2022年天津市寶坻區(qū)何仉中學(xué)高考仿真卷數(shù)學(xué)試卷含解析_第1頁
2022年天津市寶坻區(qū)何仉中學(xué)高考仿真卷數(shù)學(xué)試卷含解析_第2頁
2022年天津市寶坻區(qū)何仉中學(xué)高考仿真卷數(shù)學(xué)試卷含解析_第3頁
2022年天津市寶坻區(qū)何仉中學(xué)高考仿真卷數(shù)學(xué)試卷含解析_第4頁
2022年天津市寶坻區(qū)何仉中學(xué)高考仿真卷數(shù)學(xué)試卷含解析_第5頁
已閱讀5頁,還剩10頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2021-2022高考數(shù)學(xué)模擬試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知雙曲線的一個焦點為,且與雙曲線的漸近線相同,則雙曲線的標(biāo)準(zhǔn)方程為()A. B. C. D.2.雙曲線x26-y23=1的漸近線與圓(x-3)2+y2=A.3 B.2C.3 D.63.在精準(zhǔn)扶貧工作中,有6名男干部、5名女干部,從中選出2名男干部、1名女干部組成一個扶貧小組分到某村工作,則不同的選法共有()A.60種 B.70種 C.75種 D.150種4.已知為等差數(shù)列,若,,則()A.1 B.2 C.3 D.65.定義在上的函數(shù)滿足,則()A.-1 B.0 C.1 D.26.已知拋物線:,點為上一點,過點作軸于點,又知點,則的最小值為()A. B. C.3 D.57.已知函數(shù)(其中為自然對數(shù)的底數(shù))有兩個零點,則實數(shù)的取值范圍是()A. B.C. D.8.已知命題:任意,都有;命題:,則有.則下列命題為真命題的是()A. B. C. D.9.已知復(fù)數(shù)滿足,其中為虛數(shù)單位,則().A. B. C. D.10.函數(shù)的部分圖象如圖所示,已知,函數(shù)的圖象可由圖象向右平移個單位長度而得到,則函數(shù)的解析式為()A. B.C. D.11.已知函數(shù),,若成立,則的最小值是()A. B. C. D.12.中,點在邊上,平分,若,,,,則()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知為正實數(shù),且,則的最小值為____________.14.已知復(fù)數(shù)(為虛數(shù)單位),則的模為____.15.能說明“在數(shù)列中,若對于任意的,,則為遞增數(shù)列”為假命題的一個等差數(shù)列是______.(寫出數(shù)列的通項公式)16.已知函數(shù)是定義在上的奇函數(shù),且周期為,當(dāng)時,,則的值為___________________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知二階矩陣A=abcd,矩陣A屬于特征值λ1=-1的一個特征向量為α118.(12分)在中,角的對邊分別為.已知,.(1)若,求;(2)求的面積的最大值.19.(12分)已知矩陣,二階矩陣滿足.(1)求矩陣;(2)求矩陣的特征值.20.(12分)設(shè)函數(shù).(1)時,求的單調(diào)區(qū)間;(2)當(dāng)時,設(shè)的最小值為,若恒成立,求實數(shù)t的取值范圍.21.(12分)已知點,且,滿足條件的點的軌跡為曲線.(1)求曲線的方程;(2)是否存在過點的直線,直線與曲線相交于兩點,直線與軸分別交于兩點,使得?若存在,求出直線的方程;若不存在,請說明理由.22.(10分)已知中,內(nèi)角所對邊分別是其中.(1)若角為銳角,且,求的值;(2)設(shè),求的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.B【解析】

根據(jù)焦點所在坐標(biāo)軸和漸近線方程設(shè)出雙曲線的標(biāo)準(zhǔn)方程,結(jié)合焦點坐標(biāo)求解.【詳解】∵雙曲線與的漸近線相同,且焦點在軸上,∴可設(shè)雙曲線的方程為,一個焦點為,∴,∴,故的標(biāo)準(zhǔn)方程為.故選:B【點睛】此題考查根據(jù)雙曲線的漸近線和焦點求解雙曲線的標(biāo)準(zhǔn)方程,易錯點在于漏掉考慮焦點所在坐標(biāo)軸導(dǎo)致方程形式出錯.2.A【解析】

由圓心到漸近線的距離等于半徑列方程求解即可.【詳解】雙曲線的漸近線方程為y=±22x,圓心坐標(biāo)為(3,0).由題意知,圓心到漸近線的距離等于圓的半徑r,即r=±答案:A【點睛】本題考查了雙曲線的漸近線方程及直線與圓的位置關(guān)系,屬于基礎(chǔ)題.3.C【解析】

根據(jù)題意,分別計算“從6名男干部中選出2名男干部”和“從5名女干部中選出1名女干部”的取法數(shù),由分步計數(shù)原理計算可得答案.【詳解】解:根據(jù)題意,從6名男干部中選出2名男干部,有種取法,從5名女干部中選出1名女干部,有種取法,則有種不同的選法;故選:C.【點睛】本題考查排列組合的應(yīng)用,涉及分步計數(shù)原理問題,屬于基礎(chǔ)題.4.B【解析】

利用等差數(shù)列的通項公式列出方程組,求出首項和公差,由此能求出.【詳解】∵{an}為等差數(shù)列,,∴,解得=﹣10,d=3,∴=+4d=﹣10+11=1.故選:B.【點睛】本題考查等差數(shù)列通項公式求法,考查等差數(shù)列的性質(zhì)等基礎(chǔ)知識,考查運算求解能力,是基礎(chǔ)題.5.C【解析】

推導(dǎo)出,由此能求出的值.【詳解】∵定義在上的函數(shù)滿足,∴,故選C.【點睛】本題主要考查函數(shù)值的求法,解題時要認(rèn)真審題,注意函數(shù)性質(zhì)的合理運用,屬于中檔題.6.C【解析】

由,再運用三點共線時和最小,即可求解.【詳解】.故選:C【點睛】本題考查拋物線的定義,合理轉(zhuǎn)化是本題的關(guān)鍵,注意拋物線的性質(zhì)的靈活運用,屬于中檔題.7.B【解析】

求出導(dǎo)函數(shù),確定函數(shù)的單調(diào)性,確定函數(shù)的最值,根據(jù)零點存在定理可確定參數(shù)范圍.【詳解】,當(dāng)時,,單調(diào)遞增,當(dāng)時,,單調(diào)遞減,∴在上只有一個極大值也是最大值,顯然時,,時,,因此要使函數(shù)有兩個零點,則,∴.故選:B.【點睛】本題考查函數(shù)的零點,考查用導(dǎo)數(shù)研究函數(shù)的最值,根據(jù)零點存在定理確定參數(shù)范圍.8.B【解析】

先分別判斷命題真假,再由復(fù)合命題的真假性,即可得出結(jié)論.【詳解】為真命題;命題是假命題,比如當(dāng),或時,則不成立.則,,均為假.故選:B【點睛】本題考查復(fù)合命題的真假性,判斷簡單命題的真假是解題的關(guān)鍵,屬于基礎(chǔ)題.9.A【解析】

先化簡求出,即可求得答案.【詳解】因為,所以所以故選:A【點睛】此題考查復(fù)數(shù)的基本運算,注意計算的準(zhǔn)確度,屬于簡單題目.10.A【解析】

由圖根據(jù)三角函數(shù)圖像的對稱性可得,利用周期公式可得,再根據(jù)圖像過,即可求出,再利用三角函數(shù)的平移變換即可求解.【詳解】由圖像可知,即,所以,解得,又,所以,由,所以或,又,所以,,所以,,即,因為函數(shù)的圖象由圖象向右平移個單位長度而得到,所以.故選:A【點睛】本題考查了由圖像求三角函數(shù)的解析式、三角函數(shù)圖像的平移伸縮變換,需掌握三角形函數(shù)的平移伸縮變換原則,屬于基礎(chǔ)題.11.A【解析】分析:設(shè),則,把用表示,然后令,由導(dǎo)數(shù)求得的最小值.詳解:設(shè),則,,,∴,令,則,,∴是上的增函數(shù),又,∴當(dāng)時,,當(dāng)時,,即在上單調(diào)遞減,在上單調(diào)遞增,是極小值也是最小值,,∴的最小值是.故選A.點睛:本題易錯選B,利用導(dǎo)數(shù)法求函數(shù)的最值,解題時學(xué)生可能不會將其中求的最小值問題,通過構(gòu)造新函數(shù),轉(zhuǎn)化為求函數(shù)的最小值問題,另外通過二次求導(dǎo),確定函數(shù)的單調(diào)區(qū)間也很容易出錯.12.B【解析】

由平分,根據(jù)三角形內(nèi)角平分線定理可得,再根據(jù)平面向量的加減法運算即得答案.【詳解】平分,根據(jù)三角形內(nèi)角平分線定理可得,又,,,,..故選:.【點睛】本題主要考查平面向量的線性運算,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】

,所以有,再利用基本不等式求最值即可.【詳解】由已知,,所以,當(dāng)且僅當(dāng),即時,等號成立.故答案為:【點睛】本題考查利用基本不等式求和的最小值問題,采用的是“1”的替換,也可以消元等,是一道中檔題.14.【解析】,所以.15.答案不唯一,如【解析】

根據(jù)等差數(shù)列的性質(zhì)可得到滿足條件的數(shù)列.【詳解】由題意知,不妨設(shè),則,很明顯為遞減數(shù)列,說明原命題是假命題.所以,答案不唯一,符合條件即可.【點睛】本題考查對等差數(shù)列的概念和性質(zhì)的理解,關(guān)鍵是假設(shè)出一個遞減的數(shù)列,還需檢驗是否滿足命題中的條件,屬基礎(chǔ)題.16.【解析】

由題意可得:,周期為,可得,可求出,最后再求的值即可.【詳解】解:函數(shù)是定義在上的奇函數(shù),.由周期為,可知,,..故答案為:.【點睛】本題主要考查函數(shù)的基本性質(zhì),屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.A=【解析】

運用矩陣定義列出方程組求解矩陣A【詳解】由特征值、特征向量定義可知,Aα即abc同理可得3a+2b=12,3c+2d=8.解得a=2,b=3,c=2,d=1.因此矩陣【點睛】本題考查了由矩陣特征值和特征向量求矩陣,只需運用定義得出方程組即可求出結(jié)果,較為簡單18.(1);(2)4【解析】

(1)根據(jù)已知用二倍角余弦求出,進(jìn)而求出,利用正弦定理,即可求解;(2)由邊角,利用余弦定理結(jié)合基本不等式,求出的最大值,即可求出結(jié)論.【詳解】(1)∵,∴,由正弦定理得.(2)由(1)知,,所以,,,當(dāng)且僅當(dāng)時,的面積有最大值4.【點睛】本題考查正弦定理、余弦定理、三角恒等變換解三角形,應(yīng)用基本不等式求最值,屬于基礎(chǔ)題.19.(1)(2)特征值為或.【解析】

(1)先設(shè)矩陣,根據(jù),按照運算規(guī)律,即可求出矩陣.(2)令矩陣的特征多項式等于,即可求出矩陣的特征值.【詳解】解:(1)設(shè)矩陣由題意,因為,所以,即所以,(2)矩陣的特征多項式,令,解得或,所以矩陣的特征值為1或.【點睛】本題主要考查矩陣的乘法和矩陣的特征值,考查學(xué)生的劃歸與轉(zhuǎn)化能力和運算求解能力.20.(1)的增區(qū)間為,減區(qū)間為;(2).【解析】

(1)求出函數(shù)的導(dǎo)數(shù),由于參數(shù)的范圍對導(dǎo)數(shù)的符號有影響,對參數(shù)分類,再研究函數(shù)的單調(diào)區(qū)間;(2)由(1)的結(jié)論,求出的表達(dá)式,由于恒成立,故求出的最大值,即得實數(shù)的取值范圍的左端點.【詳解】解:(1)解:,當(dāng)時,,解得的增區(qū)間為,解得的減區(qū)間為.(2)解:若,由得,由得,所以函數(shù)的減區(qū)間為,增區(qū)間為;,因為,所以,,令,則恒成立,由于,當(dāng)時,,故函數(shù)在上是減函數(shù),所以成立;當(dāng)時,若則,故函數(shù)在上是增函數(shù),即對時,,與題意不符;綜上,為所求.【點睛】本題考查導(dǎo)數(shù)在最大值與最小值問題中的應(yīng)用,求解本題關(guān)鍵是根據(jù)導(dǎo)數(shù)研究出函數(shù)的單調(diào)性,由最值的定義得出函數(shù)的最值,本題中第一小題是求出函數(shù)的單調(diào)區(qū)間,第二小題是一個求函數(shù)的最值的問題,此類題運算量較大,轉(zhuǎn)化靈活,解題時極易因為變形與運算出錯,故做題時要認(rèn)真仔細(xì).21.(1)(2)存在,或.【解析】

(1)由得看成到兩定點的和為定值,滿足橢圓定義,用定義可解曲線的方程.(2)先討論斜率不存在情況是否符合題意,當(dāng)直線的斜率存在時,設(shè)直線點斜式方程,由,可得,再直線與橢圓聯(lián)解,利用根的判別式得到關(guān)于的一元二次方程求解.【詳解】解:設(shè),由,,可得,即為,由,可得的軌跡是以為焦點,且的橢圓,由,可得,可得曲線的方程為;假設(shè)存在過點的直線l符合題意.當(dāng)直線的斜率不存在,設(shè)方程為,可得為短軸的兩個端點,不成立;當(dāng)直線的斜率存在時,設(shè)方程為,由,可得,即,可得,化為,由可得,由在橢圓內(nèi),可得直線與橢圓相交,,則化為,即為,解得,所以存在直線符合題意,且方程為或.【點睛】本題考查求軌跡方程及直線與圓錐曲線位置關(guān)系問題.(1)定義法求軌跡方程的思路:應(yīng)用定義法求軌跡方程的關(guān)鍵在于由已知條件推出關(guān)于動點的等量關(guān)系式,由等量關(guān)系結(jié)合曲線定義判斷是何種曲線,再設(shè)出標(biāo)準(zhǔn)方程,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論