2022年陜西省漢中市部分學校高三下學期聯(lián)考數(shù)學試題含解析_第1頁
2022年陜西省漢中市部分學校高三下學期聯(lián)考數(shù)學試題含解析_第2頁
2022年陜西省漢中市部分學校高三下學期聯(lián)考數(shù)學試題含解析_第3頁
2022年陜西省漢中市部分學校高三下學期聯(lián)考數(shù)學試題含解析_第4頁
2022年陜西省漢中市部分學校高三下學期聯(lián)考數(shù)學試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領

文檔簡介

2021-2022高考數(shù)學模擬試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設復數(shù)滿足為虛數(shù)單位),則()A. B. C. D.2.若函數(shù)函數(shù)只有1個零點,則的取值范圍是()A. B. C. D.3.關于函數(shù),有下列三個結(jié)論:①是的一個周期;②在上單調(diào)遞增;③的值域為.則上述結(jié)論中,正確的個數(shù)為()A. B. C. D.4.的展開式中的常數(shù)項為()A.-60 B.240 C.-80 D.1805.已知函,,則的最小值為()A. B.1 C.0 D.6.設為拋物線的焦點,,,為拋物線上三點,若,則().A.9 B.6 C. D.7.對于正在培育的一顆種子,它可能1天后發(fā)芽,也可能2天后發(fā)芽,….下表是20顆不同種子發(fā)芽前所需培育的天數(shù)統(tǒng)計表,則這組種子發(fā)芽所需培育的天數(shù)的中位數(shù)是()發(fā)芽所需天數(shù)1234567種子數(shù)43352210A.2 B.3 C.3.5 D.48.已知函數(shù),且),則“在上是單調(diào)函數(shù)”是“”的()A.充分不必要條件 B.必要不充分條件 C.充分必要條件 D.既不充分也不必要條件9.一物體作變速直線運動,其曲線如圖所示,則該物體在間的運動路程為()m.A.1 B. C. D.210.已知向量,,設函數(shù),則下列關于函數(shù)的性質(zhì)的描述正確的是A.關于直線對稱 B.關于點對稱C.周期為 D.在上是增函數(shù)11.在等差數(shù)列中,若為前項和,,則的值是()A.156 B.124 C.136 D.18012.如圖是某地區(qū)2000年至2016年環(huán)境基礎設施投資額(單位:億元)的折線圖.則下列結(jié)論中表述不正確的是()A.從2000年至2016年,該地區(qū)環(huán)境基礎設施投資額逐年增加;B.2011年該地區(qū)環(huán)境基礎設施的投資額比2000年至2004年的投資總額還多;C.2012年該地區(qū)基礎設施的投資額比2004年的投資額翻了兩番;D.為了預測該地區(qū)2019年的環(huán)境基礎設施投資額,根據(jù)2010年至2016年的數(shù)據(jù)(時間變量t的值依次為)建立了投資額y與時間變量t的線性回歸模型,根據(jù)該模型預測該地區(qū)2019的環(huán)境基礎設施投資額為256.5億元.二、填空題:本題共4小題,每小題5分,共20分。13.(5分)國家禁毒辦于2019年11月5日至12月15日在全國青少年毒品預防教育數(shù)字化網(wǎng)絡平臺上開展2019年全國青少年禁毒知識答題活動,活動期間進入答題專區(qū),點擊“開始答題”按鈕后,系統(tǒng)自動生成20道題.已知某校高二年級有甲、乙、丙、丁、戊五位同學在這次活動中答對的題數(shù)分別是,則這五位同學答對題數(shù)的方差是____________.14.等邊的邊長為2,則在方向上的投影為________.15.在平面直角坐標系中,已知點,,若圓上有且僅有一對點,使得的面積是的面積的2倍,則的值為_______.16.我國著名的數(shù)學家秦九韶在《數(shù)書九章》提出了“三斜求積術”.他把三角形的三條邊分別稱為小斜、中斜和大斜.三斜求積術就是用小斜平方加上大斜平方,送到中斜平方,取相減后余數(shù)的一半,自乘而得一個數(shù),小斜平方乘以大斜平方,送到上面得到的那個數(shù),相減后余數(shù)被4除,所得的數(shù)作為“實”,1作為“隅”,開平方后即得面積.所謂“實”、“隅”指的是在方程中,p為“隅”,q為“實”.即若的大斜、中斜、小斜分別為a,b,c,則.已知點D是邊AB上一點,,,,,則的面積為________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)設不等式的解集為M,.(1)證明:;(2)比較與的大小,并說明理由.18.(12分)已知橢圓:過點,過坐標原點作兩條互相垂直的射線與橢圓分別交于,兩點.(1)證明:當取得最小值時,橢圓的離心率為.(2)若橢圓的焦距為2,是否存在定圓與直線總相切?若存在,求定圓的方程;若不存在,請說明理由.19.(12分)已知曲線的參數(shù)方程為為參數(shù)),以直角坐標系原點為極點,以軸正半軸為極軸并取相同的單位長度建立極坐標系.(1)求曲線的極坐標方程,并說明其表示什么軌跡;(2)若直線的極坐標方程為,求曲線上的點到直線的最大距離.20.(12分)已知直線的參數(shù)方程為(為參數(shù)),以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為,且曲線的左焦點在直線上.(Ⅰ)求的極坐標方程和曲線的參數(shù)方程;(Ⅱ)求曲線的內(nèi)接矩形的周長的最大值.21.(12分)在平面直角坐標系中,曲線(為參數(shù)),以坐標原點為極點,軸的正半軸為極軸且取相同的單位長度建立極坐標系,曲線的極坐標方程為.(1)求曲線的普通方程和曲線的普通方程;(2)若P,Q分別為曲線,上的動點,求的最大值.22.(10分)已知函數(shù).(1)當a=2時,求不等式的解集;(2)設函數(shù).當時,,求的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.B【解析】

易得,分子分母同乘以分母的共軛復數(shù)即可.【詳解】由已知,,所以.故選:B.【點睛】本題考查復數(shù)的乘法、除法運算,考查學生的基本計算能力,是一道容易題.2.C【解析】

轉(zhuǎn)化有1個零點為與的圖象有1個交點,求導研究臨界狀態(tài)相切時的斜率,數(shù)形結(jié)合即得解.【詳解】有1個零點等價于與的圖象有1個交點.記,則過原點作的切線,設切點為,則切線方程為,又切線過原點,即,將,代入解得.所以切線斜率為,所以或.故選:C【點睛】本題考查了導數(shù)在函數(shù)零點問題中的應用,考查了學生數(shù)形結(jié)合,轉(zhuǎn)化劃歸,數(shù)學運算的能力,屬于較難題.3.B【解析】

利用三角函數(shù)的性質(zhì),逐個判斷即可求出.【詳解】①因為,所以是的一個周期,①正確;②因為,,所以在上不單調(diào)遞增,②錯誤;③因為,所以是偶函數(shù),又是的一個周期,所以可以只考慮時,的值域.當時,,在上單調(diào)遞增,所以,的值域為,③錯誤;綜上,正確的個數(shù)只有一個,故選B.【點睛】本題主要考查三角函數(shù)的性質(zhì)應用.4.D【解析】

求的展開式中的常數(shù)項,可轉(zhuǎn)化為求展開式中的常數(shù)項和項,再求和即可得出答案.【詳解】由題意,中常數(shù)項為,中項為,所以的展開式中的常數(shù)項為:.故選:D【點睛】本題主要考查二項式定理的應用和二項式展開式的通項公式,考查學生計算能力,屬于基礎題.5.B【解析】

,利用整體換元法求最小值.【詳解】由已知,又,,故當,即時,.故選:B.【點睛】本題考查整體換元法求正弦型函數(shù)的最值,涉及到二倍角公式的應用,是一道中檔題.6.C【解析】

設,,,由可得,利用定義將用表示即可.【詳解】設,,,由及,得,故,所以.故選:C.【點睛】本題考查利用拋物線定義求焦半徑的問題,考查學生等價轉(zhuǎn)化的能力,是一道容易題.7.C【解析】

根據(jù)表中數(shù)據(jù),即可容易求得中位數(shù).【詳解】由圖表可知,種子發(fā)芽天數(shù)的中位數(shù)為,故選:C.【點睛】本題考查中位數(shù)的計算,屬基礎題.8.C【解析】

先求出復合函數(shù)在上是單調(diào)函數(shù)的充要條件,再看其和的包含關系,利用集合間包含關系與充要條件之間的關系,判斷正確答案.【詳解】,且),由得或,即的定義域為或,(且)令,其在單調(diào)遞減,單調(diào)遞增,在上是單調(diào)函數(shù),其充要條件為即.故選:C.【點睛】本題考查了復合函數(shù)的單調(diào)性的判斷問題,充要條件的判斷,屬于基礎題.9.C【解析】

由圖像用分段函數(shù)表示,該物體在間的運動路程可用定積分表示,計算即得解【詳解】由題中圖像可得,由變速直線運動的路程公式,可得.所以物體在間的運動路程是.故選:C【點睛】本題考查了定積分的實際應用,考查了學生轉(zhuǎn)化劃歸,數(shù)形結(jié)合,數(shù)學運算的能力,屬于中檔題.10.D【解析】

當時,,∴f(x)不關于直線對稱;當時,,∴f(x)關于點對稱;f(x)得周期,當時,,∴f(x)在上是增函數(shù).本題選擇D選項.11.A【解析】

因為,可得,根據(jù)等差數(shù)列前項和,即可求得答案.【詳解】,,.故選:A.【點睛】本題主要考查了求等差數(shù)列前項和,解題關鍵是掌握等差中項定義和等差數(shù)列前項和公式,考查了分析能力和計算能力,屬于基礎題.12.D【解析】

根據(jù)圖像所給的數(shù)據(jù),對四個選項逐一進行分析排除,由此得到表述不正確的選項.【詳解】對于選項,由圖像可知,投資額逐年增加是正確的.對于選項,投資總額為億元,小于年的億元,故描述正確.年的投資額為億,翻兩翻得到,故描述正確.對于選項,令代入回歸直線方程得億元,故選項描述不正確.所以本題選D.【點睛】本小題主要考查圖表分析能力,考查利用回歸直線方程進行預測的方法,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13.2【解析】

由這五位同學答對的題數(shù)分別是,得該組數(shù)據(jù)的平均數(shù),則方差.14.【解析】

建立直角坐標系,結(jié)合向量的坐標運算求解在方向上的投影即可.【詳解】建立如圖所示的平面直角坐標系,由題意可知:,,,則:,,且,,據(jù)此可知在方向上的投影為.【點睛】本題主要考查平面向量數(shù)量積的坐標運算,向量投影的定義與計算等知識,意在考查學生的轉(zhuǎn)化能力和計算求解能力.15.【解析】

寫出所在直線方程,求出圓心到直線的距離,結(jié)合題意可得關于的等式,求解得答案.【詳解】解:直線的方程為,即.圓的圓心到直線的距離,由的面積是的面積的2倍的點,有且僅有一對,可得點到的距離是點到直線的距離的2倍,可得過圓的圓心,如圖:由,解得.故答案為:.【點睛】本題考查直線和圓的位置關系以及點到直線的距離公式應用,考查數(shù)形結(jié)合的解題思想方法,屬于中檔題.16..【解析】

利用正切的和角公式求得,再求得,利用余弦定理求得,代入“三斜求積術”公式即可求得答案.【詳解】,所以,由余弦定理可知,得.根據(jù)“三斜求積術”可得,所以.【點睛】本題考查正切的和角公式,同角三角函數(shù)的基本關系式,余弦定理的應用,考查學生分析問題的能力和計算整理能力,難度較易.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1)證明見解析;(2).【解析】試題分析:(1)首先求得集合M,然后結(jié)合絕對值不等式的性質(zhì)即可證得題中的結(jié)論;(2)利用平方做差的方法可證得|1-4ab|>2|a-b|.試題解析:(Ⅰ)證明:記f(x)=|x-1|-|x+2|,則f(x)=,所以解得-<x<,故M=(-,).所以,||≤|a|+|b|<×+×=.(Ⅱ)由(Ⅰ)得0≤a2<,0≤b2<.|1-4ab|2-4|a-b|2=(1-8ab+16a2b2)-4(a2-2ab+b2)=4(a2-1)(b2-1)>0.所以,|1-4ab|>2|a-b|.18.(1)證明見解析;(2)存在,【解析】

(1)將點代入橢圓方程得到,結(jié)合基本不等式,求得取得最小值時,進而證得橢圓的離心率為.(2)當直線的斜率不存在時,根據(jù)橢圓的對稱性,求得到直線的距離.當直線的斜率存在時,聯(lián)立直線的方程和橢圓方程,寫出韋達定理,利用,則列方程,求得的關系式,進而求得到直線的距離.根據(jù)上述分析判斷出所求的圓存在,進而求得定圓的方程.【詳解】(1)證明:∵橢圓經(jīng)過點,∴,∴,當且僅當,即時,等號成立,此時橢圓的離心率.(2)解:∵橢圓的焦距為2,∴,又,∴,.當直線的斜率不存在時,由對稱性,設,.∵,在橢圓上,∴,∴,∴到直線的距離.當直線的斜率存在時,設的方程為.由,得,.設,,則,.∵,∴,∴,∴,即,∴到直線的距離.綜上,到直線的距離為定值,且定值為,故存在定圓:,使得圓與直線總相切.【點睛】本小題主要考查點和橢圓的位置關系,考查基本不等式求最值,考查直線和橢圓的位置關系,考查點到直線的距離公式,考查分類討論的數(shù)學思想方法,考查運算求解能力,屬于中檔題.19.(1),表示圓心為,半徑為的圓;(2)【解析】

(1)根據(jù)參數(shù)得到直角坐標系方程,再轉(zhuǎn)化為極坐標方程得到答案.(2)直線方程為,計算圓心到直線的距離加上半徑得到答案.【詳解】(1),即,化簡得到:.即,表示圓心為,半徑為的圓.(2),即,圓心到直線的距離為.故曲線上的點到直線的最大距離為.【點睛】本題考查了參數(shù)方程,極坐標方程,直線和圓的距離的最值,意在考查學生的計算能力和應用能力.20.(Ⅰ)曲線的參數(shù)方程為:(為參數(shù));的極坐標方程為;(Ⅱ)16.【解析】

(

I

)直接利用轉(zhuǎn)換關系,把參數(shù)方程、極坐標方程和直角坐標方程之間進行轉(zhuǎn)換;(

II

)利用三角函數(shù)關系式的恒等變換和正弦型函數(shù)的性質(zhì)的應用,即可求出結(jié)果.【詳解】(Ⅰ)由題意:曲線的直角坐標方程為:,所以曲線的參數(shù)方程為(為參數(shù)),因為直線的直角坐標方程為:,又因曲線的左焦點為,將其代入中,得到,所以的極坐標方程為.(Ⅱ)設橢圓的內(nèi)接矩形的頂點為,,,,所以橢圓的內(nèi)接矩形的周長為:,所以當時,即時,橢圓的內(nèi)接矩形的周長取得最大值16.【點睛】本題考查了曲線的參數(shù)方程,極坐標方程與普通方程間的互化,三角函數(shù)關系式的恒等變換,正弦型函數(shù)的性質(zhì)的應用,極徑的應用,考查學生的求解運算能力和轉(zhuǎn)化能力,屬于基礎題型.21.(1),;(2)【解析】試題分析:(1)由消

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論