新高考數(shù)學(xué)一輪復(fù)習(xí)精講精練7.1 空間幾何中的平行(基礎(chǔ)版)(解析版)_第1頁
新高考數(shù)學(xué)一輪復(fù)習(xí)精講精練7.1 空間幾何中的平行(基礎(chǔ)版)(解析版)_第2頁
新高考數(shù)學(xué)一輪復(fù)習(xí)精講精練7.1 空間幾何中的平行(基礎(chǔ)版)(解析版)_第3頁
新高考數(shù)學(xué)一輪復(fù)習(xí)精講精練7.1 空間幾何中的平行(基礎(chǔ)版)(解析版)_第4頁
新高考數(shù)學(xué)一輪復(fù)習(xí)精講精練7.1 空間幾何中的平行(基礎(chǔ)版)(解析版)_第5頁
已閱讀5頁,還剩43頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

7.1空間幾何中的平行(精講)(基礎(chǔ)版)思維導(dǎo)圖思維導(dǎo)圖考點(diǎn)呈現(xiàn)考點(diǎn)呈現(xiàn)例題剖析例題剖析考點(diǎn)一三角形中位線【例1】(2022·浙江)已知四棱錐SKIPIF1<0的底面是菱形,SKIPIF1<0為SKIPIF1<0的中點(diǎn),求證:SKIPIF1<0平面SKIPIF1<0【答案】證明見解析【解析】連接SKIPIF1<0交SKIPIF1<0于SKIPIF1<0,連接SKIPIF1<0,SKIPIF1<0是菱形,SKIPIF1<0是SKIPIF1<0中點(diǎn),又SKIPIF1<0是SKIPIF1<0中點(diǎn)SKIPIF1<0SKIPIF1<0面SKIPIF1<0,SKIPIF1<0面SKIPIF1<0SKIPIF1<0面SKIPIF1<0【一隅三反】1.(2022·廣東珠海)如圖,在三棱柱SKIPIF1<0中,點(diǎn)SKIPIF1<0是SKIPIF1<0的中點(diǎn),求證:SKIPIF1<0平面SKIPIF1<0【答案】證明見解析;【解析】連接SKIPIF1<0交SKIPIF1<0于SKIPIF1<0,連接SKIPIF1<0,由SKIPIF1<0為三棱柱,則SKIPIF1<0為平行四邊形,所以SKIPIF1<0是SKIPIF1<0中點(diǎn),又SKIPIF1<0是SKIPIF1<0的中點(diǎn),故在△SKIPIF1<0中SKIPIF1<0,SKIPIF1<0面SKIPIF1<0,SKIPIF1<0面SKIPIF1<0,所以SKIPIF1<0平面SKIPIF1<0.2.(2022·山東)如圖,在三棱柱SKIPIF1<0中,點(diǎn)M為SKIPIF1<0的中點(diǎn),證明:SKIPIF1<0平面SKIPIF1<0【答案】證明見解析【解析】連接SKIPIF1<0與SKIPIF1<0交于點(diǎn)O,則O為SKIPIF1<0的中點(diǎn),連接OM,因?yàn)辄c(diǎn)M為SKIPIF1<0的中點(diǎn),所以SKIPIF1<0,因?yàn)镾KIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,所以SKIPIF1<0平面SKIPIF1<0;3.(2022·山東濱州)如圖,在四棱錐SKIPIF1<0中,底面ABCD是平行四邊形,點(diǎn)E是PB的中點(diǎn),求證:SKIPIF1<0SKIPIF1<0平面EAC【答案】證明見解析【解析】證明:連結(jié)BD交AC于點(diǎn)O,連接EO.顯然,O為BD的中點(diǎn),又因?yàn)镋為PB的中點(diǎn),所以SKIPIF1<0.又因?yàn)镾KIPIF1<0面EAC,SKIPIF1<0面EAC,所以SKIPIF1<0平面EAC;考點(diǎn)二構(gòu)造平行四邊形【例2】(2022·重慶巴蜀中學(xué))如圖,在多面體SKIPIF1<0中,四邊形SKIPIF1<0是一個(gè)矩形,SKIPIF1<0,求證:SKIPIF1<0SKIPIF1<0平面SKIPIF1<0【答案】證明見解析【解析】(1)設(shè)SKIPIF1<0,連接SKIPIF1<0,由于SKIPIF1<0,所以四邊形SKIPIF1<0是平行四邊形,所以SKIPIF1<0,由于SKIPIF1<0平面SKIPIF1<0平面SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0平面SKIPIF1<0.【一隅三反】1.(2022·河南·商丘市第一高級(jí)中學(xué))在直三棱柱SKIPIF1<0中,E,F(xiàn)分別是SKIPIF1<0,SKIPIF1<0的中點(diǎn),求證:SKIPIF1<0平面SKIPIF1<0【答案】證明見解析【解析】證明:在直三棱柱SKIPIF1<0中,E,F(xiàn)分別是SKIPIF1<0,SKIPIF1<0的中點(diǎn),取SKIPIF1<0的中點(diǎn)SKIPIF1<0,連接SKIPIF1<0,SKIPIF1<0,如圖,則SKIPIF1<0且SKIPIF1<0,又SKIPIF1<0且SKIPIF1<0,所以SKIPIF1<0且SKIPIF1<0,所以四邊形SKIPIF1<0是平行四邊形,所以SKIPIF1<0.因?yàn)镾KIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,所以SKIPIF1<0平面SKIPIF1<0;2.(2022·河北保定)如圖,已知多面體SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0平面SKIPIF1<0,且SKIPIF1<0,證明:SKIPIF1<0平面SKIPIF1<0【答案】證明見解析【解析】證明:因?yàn)镾KIPIF1<0平面SKIPIF1<0平面SKIPIF1<0,所以SKIPIF1<0.因?yàn)镾KIPIF1<0,所以四邊形SKIPIF1<0為平行四邊形,則SKIPIF1<0.又SKIPIF1<0平面SKIPIF1<0平面SKIPIF1<0,所以SKIPIF1<0平面SKIPIF1<0.3.(2022·遼寧營口)如圖,三棱柱SKIPIF1<0中,E為SKIPIF1<0中點(diǎn),F(xiàn)為SKIPIF1<0中點(diǎn),求證:SKIPIF1<0平面SKIPIF1<0【答案】證明見解析【解析】證明:取BC中點(diǎn)為D,連接ED,AD,因?yàn)镋為SKIPIF1<0中點(diǎn),故SKIPIF1<0,又SKIPIF1<0,F為SKIPIF1<0中點(diǎn),故SKIPIF1<0,所以四邊形EDAF為平行四邊形,故SKIPIF1<0,因?yàn)镾KIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,故SKIPIF1<0平面SKIPIF1<0;考點(diǎn)三等比例【例3】(2022·云南·彌勒市一中)如圖,在四棱錐SKIPIF1<0中,底面SKIPIF1<0為直角梯形,其中SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0.點(diǎn)SKIPIF1<0在棱SKIPIF1<0上,點(diǎn)SKIPIF1<0為SKIPIF1<0中點(diǎn),證明:若SKIPIF1<0,則直線SKIPIF1<0平面SKIPIF1<0【答案】證明見解析【解析】在SKIPIF1<0上取一點(diǎn)SKIPIF1<0,使得SKIPIF1<0,連接SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,又SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0;SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0四邊形SKIPIF1<0為平行四邊形,SKIPIF1<0,又SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0;SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0.【一隅三反】1.(2022·廣東)如圖所示,SKIPIF1<0是SKIPIF1<0所在平面外的一點(diǎn),SKIPIF1<0、SKIPIF1<0、SKIPIF1<0分別是SKIPIF1<0、SKIPIF1<0、SKIPIF1<0的重心,求證:平面SKIPIF1<0平面SKIPIF1<0【答案】證明見解析【解析】連接SKIPIF1<0、SKIPIF1<0、SKIPIF1<0,∵SKIPIF1<0、SKIPIF1<0、SKIPIF1<0分別是SKIPIF1<0、SKIPIF1<0、SKIPIF1<0的重心,∴SKIPIF1<0、SKIPIF1<0、SKIPIF1<0分別為SKIPIF1<0、SKIPIF1<0、SKIPIF1<0的中點(diǎn),且SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,所以SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,所以SKIPIF1<0平面SKIPIF1<0,且SKIPIF1<0,∴平面SKIPIF1<0平面SKIPIF1<0.2(2022·江蘇宿遷)如圖,三棱柱SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,點(diǎn)SKIPIF1<0,SKIPIF1<0分別在SKIPIF1<0和SKIPIF1<0上,且滿足SKIPIF1<0,SKIPIF1<0,證明:SKIPIF1<0平面SKIPIF1<0【答案】見解析【解析】過點(diǎn)SKIPIF1<0作SKIPIF1<0,交SKIPIF1<0于點(diǎn)SKIPIF1<0,連接SKIPIF1<0,由題意得SKIPIF1<0,故SKIPIF1<0,SKIPIF1<0,而SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0SKIPIF1<0平面SKIPIF1<0,同理得SKIPIF1<0平面SKIPIF1<0,而SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<03.(2022·湖南·長沙一中)如圖,在長方體ABCD?A1B1C1D1中,AB=4,BC=BB1=3,G為AB的中點(diǎn),E,F(xiàn)分別在線段A1C1,AC上,且SKIPIF1<0,求證:SKIPIF1<0平面BB1F【答案】證明見解析【解析】取SKIPIF1<0的中點(diǎn)SKIPIF1<0,連接SKIPIF1<0,故SKIPIF1<0為SKIPIF1<0的中位線,得SKIPIF1<0,而SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,從而SKIPIF1<0SKIPIF1<0平面SKIPIF1<0,①又SKIPIF1<0,結(jié)合長方體的對(duì)稱性知SKIPIF1<0,即四邊形SKIPIF1<0為平行四邊形,故SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0,而SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,從而SKIPIF1<0SKIPIF1<0平面SKIPIF1<0,②SKIPIF1<0,結(jié)合①②知,平面SKIPIF1<0SKIPIF1<0平面SKIPIF1<0,從而SKIPIF1<0SKIPIF1<0平面SKIPIF1<0.考點(diǎn)四線面平行的性質(zhì)【例4】(2022·北京海淀)如圖,在四棱錐SKIPIF1<0中,SKIPIF1<0平面PAD,SKIPIF1<0,E,F(xiàn),H,G分別是棱PA,PB,PC,PD的中點(diǎn),求證:SKIPIF1<0【答案】證明見解析;【解析】因?yàn)镾KIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,平面SKIPIF1<0平面SKIPIF1<0,所以SKIPIF1<0.【一隅三反】1.(2022·全國·高三專題練習(xí))如圖,三棱柱SKIPIF1<0中,SKIPIF1<0是SKIPIF1<0邊的中點(diǎn),過SKIPIF1<0作截面交SKIPIF1<0于點(diǎn)SKIPIF1<0.求證:SKIPIF1<0;【答案】證明見解析【解析】證明:如圖,在直三棱錐SKIPIF1<0中,因?yàn)镾KIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,所以SKIPIF1<0平面SKIPIF1<0,又SKIPIF1<0平面SKIPIF1<0,平面SKIPIF1<0平面SKIPIF1<0,所以SKIPIF1<0.2.(2022·遼寧葫蘆島)如圖,在四面體SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,點(diǎn)SKIPIF1<0是SKIPIF1<0的中點(diǎn),SKIPIF1<0,且直線SKIPIF1<0面SKIPIF1<0,直線SKIPIF1<0直線SKIPIF1<0【答案】證明見解析【解析】SKIPIF1<0直線SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0,平面SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0.3.(2022·全國·高三專題練習(xí))如圖所示,四棱錐SKIPIF1<0的底面SKIPIF1<0是直角梯形,SKIPIF1<0,SKIPIF1<0底面SKIPIF1<0,過SKIPIF1<0的平面交SKIPIF1<0于SKIPIF1<0,交SKIPIF1<0于SKIPIF1<0(SKIPIF1<0與SKIPIF1<0不重合).求證:SKIPIF1<0;【答案】證明見解析【解析】證明:在梯形SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0SKIPIF1<0平面SKIPIF1<0.又SKIPIF1<0平面SKIPIF1<0,平面SKIPIF1<0平面SKIPIF1<0SKIPIF1<0,所以SKIPIF1<0.考點(diǎn)五面面平行的性質(zhì)【例5】(2022·甘肅酒泉)如圖,在四棱錐SKIPIF1<0中,SKIPIF1<0是邊長為2的正三角形,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0分別是線段SKIPIF1<0,SKIPIF1<0的中點(diǎn),求證:SKIPIF1<0平面SKIPIF1<0【答案】證明見解析【解析】如圖,取SKIPIF1<0中點(diǎn)SKIPIF1<0,連SKIPIF1<0,SKIPIF1<0,∵SKIPIF1<0為中位線,∴SKIPIF1<0,又SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,∴SKIPIF1<0平面SKIPIF1<0,同理,在梯形SKIPIF1<0中,SKIPIF1<0,又SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,∴SKIPIF1<0平面SKIPIF1<0,且SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0,∴平面SKIPIF1<0平面SKIPIF1<0,又SKIPIF1<0平面SKIPIF1<0,所以SKIPIF1<0平面SKIPIF1<0.【一隅三反】1.(2022·全國·高三專題練習(xí))如圖,四邊形SKIPIF1<0為菱形,SKIPIF1<0,求證:SKIPIF1<0平面SKIPIF1<0【答案】證明見解析【解析】證明:因?yàn)樗倪呅蜸KIPIF1<0為菱形,則SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0,所以,平面SKIPIF1<0平面SKIPIF1<0,因?yàn)镾KIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0.2.(2022·江蘇省鎮(zhèn)江第一中學(xué))如圖,三棱柱SKIPIF1<0中M,N,P,D分別為SKIPIF1<0,BC,SKIPIF1<0,SKIPIF1<0的中點(diǎn),求證:SKIPIF1<0面SKIPIF1<0【答案】證明見解析【解析】∵P,D分別為SKIPIF1<0,SKIPIF1<0的中點(diǎn),∴SKIPIF1<0,且SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,∴SKIPIF1<0平面SKIPIF1<0,∵D,N分別為SKIPIF1<0,BC的中點(diǎn),∴SKIPIF1<0,且SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,∴SKIPIF1<0平面SKIPIF1<0,又SKIPIF1<0,∴平面SKIPIF1<0平面SKIPIF1<0,又∵SKIPIF1<0平面PDN,∴SKIPIF1<0平面SKIPIF1<0.3.(2022·浙江嘉興·模擬預(yù)測)如圖,四棱錐SKIPIF1<0中,F(xiàn),M,N分別為SKIPIF1<0的中點(diǎn),求證:SKIPIF1<0∥平面SKIPIF1<0【答案】證明見解析【解析】取SKIPIF1<0的中點(diǎn)G,連接SKIPIF1<0,則由M,G分別為SKIPIF1<0的中點(diǎn)易得SKIPIF1<0∥SKIPIF1<0SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0∴SKIPIF1<0∥平面SKIPIF1<0同理:SKIPIF1<0∥平面SKIPIF1<0又SKIPIF1<0,所以平面SKIPIF1<0∥平面SKIPIF1<0,所以SKIPIF1<0∥平面SKIPIF1<0考點(diǎn)六線面垂直的性質(zhì)【例6】(2022·新疆·三模(文))多面體ABDEC中,△BCD與△ABC均為邊長為2的等邊三角形,△CDE為腰長為SKIPIF1<0的等腰三角形,平面CDE⊥平面BCD,平面ABC⊥平面BCD,F(xiàn)為BC的中點(diǎn),求證:SKIPIF1<0平面ECD【答案】證明見解析【解析】證明:取CD的中點(diǎn)G,連接EG∵△CDE為腰長為SKIPIF1<0的等腰三角形,∴SKIPIF1<0又∵平面CDE⊥平面BCD,SKIPIF1<0平面ECD,平面SKIPIF1<0平面SKIPIF1<0,∴EG⊥平面BCD,同理可得,AF⊥平面BCD∴SKIPIF1<0又∵SKIPIF1<0平面ECD,SKIPIF1<0平面CDE,∴SKIPIF1<0平面CDE【一隅三反】1.(2022·江蘇·高一課時(shí)練習(xí))在四棱錐P-ABCD中,PA⊥平面ABCD,四邊形ABCD是矩形,AE⊥PD于點(diǎn)E,l⊥平面PCD.求證:l∥AE.【答案】證明見解析【解析】證明:因?yàn)镻A⊥平面ABCD,CD?平面ABCD,所以PA⊥CD.又四邊形ABCD是矩形,所以CD⊥AD.因?yàn)镻A∩AD=A,PA?平面PAD,AD?平面PAD,所以CD⊥平面PAD.又AE?平面PAD,所以AE⊥DC.因?yàn)锳E⊥PD,PD∩CD=D,PD?平面PCD,CD?平面PCD,所以AE⊥平面PCD.因?yàn)閘⊥平面PCD,所以l∥AE.2.(2022·山西臨汾)如圖(1),在梯形SKIPIF1<0中,SKIPIF1<0且SKIPIF1<0,線段SKIPIF1<0上有一點(diǎn)E,滿足SKIPIF1<0,SKIPIF1<0,現(xiàn)將SKIPIF1<0,SKIPIF1<0分別沿SKIPIF1<0,SKIPIF1<0折起,使SKIPIF1<0,SKIPIF1<0,得到如圖(2)所示的幾何體,求證:SKIPIF1<0【答案】證明見解析【解析】證明:在SKIPIF1<0中,SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,在SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,由余弦定理得SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,同理可得,在SKIPIF1<0中,SKIPIF1<0,且SKIPIF1<0,在SKIPIF1<0中,SKIPIF1<0,所以SKIPIF1<0,因?yàn)镾KIPIF1<0,SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,所以SKIPIF1<0平面SKIPIF1<0,在SKIPIF1<0中,SKIPIF1<0,在SKIPIF1<0中,SKIPIF1<0,則SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0平面SKIPIF1<0,所以SKIPIF1<0;3.(2022·全國·高三專題練習(xí))如圖,四邊形SKIPIF1<0是菱形,SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,且SKIPIF1<0,SKIPIF1<0分別是SKIPIF1<0的中點(diǎn),證明:平面SKIPIF1<0平面SKIPIF1<0【答案】證明見解析【解析】因SKIPIF1<0分別是SKIPIF1<0的中點(diǎn),則有SKIPIF1<0,又SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,于是得SKIPIF1<0平面SKIPIF1<0,連接AC交BD于點(diǎn)O,連接FO,如圖,因四邊形ABCD為菱形,則O為AC中點(diǎn),而F為AB1中點(diǎn),于是得SKIPIF1<0,因SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,因此,SKIPIF1<0平面SKIPIF1<0,又SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,則有SKIPIF1<0,而SKIPIF1<0,于是得四邊形SKIPIF1<0是平行四邊形,則有SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,所以平面SKIPIF1<0平面SKIPIF1<0.7.1空間幾何中的平行(精練)(基礎(chǔ)版)題組一題組一三角形中位線1.(2022·云南麗江)如圖,在四棱錐SKIPIF1<0中,底面SKIPIF1<0是正方形,SKIPIF1<0與SKIPIF1<0交于點(diǎn)O,E為SKIPIF1<0的中點(diǎn),求證:SKIPIF1<0SKIPIF1<0平面SKIPIF1<0【答案】證明見解析【解析】證明:∵四邊形SKIPIF1<0為正方形,∴O為SKIPIF1<0的中點(diǎn),∵E為SKIPIF1<0的中點(diǎn),∴SKIPIF1<0,又∵SKIPIF1<0平面SKIPIF1<0平面SKIPIF1<0,∴SKIPIF1<0平面SKIPIF1<0;2(2022·四川宜賓)如圖,正方形ABED的邊長為1,G,F(xiàn)分別是EC,BD的中點(diǎn),求證:SKIPIF1<0平面ABC【答案】證明見解析;【解析】如圖,連接AE,因F是正方形ABED對(duì)角線BD的中點(diǎn),則F是AE的中點(diǎn),而G是CE的中點(diǎn),則SKIPIF1<0,又SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,所以SKIPIF1<0平面SKIPIF1<0.3.(2022·浙江·瑞安市第六中學(xué)高一階段練習(xí))如圖,在四棱錐SKIPIF1<0中,底面SKIPIF1<0為矩形,SKIPIF1<0為SKIPIF1<0中點(diǎn),證明:SKIPIF1<0平面SKIPIF1<0【答案】證明見解析【解析】證明:設(shè)SKIPIF1<0,連接SKIPIF1<0,因?yàn)镾KIPIF1<0分別為SKIPIF1<0中點(diǎn),所以SKIPIF1<0//SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,所以SKIPIF1<0//平面SKIPIF1<0.4.(2022·河北唐山)如圖,在直三棱柱SKIPIF1<0中,SKIPIF1<0為SKIPIF1<0的中點(diǎn),求證:SKIPIF1<0平面SKIPIF1<0【答案】證明見解析【解析】證明:連接SKIPIF1<0,設(shè)SKIPIF1<0,連接SKIPIF1<0,在直三棱柱SKIPIF1<0中,四邊形SKIPIF1<0為平行四邊形,則SKIPIF1<0為SKIPIF1<0的中點(diǎn),又因?yàn)镾KIPIF1<0為SKIPIF1<0的中點(diǎn),則SKIPIF1<0,因?yàn)镾KIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,因此,SKIPIF1<0平面SKIPIF1<0.5.(2022·吉林·長春市實(shí)驗(yàn)中學(xué))已知直三棱柱SKIPIF1<0中,D為AB中點(diǎn),求證:SKIPIF1<0平面SKIPIF1<0【答案】證明見解析;【解析】在直三棱柱SKIPIF1<0中,連SKIPIF1<0,連SKIPIF1<0,如圖,則O為SKIPIF1<0中點(diǎn),而D為AB中點(diǎn),則有SKIPIF1<0,又SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,所以SKIPIF1<0平面SKIPIF1<0.題組二題組二構(gòu)造平行四邊形1.(2022·黑龍江·哈師大附中高一期末)四棱錐SKIPIF1<0底面SKIPIF1<0為直角梯形,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0為SKIPIF1<0的中點(diǎn),求證:SKIPIF1<0平面SKIPIF1<0【答案】證明見解析;【解析】取SKIPIF1<0的中點(diǎn)SKIPIF1<0,連接SKIPIF1<0,如圖所示,SKIPIF1<0SKIPIF1<0為SKIPIF1<0的中點(diǎn),SKIPIF1<0為SKIPIF1<0的中點(diǎn),SKIPIF1<0,且SKIPIF1<0,又底面SKIPIF1<0為直角梯形,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0四邊形SKIPIF1<0為平行四邊形,SKIPIF1<0,又SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0SKIPIF1<0平面SKIPIF1<0.2.(2022·遼寧朝陽)如圖,在直三棱柱SKIPIF1<0中,分別是SKIPIF1<0,SKIPIF1<0的中點(diǎn),求證:SKIPIF1<0SKIPIF1<0平面SKIPIF1<0【答案】證明見解析【解析】證明:在直三棱柱SKIPIF1<0中,SKIPIF1<0分別是SKIPIF1<0的中點(diǎn),取SKIPIF1<0的中點(diǎn)SKIPIF1<0,連接SKIPIF1<0,所以SKIPIF1<0.因?yàn)镾KIPIF1<0,所以SKIPIF1<0,所以四邊形SKIPIF1<0是平行四邊形,所以SKIPIF1<0.因?yàn)镾KIPIF1<0平面SKIPIF1<0平面SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0平面SKIPIF1<0.3.(2022·吉林·長春市第五中學(xué))如圖,已知四棱錐SKIPIF1<0的底面是直角梯形,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0為側(cè)棱SKIPIF1<0的中點(diǎn),求證:SKIPIF1<0平面SKIPIF1<0【答案】證明見解析【解析】取SKIPIF1<0的中點(diǎn)SKIPIF1<0,連接SKIPIF1<0,SKIPIF1<0,在SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0在梯形SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0∴SKIPIF1<0,SKIPIF1<0,∴四邊形SKIPIF1<0是平行四邊形,∴SKIPIF1<0,而SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,∴SKIPIF1<0平面SKIPIF1<0;4.(2022·遼寧撫順·高一期末)在正方體SKIPIF1<0中,SKIPIF1<0分別是SKIPIF1<0和SKIPIF1<0的中點(diǎn).求證:(1)SKIPIF1<0SKIPIF1<0平面SKIPIF1<0.(2)平面SKIPIF1<0SKIPIF1<0平面SKIPIF1<0.【答案】(1)證明見解析(2)證明見解析【解析】(1)連接SKIPIF1<0,因?yàn)樗倪呅蜸KIPIF1<0為正方形,SKIPIF1<0為SKIPIF1<0中點(diǎn),所以SKIPIF1<0為SKIPIF1<0中點(diǎn),又因?yàn)镾KIPIF1<0為SKIPIF1<0中點(diǎn),所以SKIPIF1<0.因?yàn)镾KIPIF1<0平面SKIPIF1<0平面SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0平面SKIPIF1<0,連接SKIPIF1<0,因?yàn)樗倪呅蜸KIPIF1<0為正方形,SKIPIF1<0為SKIPIF1<0中點(diǎn),所以SKIPIF1<0為SKIPIF1<0中點(diǎn).又因?yàn)镾KIPIF1<0為SKIPIF1<0中點(diǎn),所以SKIPIF1<0.因?yàn)镾KIPIF1<0平面SKIPIF1<0平面SKIPIF1<0所以SKIPIF1<0SKIPIF1<0平面SKIPIF1<0.由(1)知SKIPIF1<0SKIPIF1<0平面SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,所以平面SKIPIF1<0SKIPIF1<0平面SKIPIF1<0.5.(2022·遼寧撫順·高一期末)直四棱柱SKIPIF1<0,底面SKIPIF1<0是平行四邊SKIPIF1<0分別是棱SKIPIF1<0的中點(diǎn),求證:SKIPIF1<0SKIPIF1<0平面SKIPIF1<0【答案】見解析【解析】證明:取SKIPIF1<0的中點(diǎn)SKIPIF1<0,連結(jié)SKIPIF1<0,在SKIPIF1<0中,SKIPIF1<0分別為SKIPIF1<0的中點(diǎn),所以SKIPIF1<0且SKIPIF1<0,底面SKIPIF1<0是平行四邊形,SKIPIF1<0是棱SKIPIF1<0的中點(diǎn),所以SKIPIF1<0且SKIPIF1<0,所以SKIPIF1<0且SKIPIF1<0,所以四邊形SKIPIF1<0為平行四邊形,所以SKIPIF1<0平面SKIPIF1<0平面SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0平面SKIPIF1<06.(2022·湖南衡陽)如圖,四棱柱SKIPIF1<0的底面ABCD為正方形,O為BD的中點(diǎn),SKIPIF1<0,求證:平面SKIPIF1<0∥平面SKIPIF1<0【答案】證明見解析【解析】證明:因?yàn)樗睦庵鵖KIPIF1<0的底面ABCD為正方形,所以SKIPIF1<0∥SKIPIF1<0,SKIPIF1<0,SKIPIF1<0∥SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0∥,SKIPIF1<0SKIPIF1<0,所以四邊形SKIPIF1<0為平行四邊形,所以SKIPIF1<0∥SKIPIF1<0.又SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,所以SKIPIF1<0∥平面SKIPIF1<0,同理SKIPIF1<0∥平面SKIPIF1<0.又SKIPIF1<0,所以平面SKIPIF1<0∥平面SKIPIF1<0.7.(2022·福建·廈門市湖濱中學(xué))如圖,在正方體SKIPIF1<0中,SKIPIF1<0為SKIPIF1<0的中點(diǎn),SKIPIF1<0為SKIPIF1<0的中點(diǎn).(1)求證:SKIPIF1<0平面SKIPIF1<0;(2)求證:平面SKIPIF1<0平面SKIPIF1<0.【答案】(1)證明見解析(2)證明見解析【解析】(1)證明:連接SKIPIF1<0交SKIPIF1<0于點(diǎn)SKIPIF1<0,則SKIPIF1<0為SKIPIF1<0的中點(diǎn),因?yàn)镾KIPIF1<0為SKIPIF1<0的中點(diǎn),則SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,因此,SKIPIF1<0平面SKIPIF1<0.(2)證明:因?yàn)镾KIPIF1<0且SKIPIF1<0,SKIPIF1<0為SKIPIF1<0的中點(diǎn),SKIPIF1<0為SKIPIF1<0的中點(diǎn),所以,SKIPIF1<0,SKIPIF1<0,所以,四邊形SKIPIF1<0為平行四邊形,所以,SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,所以,SKIPIF1<0平面SKIPIF1<0,因?yàn)镾KIPIF1<0,因此,平面SKIPIF1<0平面SKIPIF1<0.題組三等比例題組三等比例1.(2022·江西南昌)兩個(gè)全等的正方形ABCD和ABEF所在平面相交于AB,SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0,過M作SKIPIF1<0于H,求證:(1)平面SKIPIF1<0平面BCE;(2)SKIPIF1<0平面BCE.【答案】(1)證明見解析;(2)證明見解析.【解析】(1)在正方形ABCD中,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,又SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,因此SKIPIF1<0平面SKIPIF1<0,由SKIPIF1<0,得SKIPIF1<0,而SKIPIF1<0,SKIPIF1<0,則有SKIPIF1<0,即SKIPIF1<0,于是得SKIPIF1<0,又SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,則SKIPIF1<0平面SKIPIF1<0,因SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,所以平面SKIPIF1<0平面SKIPIF1<0.(2)由(1)知:平面SKIPIF1<0平面SKIPIF1<0,而SKIPIF1<0平面SKIPIF1<0,所以SKIPIF1<0平面SKIPIF1<0.2.(2022·安徽安慶市)如圖,四棱錐SKIPIF1<0中,底面SKIPIF1<0為直角梯形,且SKIPIF1<0,點(diǎn)M在棱SKIPIF1<0上,若直線SKIPIF1<0平面SKIPIF1<0,求SKIPIF1<0的值【答案】(1)1∶2;【解析】連接SKIPIF1<0與SKIPIF1<0交于點(diǎn)N,連接SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,又SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,且平面SKIPIF1<0平面SKIPIF1<0SKIPIF1<0SKIPIF1<0.3.(2021·全國高三)如圖,三棱柱SKIPIF1<0在圓柱中,等腰直角三角形SKIPIF1<0,SKIPIF1<0分別為上、下底面的內(nèi)接三角形,點(diǎn)SKIPIF1<0,SKIPIF1<0分別在棱SKIPIF1<0和SKIPIF1<0上,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,求SKIPIF1<0的值【答案】SKIPIF1<0【解析】過SKIPIF1<0點(diǎn)作SKIPIF1<0交SKIPIF1<0于點(diǎn)SKIPIF1<0,連接SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0與SKIPIF1<0確定一個(gè)平面.SKIPIF1<0平面SKIPIF1<0,平面SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0,SKIPIF1<0四邊形SKIPIF1<

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論