課程標(biāo)準(zhǔn)【2024年修訂版】
- 《Python程序設(shè)計(jì)》課件-1:Python簡(jiǎn)介與應(yīng)用領(lǐng)域
- 各類(lèi)心理量表大全
評(píng)論
0/150
提交評(píng)論