新高考數(shù)學(xué)一輪復(fù)習(xí)精講精練9.6 導(dǎo)數(shù)的綜合運(yùn)用(基礎(chǔ)版)(解析版)_第1頁
新高考數(shù)學(xué)一輪復(fù)習(xí)精講精練9.6 導(dǎo)數(shù)的綜合運(yùn)用(基礎(chǔ)版)(解析版)_第2頁
新高考數(shù)學(xué)一輪復(fù)習(xí)精講精練9.6 導(dǎo)數(shù)的綜合運(yùn)用(基礎(chǔ)版)(解析版)_第3頁
新高考數(shù)學(xué)一輪復(fù)習(xí)精講精練9.6 導(dǎo)數(shù)的綜合運(yùn)用(基礎(chǔ)版)(解析版)_第4頁
新高考數(shù)學(xué)一輪復(fù)習(xí)精講精練9.6 導(dǎo)數(shù)的綜合運(yùn)用(基礎(chǔ)版)(解析版)_第5頁
已閱讀5頁,還剩36頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

9.6導(dǎo)數(shù)的綜合運(yùn)用(精講)(基礎(chǔ)版)思維導(dǎo)圖思維導(dǎo)圖考點(diǎn)呈現(xiàn)考點(diǎn)呈現(xiàn)例題剖析例題剖析考點(diǎn)一零點(diǎn)問題【例1】(2022·全國·成都七中)設(shè)函數(shù)SKIPIF1<0?為常數(shù)).(1)討論SKIPIF1<0?的單調(diào)性;(2)討論函數(shù)SKIPIF1<0?的零點(diǎn)個(gè)數(shù).【答案】(1)遞減區(qū)間SKIPIF1<0,遞增區(qū)間SKIPIF1<0;(2)答案見解析.【解析】(1)當(dāng)SKIPIF1<0時(shí),由SKIPIF1<0求導(dǎo)得:SKIPIF1<0,顯然函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,而SKIPIF1<0,則當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,即SKIPIF1<0在SKIPIF1<0上遞減,在SKIPIF1<0上遞增,所以函數(shù)SKIPIF1<0的遞減區(qū)間是SKIPIF1<0,遞增區(qū)間是SKIPIF1<0.(2)由(1)知函數(shù)SKIPIF1<0在SKIPIF1<0上遞減,在SKIPIF1<0上遞增,SKIPIF1<0,令SKIPIF1<0,SKIPIF1<0,求導(dǎo)得SKIPIF1<0,函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,函數(shù)SKIPIF1<0在SKIPIF1<0上遞減,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0取值集合為SKIPIF1<0,函數(shù)SKIPIF1<0取值集合為SKIPIF1<0,因此函數(shù)SKIPIF1<0在SKIPIF1<0上的函數(shù)值集合為SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),函數(shù)SKIPIF1<0的取值集合為SKIPIF1<0,函數(shù)SKIPIF1<0取值集合為SKIPIF1<0,因此函數(shù)SKIPIF1<0在SKIPIF1<0上的函數(shù)值集合為SKIPIF1<0,所以當(dāng)SKIPIF1<0,即SKIPIF1<0時(shí),函數(shù)SKIPIF1<0無零點(diǎn),當(dāng)SKIPIF1<0時(shí),函數(shù)SKIPIF1<0有一個(gè)零點(diǎn),當(dāng)SKIPIF1<0時(shí),函數(shù)SKIPIF1<0有兩個(gè)零點(diǎn).【一隅三反】1.(2022·全國·興國中學(xué))已知函數(shù)SKIPIF1<0在點(diǎn)SKIPIF1<0處的切線方程為SKIPIF1<0.(1)求函數(shù)SKIPIF1<0的單調(diào)區(qū)間,(2)若函數(shù)SKIPIF1<0有三個(gè)零點(diǎn),求實(shí)數(shù)m的取值范圍.【答案】(1)單調(diào)遞減區(qū)間是SKIPIF1<0,單調(diào)遞增區(qū)間是SKIPIF1<0(2)SKIPIF1<0【解析】(1)由題可得SKIPIF1<0,由題意得SKIPIF1<0,解得SKIPIF1<0,所以SKIPIF1<0,由SKIPIF1<0得SKIPIF1<0或SKIPIF1<0,由SKIPIF1<0得SKIPIF1<0,所以SKIPIF1<0的單調(diào)遞減區(qū)間是SKIPIF1<0,單調(diào)遞增區(qū)間是SKIPIF1<0;(2)因?yàn)镾KIPIF1<0,由(1)可知,SKIPIF1<0在SKIPIF1<0處取得極大值,在SKIPIF1<0處取得極小值,SKIPIF1<0的單調(diào)遞減區(qū)間是SKIPIF1<0,單調(diào)遞增區(qū)間是SKIPIF1<0,依題意,要使SKIPIF1<0有三個(gè)零點(diǎn),則SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0,經(jīng)檢驗(yàn),SKIPIF1<0,根據(jù)零點(diǎn)存在定理,可以確定函數(shù)有三個(gè)零點(diǎn),所以m的取值范圍為SKIPIF1<0.2.(2022·黑龍江)已知函數(shù)SKIPIF1<0,SKIPIF1<0,曲線SKIPIF1<0和SKIPIF1<0在原點(diǎn)處有相同的切線.(1)求SKIPIF1<0的值;(2)判斷函數(shù)SKIPIF1<0在SKIPIF1<0上零點(diǎn)的個(gè)數(shù),并說明理由.【答案】(1)1(2)1個(gè)零點(diǎn),理由見解析【解析】(1)依題意得:函數(shù)SKIPIF1<0,其導(dǎo)函數(shù)為SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0.SKIPIF1<0曲線SKIPIF1<0和SKIPIF1<0在原點(diǎn)處有相同的切線.SKIPIF1<0,SKIPIF1<0.(2)由(1)可知,SKIPIF1<0,所以SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0,此時(shí)SKIPIF1<0無零點(diǎn).當(dāng)SKIPIF1<0時(shí),SKIPIF1<0令SKIPIF1<0則SKIPIF1<0,顯然SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,又SKIPIF1<0,SKIPIF1<0,所以存在SKIPIF1<0使得SKIPIF1<0,因此可得SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0單調(diào)遞減;SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0單調(diào)遞增;又SKIPIF1<0,SKIPIF1<0所以存在SKIPIF1<0,使得SKIPIF1<0,即SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0,SKIPIF1<0單調(diào)遞減;SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0,SKIPIF1<0單調(diào)遞增;又SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上有一個(gè)零點(diǎn).綜上,SKIPIF1<0在SKIPIF1<0上有1個(gè)零點(diǎn).3.(2022·河南)已知SKIPIF1<0.SKIPIF1<0(1)討論SKIPIF1<0的單調(diào)性;(2)若SKIPIF1<0有一個(gè)零點(diǎn),求k的取值范圍.【答案】(1)答案見解析(2)SKIPIF1<0【解析】(1)SKIPIF1<0的定義域?yàn)镾KIPIF1<0,SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0恒成立,SKIPIF1<0在SKIPIF1<0上單調(diào)遞增.當(dāng)SKIPIF1<0時(shí),在SKIPIF1<0上,SKIPIF1<0,SKIPIF1<0單調(diào)遞增;在SKIPIF1<0上,SKIPIF1<0,SKIPIF1<0單調(diào)遞減.綜上可知,SKIPIF1<0時(shí),SKIPIF1<0在SKIPIF1<0上單調(diào)遞增.SKIPIF1<0時(shí),SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,在SKIPIF1<0上單調(diào)遞減.(2)SKIPIF1<0有一個(gè)零點(diǎn),可得SKIPIF1<0有一個(gè)實(shí)根,令SKIPIF1<0,SKIPIF1<0.令SKIPIF1<0,得SKIPIF1<0;令SKIPIF1<0,得SKIPIF1<0.∴SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,在SKIPIF1<0上單調(diào)遞減.∴SKIPIF1<0.又SKIPIF1<0,∴SKIPIF1<0時(shí),SKIPIF1<0;SKIPIF1<0時(shí),SKIPIF1<0.SKIPIF1<0大致圖象如圖所示,若直線y=-k與SKIPIF1<0的圖象有一個(gè)交點(diǎn),則SKIPIF1<0或SKIPIF1<0,即SKIPIF1<0或SKIPIF1<0.∴k的取值范圍是SKIPIF1<0.考點(diǎn)二不等式成立【例2】(2022·江西南昌)已知函數(shù)SKIPIF1<0.(1)若SKIPIF1<0,求函數(shù)SKIPIF1<0的單調(diào)區(qū)間;(2)若不等式SKIPIF1<0在區(qū)間SKIPIF1<0上有解,求實(shí)數(shù)SKIPIF1<0的取值范圍.【答案】(1)SKIPIF1<0的單調(diào)遞增區(qū)間為SKIPIF1<0,單調(diào)遞減區(qū)間為SKIPIF1<0(2)SKIPIF1<0【解析】(1)解:當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,則SKIPIF1<0的單調(diào)遞增區(qū)間為SKIPIF1<0,單調(diào)遞減區(qū)間為SKIPIF1<0.(2)解:因?yàn)镾KIPIF1<0,則SKIPIF1<0,①當(dāng)SKIPIF1<0時(shí),即SKIPIF1<0時(shí),因?yàn)镾KIPIF1<0,SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,因此函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào)遞增,所以SKIPIF1<0,不等式SKIPIF1<0在區(qū)間SKIPIF1<0上無解;②當(dāng)SKIPIF1<0時(shí),即SKIPIF1<0時(shí),當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0,因此SKIPIF1<0,所以函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào)遞減,SKIPIF1<0,不等式SKIPIF1<0在區(qū)間SKIPIF1<0上有解.綜上,實(shí)數(shù)SKIPIF1<0的取值范圍是SKIPIF1<0.【例2-2】(2022·四川成都)已知函數(shù)SKIPIF1<0.(1)當(dāng)SKIPIF1<0時(shí),求證:SKIPIF1<0;(2)當(dāng)SKIPIF1<0時(shí),不等式SKIPIF1<0恒成立,求a的取值范圍.【答案】(1)證明見解析(2)SKIPIF1<0【解析】(1)當(dāng)SKIPIF1<0時(shí),函數(shù)SKIPIF1<0,∴SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,∴SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,∴SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,∴SKIPIF1<0,即SKIPIF1<0.(2)由已知得SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),令SKIPIF1<0,解得SKIPIF1<0;令SKIPIF1<0,解得SKIPIF1<0;所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,∴SKIPIF1<0,由SKIPIF1<0恒成立得SKIPIF1<0,即SKIPIF1<0,取對數(shù)得SKIPIF1<0,即SKIPIF1<0,令SKIPIF1<0,SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0單調(diào)遞增;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0單調(diào)遞減;∴SKIPIF1<0,又∵SKIPIF1<0,∴SKIPIF1<0,得SKIPIF1<0,即SKIPIF1<0,所以a的取值范圍為SKIPIF1<0.【一隅三反】1.(2022·甘肅定西)已知函數(shù)SKIPIF1<0,SKIPIF1<0(1)求SKIPIF1<0在SKIPIF1<0處的切線方程(2)若存在SKIPIF1<0時(shí),使SKIPIF1<0恒成立,求SKIPIF1<0的取值范圍.【答案】(1)SKIPIF1<0(2)SKIPIF1<0【解析】(1)由SKIPIF1<0,可得SKIPIF1<0,所以切線的斜率SKIPIF1<0,SKIPIF1<0.所以SKIPIF1<0在SKIPIF1<0處的切線方程為SKIPIF1<0,即SKIPIF1<0;(2)令SKIPIF1<0,則SKIPIF1<0,令SKIPIF1<0,SKIPIF1<0,SKIPIF1<0在SKIPIF1<0上,SKIPIF1<0,SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,SKIPIF1<0,SKIPIF1<0.2.(2022·四川眉山)已知SKIPIF1<0.(1)求SKIPIF1<0的極值點(diǎn);(2)若不等式SKIPIF1<0存在正數(shù)解,求實(shí)數(shù)SKIPIF1<0的取值范圍.【答案】(1)極大值點(diǎn)為SKIPIF1<0,極小值點(diǎn)為SKIPIF1<0(2)SKIPIF1<0【解析】(1)解:函數(shù)SKIPIF1<0的定義域?yàn)镾KIPIF1<0,SKIPIF1<0,令SKIPIF1<0可得SKIPIF1<0或SKIPIF1<0,列表如下:SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0增極大值減極小值增所以,函數(shù)SKIPIF1<0的極大值點(diǎn)為SKIPIF1<0,極小值點(diǎn)為SKIPIF1<0.(2)解:由題意可知,存在SKIPIF1<0,使得SKIPIF1<0,即SKIPIF1<0,令SKIPIF1<0,其中SKIPIF1<0,則SKIPIF1<0,令SKIPIF1<0,其中SKIPIF1<0,則SKIPIF1<0,令SKIPIF1<0,其中SKIPIF1<0,則SKIPIF1<0,所以,函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,則SKIPIF1<0,所以,函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,則SKIPIF1<0,所以,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,函數(shù)SKIPIF1<0單調(diào)遞減,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,函數(shù)SKIPIF1<0單調(diào)遞增,則SKIPIF1<0,所以,SKIPIF1<0.3.(2022·廣東廣州·一模)已知函數(shù)SKIPIF1<0,SKIPIF1<0.(1)若函數(shù)SKIPIF1<0只有一個(gè)零點(diǎn),求實(shí)數(shù)a的取值所構(gòu)成的集合;(2)若函數(shù)SKIPIF1<0恒成立,求實(shí)數(shù)a的取值范圍.【答案】(1)SKIPIF1<0(2)SKIPIF1<0【解析】(1)當(dāng)SKIPIF1<0時(shí),顯然滿足題意當(dāng)SKIPIF1<0時(shí),若函數(shù)SKIPIF1<0只有一個(gè)零點(diǎn),即SKIPIF1<0只有一個(gè)根,因?yàn)?不是方程的根,所以可轉(zhuǎn)化為SKIPIF1<0只有一個(gè)根,即直線SKIPIF1<0與函數(shù)SKIPIF1<0(SKIPIF1<0且SKIPIF1<0)的圖像只有一個(gè)交點(diǎn).SKIPIF1<0,令SKIPIF1<0,得SKIPIF1<0,在SKIPIF1<0和SKIPIF1<0上,SKIPIF1<0,在SKIPIF1<0上,SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0和SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增.在SKIPIF1<0時(shí)有極小值SKIPIF1<0,SKIPIF1<0圖像如圖所示:由圖可知:若要使直線SKIPIF1<0與函數(shù)SKIPIF1<0的圖像只有一個(gè)交點(diǎn),則SKIPIF1<0或SKIPIF1<0,綜上SKIPIF1<0.(2)SKIPIF1<0恒成立,等價(jià)于SKIPIF1<0,令SKIPIF1<0(SKIPIF1<0),SKIPIF1<0,①若SKIPIF1<0時(shí),SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,SKIPIF1<0,即SKIPIF1<0,滿足SKIPIF1<0,②若SKIPIF1<0時(shí),則SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0SKIPIF1<0,不成立故SKIPIF1<0不滿足題意.③若SKIPIF1<0時(shí),令SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0單調(diào)遞減,SKIPIF1<0,SKIPIF1<0單調(diào)遞增,只需SKIPIF1<0SKIPIF1<0即可,SKIPIF1<0,SKIPIF1<0,令SKIPIF1<0SKIPIF1<0,SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,SKIPIF1<0,SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,SKIPIF1<0,即SKIPIF1<0,綜上:SKIPIF1<0考點(diǎn)三雙變量【例33】(2022·全國·成都七中高三開學(xué)考試(理))設(shè)函數(shù)SKIPIF1<0(SKIPIF1<0?為常數(shù)).(1)討論SKIPIF1<0?的單調(diào)性;(2)若函數(shù)SKIPIF1<0?有兩個(gè)不相同的零點(diǎn)SKIPIF1<0?,證明:SKIPIF1<0?.【答案】(1)在SKIPIF1<0?上單調(diào)遞減,SKIPIF1<0?上單調(diào)遞增.(2)證明見解析【解析】(1)由SKIPIF1<0(SKIPIF1<0),得SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,因?yàn)镾KIPIF1<0,所以當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,所以SKIPIF1<0?在SKIPIF1<0?上單調(diào)遞減,SKIPIF1<0?上單調(diào)遞增.(2)由(1)的結(jié)論,不妨設(shè)SKIPIF1<0?.又SKIPIF1<0?均SKIPIF1<0?,只需證SKIPIF1<0?.構(gòu)造函數(shù)SKIPIF1<0?.則SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,SKIPIF1<0所以SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時(shí)取等號,而SKIPIF1<0,所以取不到等號,所以SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單遞增,所以SKIPIF1<0,所以SKIPIF1<0?恒成立,結(jié)論得證.【一隅三反】1.(2022·福建泉州·模擬預(yù)測)已知函數(shù)SKIPIF1<0(1)討論SKIPIF1<0的單調(diào)性;(2)若SKIPIF1<0在SKIPIF1<0有兩個(gè)極值點(diǎn)SKIPIF1<0,求證:SKIPIF1<0.【答案】(1)當(dāng)SKIPIF1<0時(shí),SKIPIF1<0在SKIPIF1<0上單調(diào)遞增;當(dāng)SKIPIF1<0或SKIPIF1<0時(shí),SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,SKIPIF1<0在SKIPIF1<0和SKIPIF1<0上單調(diào)遞增.(2)見解析【解析】(1)由SKIPIF1<0,求導(dǎo)得SKIPIF1<0,易知SKIPIF1<0恒成立,故看SKIPIF1<0的正負(fù),即由判別式SKIPIF1<0進(jìn)行判斷,①當(dāng)SKIPIF1<0時(shí),即SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0在SKIPIF1<0上單調(diào)遞增;②當(dāng)SKIPIF1<0時(shí),即SKIPIF1<0或SKIPIF1<0,令SKIPIF1<0時(shí),解得SKIPIF1<0或SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,則SKIPIF1<0在SKIPIF1<0上單調(diào)遞減;當(dāng)SKIPIF1<0或SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0在SKIPIF1<0和SKIPIF1<0上單調(diào)遞增;綜上所述,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0在SKIPIF1<0上單調(diào)遞增;當(dāng)SKIPIF1<0或SKIPIF1<0時(shí),SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,SKIPIF1<0在SKIPIF1<0和SKIPIF1<0上單調(diào)遞增.(2)SKIPIF1<0在SKIPIF1<0上由兩個(gè)極值點(diǎn)SKIPIF1<0,SKIPIF1<0或SKIPIF1<0,且SKIPIF1<0為方程SKIPIF1<0的兩個(gè)根,即SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0將SKIPIF1<0,SKIPIF1<0代入上式,可得:SKIPIF1<0SKIPIF1<0,由題意,需證SKIPIF1<0,令SKIPIF1<0,求導(dǎo)得SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,則SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,即SKIPIF1<0,故SKIPIF1<0.2.(2022·四川·高三開學(xué)考試(理))已知函數(shù)SKIPIF1<0.(1)當(dāng)SKIPIF1<0時(shí),求證:SKIPIF1<0;(2)當(dāng)SKIPIF1<0時(shí),已知SKIPIF1<0,SKIPIF1<0是兩個(gè)不相等的正數(shù)且SKIPIF1<0,求證:SKIPIF1<0.【答案】(1)證明見解析(2)證明見解析【解析】(1)當(dāng)SKIPIF1<0時(shí),函數(shù)SKIPIF1<0,∴SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,∴SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,∴SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,∴SKIPIF1<0,即SKIPIF1<0.(2)當(dāng)SKIPIF1<0時(shí),函數(shù)SKIPIF1<0,∴SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,∴SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,∴SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,根據(jù)題意不妨設(shè)SKIPIF1<0,①先證明SKIPIF1<0,即證SKIPIF1<0,∵SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,∴只需證SKIPIF1<0,設(shè)SKIPIF1<0,則SKIPIF1<0,∵SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,∴由SKIPIF1<0得SKIPIF1<0,即得證SKIPIF1<0,∴SKIPIF1<0.②再證明SKIPIF1<0,構(gòu)造過SKIPIF1<0函數(shù)SKIPIF1<0的切線SKIPIF1<0,過SKIPIF1<0與SKIPIF1<0兩點(diǎn)函數(shù)SKIPIF1<0的割線SKIPIF1<0,不妨設(shè)SKIPIF1<0,設(shè)SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0單調(diào)遞增,∵SKIPIF1<0得SKIPIF1<0,SKIPIF1<0單調(diào)遞增,∴SKIPIF1<0得SKIPIF1<0,∴SKIPIF1<0得SKIPIF1<0.設(shè)SKIPIF1<0,SKIPIF1<0,由SKIPIF1<0(當(dāng)SKIPIF1<0地取等),得SKIPIF1<0,則SKIPIF1<0,∴SKIPIF1<0得SKIPIF1<0,∴SKIPIF1<0得SKIPIF1<0.由SKIPIF1<0得SKIPIF1<0,SKIPIF1<0得SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0.綜上得SKIPIF1<0.8.(2022·全國·興國中學(xué)高三階段練習(xí)(理))已知函數(shù)SKIPIF1<0.(1)當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,求實(shí)數(shù)m的取值范圍;(2)若SKIPIF1<0,使得SKIPIF1<0,求證:SKIPIF1<0.【答案】(1)SKIPIF1<0(2)證明見解析【解析】(1)由SKIPIF1<0,得SKIPIF1<0,即SKIPIF1<0,其中SKIPIF1<0,令SKIPIF1<0,得SKIPIF1<0,設(shè)SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,所以SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,所以SKIPIF1<0在SKIPIF1<0上有最大值,SKIPIF1<0,所以m的取值范圍為SKIPIF1<0;(2)由SKIPIF1<0,可得SKIPIF1<0,整理為SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,不妨設(shè)SKIPIF1<0,所以SKIPIF1<0,從而SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,下面證明SKIPIF1<0,即證明SKIPIF1<0,令SKIPIF1<0,即證明SKIPIF1<0,其中SKIPIF1<0,只要證明SKIPIF1<0,設(shè)SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,所以SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0.4.(2022·河南·鄭州市第七中學(xué)高三階段練習(xí)(理))巳知函數(shù)SKIPIF1<0.(1)求函數(shù)f(x)的最大值;(2)若關(guān)于x的方程SKIPIF1<0有兩個(gè)不等實(shí)數(shù)根SKIPIF1<0證明:SKIPIF1<0SKIPIF1<0【答案】(1)2(2)證明見詳解【解析】(1)因?yàn)镾KIPIF1<0,所以SKIPIF1<0.令SKIPIF1<0,得SKIPIF1<0;令SKIPIF1<0,得SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,在SKIPIF1<0上單調(diào)遞減,所以SKIPIF1<0.(2)方程SKIPIF1<0可化為SKIPIF1<0SKIPIF1<0.設(shè)SKIPIF1<0,顯然SKIPIF1<0在SKIPIF1<0上是增函數(shù),又SKIPIF1<0,所以有SKIPIF1<0,即方程SKIPIF1<0有兩個(gè)實(shí)數(shù)根SKIPIF1<0,SKIPIF1<0.由(1)可知SKIPIF1<0,則有SKIPIF1<0,所以SKIPIF1<0的取值范圍為SKIPIF1<0.因?yàn)榉匠蘏KIPIF1<0有兩個(gè)實(shí)數(shù)根SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,則SKIPIF1<0,要證SKIPIF1<0,即證SKIPIF1<0.SKIPIF1<0SKIPIF1<0,需證SKIPIF1<0.需證SKIPIF1<0.不妨設(shè)SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,即要證SKIPIF1<0.設(shè)SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上是增函數(shù),SKIPIF1<0,即SKIPIF1<0成立,故原式成立.9.6導(dǎo)數(shù)的綜合運(yùn)用(精練)(基礎(chǔ)版)題組一題組一零點(diǎn)問題1.(2022·內(nèi)蒙古包頭·高三開學(xué)考試(理))已知函數(shù)SKIPIF1<0.(1)若SKIPIF1<0,求SKIPIF1<0的單調(diào)區(qū)間;(2)討論SKIPIF1<0的零點(diǎn)情況.【答案】(1)遞增區(qū)間為SKIPIF1<0,遞減區(qū)間為SKIPIF1<0(2)答案見解析【解析】(1)解:當(dāng)SKIPIF1<0時(shí),則SKIPIF1<0,可得SKIPIF1<0,令SKIPIF1<0,解得SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0單調(diào)遞增,SKIPIF1<0在SKIPIF1<0單調(diào)遞減.(2)解:當(dāng)SKIPIF1<0時(shí),SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0等價(jià)于SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0;所以SKIPIF1<0在SKIPIF1<0單調(diào)遞增;在SKIPIF1<0單調(diào)遞減,且當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,如圖所示,可得SKIPIF1<0為SKIPIF1<0的極大值,當(dāng)SKIPIF1<0,即SKIPIF1<0時(shí),SKIPIF1<0與SKIPIF1<0只有1個(gè)交點(diǎn),即SKIPIF1<0只有1個(gè)零點(diǎn);當(dāng)SKIPIF1<0時(shí),SKIPIF1<0與SKIPIF1<0有2個(gè)交點(diǎn),即SKIPIF1<0有2個(gè)零點(diǎn);當(dāng)SKIPIF1<0時(shí),SKIPIF1<0與SKIPIF1<0有3個(gè)交點(diǎn),即SKIPIF1<0有3個(gè)零點(diǎn).綜上,SKIPIF1<0時(shí),SKIPIF1<0只有1個(gè)零點(diǎn);當(dāng)SKIPIF1<0時(shí),SKIPIF1<0有2個(gè)零點(diǎn);當(dāng)SKIPIF1<0時(shí),SKIPIF1<0有3個(gè)零點(diǎn).2.(2020·陜西·榆林市第十中學(xué)高三期中(理))已知函數(shù)SKIPIF1<0,SKIPIF1<0.(1)討論SKIPIF1<0的單調(diào)性;(2)設(shè)SKIPIF1<0,函數(shù)SKIPIF1<0有兩個(gè)不同的零點(diǎn),求實(shí)數(shù)SKIPIF1<0的取值范圍.【答案】(1)答案見解析(2)SKIPIF1<0【解析】(1)解:函數(shù)SKIPIF1<0的定義域?yàn)镾KIPIF1<0,且SKIPIF1<0.當(dāng)SKIPIF1<0時(shí),即當(dāng)SKIPIF1<0時(shí),對任意的SKIPIF1<0,SKIPIF1<0,此時(shí)函數(shù)SKIPIF1<0的增區(qū)間為SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),即當(dāng)SKIPIF1<0時(shí),由SKIPIF1<0可得SKIPIF1<0,由SKIPIF1<0可得SKIPIF1<0,此時(shí),函數(shù)SKIPIF1<0的單調(diào)遞增區(qū)間為SKIPIF1<0,單調(diào)遞減區(qū)間為SKIPIF1<0.綜上所述,當(dāng)SKIPIF1<0時(shí),函數(shù)SKIPIF1<0的增區(qū)間為SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),函數(shù)SKIPIF1<0的單調(diào)遞增區(qū)間為SKIPIF1<0,單調(diào)遞減區(qū)間為SKIPIF1<0.(2)解:由SKIPIF1<0,可得SKIPIF1<0,其中SKIPIF1<0,構(gòu)造函數(shù)SKIPIF1<0,其中SKIPIF1<0,所以,直線SKIPIF1<0與函數(shù)SKIPIF1<0的圖象有兩個(gè)交點(diǎn),SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,此時(shí)函數(shù)SKIPIF1<0單調(diào)遞增,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,所以,函數(shù)SKIPIF1<0單調(diào)遞減,所以,函數(shù)SKIPIF1<0的極大值為SKIPIF1<0,且當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,如下圖所示:由圖可知,當(dāng)SKIPIF1<0時(shí),直線SKIPIF1<0與函數(shù)SKIPIF1<0的圖象有兩個(gè)交點(diǎn),因此,實(shí)數(shù)SKIPIF1<0的取值范圍是SKIPIF1<0.3.(2022·廣東·金山中學(xué)高三階段練習(xí))已知函數(shù)SKIPIF1<0,和SKIPIF1<0,(1)若SKIPIF1<0與SKIPIF1<0有相同的最小值,求SKIPIF1<0的值;(2)設(shè)SKIPIF1<0有兩個(gè)零點(diǎn),求SKIPIF1<0的取值范圍.【答案】(1)SKIPIF1<0(2)SKIPIF1<0【解析】(1)SKIPIF1<0,SKIPIF1<0當(dāng)SKIPIF1<0時(shí),SKIPIF1<0在R上單調(diào)遞減,無最值,舍去當(dāng)SKIPIF1<0時(shí),令SKIPIF1<0,則SKIPIF1<0∴SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增,則SKIPIF1<0∵SKIPIF1<0,則SKIPIF1<0的定義域?yàn)镾KIPIF1<0SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0∴SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增,則SKIPIF1<0依題SKIPIF1<0

SKIPIF1<0(2)由題意可知:SKIPIF1<0SKIPIF1<0令SKIPIF1<0,即SKIPIF1<0,則SKIPIF1<0即SKIPIF1<0,則SKIPIF1<0∵SKIPIF1<0在SKIPIF1<0上單調(diào)遞增則SKIPIF1<0,即SKIPIF1<0在SKIPIF1<0上有兩個(gè)零點(diǎn)由(1)可得:SKIPIF1<0,解得:SKIPIF1<0此時(shí)SKIPIF1<0在SKIPIF1<0上有一個(gè)零點(diǎn)當(dāng)SKIPIF1<0時(shí),下證SKIPIF1<0在SKIPIF1<0上有一個(gè)零點(diǎn)取SKIPIF1<0,則SKIPIF1<0令SKIPIF1<0,則SKIPIF1<0∴SKIPIF1<0在SKIPIF1<0單調(diào)遞減,則SKIPIF1<0,即SKIPIF1<0∵SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0∴SKIPIF1<0令SKIPIF1<0,則SKIPIF1<0又∵SKIPIF1<0,則SKIPIF1<0∴SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,則SKIPIF1<0即SKIPIF1<0∴SKIPIF1<0在SKIPIF1<0上有一個(gè)零點(diǎn)則SKIPIF1<0的取值范圍為SKIPIF1<04.(2022·安徽省定遠(yuǎn)縣第三中學(xué)高三階段練習(xí))已知函數(shù)SKIPIF1<0,SKIPIF1<0為SKIPIF1<0的導(dǎo)數(shù).(1)判斷并證明SKIPIF1<0在區(qū)間SKIPIF1<0上存在的極大值點(diǎn)個(gè)數(shù);(2)判斷SKIPIF1<0的零點(diǎn)個(gè)數(shù).【答案】(1)SKIPIF1<0在區(qū)間SKIPIF1<0上存在的極大值點(diǎn)個(gè)數(shù)為1,理由見解析;(2)2個(gè)零點(diǎn),理由見解析.【解析】(1)SKIPIF1<0在區(qū)間SKIPIF1<0上存在的極大值點(diǎn)個(gè)數(shù)為1,理由如下:SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,令SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,令SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,又SKIPIF1<0,SKIPIF1<0,故存在SKIPIF1<0,使得SKIPIF1<0,且當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0處取得極大值,故SKIPIF1<0在區(qū)間SKIPIF1<0上存在的極大值點(diǎn)個(gè)數(shù)為1;(2)SKIPIF1<0的定義域?yàn)镾KIPIF1<0,①當(dāng)SKIPIF1<0時(shí),由(1)知,SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,而SKIPIF1<0,所以當(dāng)SK

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論