版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
周口市重點(diǎn)中學(xué)2025屆高三下學(xué)期第十四次周考數(shù)學(xué)試題(A)試卷注意事項(xiàng)1.考生要認(rèn)真填寫(xiě)考場(chǎng)號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書(shū)寫(xiě)在答題卡上,在試卷上作答無(wú)效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.若不等式對(duì)于一切恒成立,則的最小值是()A.0 B. C. D.2.已知橢圓:的左,右焦點(diǎn)分別為,,過(guò)的直線交橢圓于,兩點(diǎn),若,且的三邊長(zhǎng),,成等差數(shù)列,則的離心率為()A. B. C. D.3.已知焦點(diǎn)為的拋物線的準(zhǔn)線與軸交于點(diǎn),點(diǎn)在拋物線上,則當(dāng)取得最大值時(shí),直線的方程為()A.或 B.或 C.或 D.4.《算數(shù)書(shū)》竹簡(jiǎn)于上世紀(jì)八十年代在湖北省江陵縣張家山出土,這是我國(guó)現(xiàn)存最早的有系統(tǒng)的數(shù)學(xué)典籍.其中記載有求“囷蓋”的術(shù):“置如其周,令相承也.又以高乘之,三十六成一”.該術(shù)相當(dāng)于給出了由圓錐的底面周長(zhǎng)與高,計(jì)算其體積的近似公式.它實(shí)際上是將圓錐體積公式中的圓周率近似取為3.那么近似公式相當(dāng)于將圓錐體積公式中的圓周率近似取為()A. B. C. D.5.雙曲線:(),左焦點(diǎn)到漸近線的距離為2,則雙曲線的漸近線方程為()A. B. C. D.6.已知復(fù)數(shù)和復(fù)數(shù),則為A. B. C. D.7.已知非零向量,滿足,,則與的夾角為()A. B. C. D.8.已知函數(shù),,當(dāng)時(shí),不等式恒成立,則實(shí)數(shù)a的取值范圍為()A. B. C. D.9.在中,,則()A. B. C. D.10.黨的十九大報(bào)告明確提出:在共享經(jīng)濟(jì)等領(lǐng)域培育增長(zhǎng)點(diǎn)、形成新動(dòng)能.共享經(jīng)濟(jì)是公眾將閑置資源通過(guò)社會(huì)化平臺(tái)與他人共享,進(jìn)而獲得收入的經(jīng)濟(jì)現(xiàn)象.為考察共享經(jīng)濟(jì)對(duì)企業(yè)經(jīng)濟(jì)活躍度的影響,在四個(gè)不同的企業(yè)各取兩個(gè)部門(mén)進(jìn)行共享經(jīng)濟(jì)對(duì)比試驗(yàn),根據(jù)四個(gè)企業(yè)得到的試驗(yàn)數(shù)據(jù)畫(huà)出如下四個(gè)等高條形圖,最能體現(xiàn)共享經(jīng)濟(jì)對(duì)該部門(mén)的發(fā)展有顯著效果的圖形是()A. B.C. D.11.在菱形中,,,,分別為,的中點(diǎn),則()A. B. C.5 D.12.已知雙曲線()的漸近線方程為,則()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.過(guò)直線上一點(diǎn)作圓的兩條切線,切點(diǎn)分別為,,則的最小值是______.14.已知為等比數(shù)列,是它的前項(xiàng)和.若,且與的等差中項(xiàng)為,則__________.15.函數(shù)在上的最小值和最大值分別是_____________.16.設(shè),若函數(shù)有大于零的極值點(diǎn),則實(shí)數(shù)的取值范圍是_____三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知函數(shù)(1)當(dāng)時(shí),求不等式的解集;(2)的圖象與兩坐標(biāo)軸的交點(diǎn)分別為,若三角形的面積大于,求參數(shù)的取值范圍.18.(12分)的內(nèi)角,,的對(duì)邊分別為,,已知,.(1)求;(2)若的面積,求.19.(12分)已知函數(shù)為實(shí)數(shù))的圖像在點(diǎn)處的切線方程為.(1)求實(shí)數(shù)的值及函數(shù)的單調(diào)區(qū)間;(2)設(shè)函數(shù),證明時(shí),.20.(12分)這次新冠肺炎疫情,是新中國(guó)成立以來(lái)在我國(guó)發(fā)生的傳播速度最快、感染范圍最廣、防控難度最大的一次重大突發(fā)公共衛(wèi)生事件.中華民族歷史上經(jīng)歷過(guò)很多磨難,但從來(lái)沒(méi)有被壓垮過(guò),而是愈挫愈勇,不斷在磨難中成長(zhǎng),從磨難中奮起.在這次疫情中,全國(guó)人民展現(xiàn)出既有責(zé)任擔(dān)當(dāng)之勇、又有科學(xué)防控之智.某校高三學(xué)生也展開(kāi)了對(duì)這次疫情的研究,一名同學(xué)在數(shù)據(jù)統(tǒng)計(jì)中發(fā)現(xiàn),從2020年2月1日至2月7日期間,日期和全國(guó)累計(jì)報(bào)告確診病例數(shù)量(單位:萬(wàn)人)之間的關(guān)系如下表:日期1234567全國(guó)累計(jì)報(bào)告確診病例數(shù)量(萬(wàn)人)1.41.72.02.42.83.13.5(1)根據(jù)表中的數(shù)據(jù),運(yùn)用相關(guān)系數(shù)進(jìn)行分析說(shuō)明,是否可以用線性回歸模型擬合與的關(guān)系?(2)求出關(guān)于的線性回歸方程(系數(shù)精確到0.01).并預(yù)測(cè)2月10日全國(guó)累計(jì)報(bào)告確診病例數(shù).參考數(shù)據(jù):,,,.參考公式:相關(guān)系數(shù)回歸方程中斜率和截距的最小二乘估計(jì)公式分別為:,.21.(12分)已知點(diǎn)、分別在軸、軸上運(yùn)動(dòng),,.(1)求點(diǎn)的軌跡的方程;(2)過(guò)點(diǎn)且斜率存在的直線與曲線交于、兩點(diǎn),,求的取值范圍.22.(10分)如圖,平面四邊形為直角梯形,,,,將繞著翻折到.(1)為上一點(diǎn),且,當(dāng)平面時(shí),求實(shí)數(shù)的值;(2)當(dāng)平面與平面所成的銳二面角大小為時(shí),求與平面所成角的正弦.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.C【解析】
試題分析:將參數(shù)a與變量x分離,將不等式恒成立問(wèn)題轉(zhuǎn)化為求函數(shù)最值問(wèn)題,即可得到結(jié)論.解:不等式x2+ax+1≥0對(duì)一切x∈(0,]成立,等價(jià)于a≥-x-對(duì)于一切成立,∵y=-x-在區(qū)間上是增函數(shù)∴∴a≥-∴a的最小值為-故答案為C.考點(diǎn):不等式的應(yīng)用點(diǎn)評(píng):本題綜合考查了不等式的應(yīng)用、不等式的解法等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,考查化歸與轉(zhuǎn)化思想,屬于中檔題2.C【解析】
根據(jù)等差數(shù)列的性質(zhì)設(shè)出,,,利用勾股定理列方程,結(jié)合橢圓的定義,求得.再利用勾股定理建立的關(guān)系式,化簡(jiǎn)后求得離心率.【詳解】由已知,,成等差數(shù)列,設(shè),,.由于,據(jù)勾股定理有,即,化簡(jiǎn)得;由橢圓定義知的周長(zhǎng)為,有,所以,所以;在直角中,由勾股定理,,∴離心率.故選:C本小題主要考查橢圓離心率的求法,考查橢圓的定義,考查等差數(shù)列的性質(zhì),屬于中檔題.3.A【解析】
過(guò)作與準(zhǔn)線垂直,垂足為,利用拋物線的定義可得,要使最大,則應(yīng)最大,此時(shí)與拋物線相切,再用判別式或?qū)?shù)計(jì)算即可.【詳解】過(guò)作與準(zhǔn)線垂直,垂足為,,則當(dāng)取得最大值時(shí),最大,此時(shí)與拋物線相切,易知此時(shí)直線的斜率存在,設(shè)切線方程為,則.則,則直線的方程為.故選:A.本題考查直線與拋物線的位置關(guān)系,涉及到拋物線的定義,考查學(xué)生轉(zhuǎn)化與化歸的思想,是一道中檔題.4.C【解析】
將圓錐的體積用兩種方式表達(dá),即,解出即可.【詳解】設(shè)圓錐底面圓的半徑為r,則,又,故,所以,.故選:C.本題利用古代數(shù)學(xué)問(wèn)題考查圓錐體積計(jì)算的實(shí)際應(yīng)用,考查學(xué)生的運(yùn)算求解能力、創(chuàng)新能力.5.B【解析】
首先求得雙曲線的一條漸近線方程,再利用左焦點(diǎn)到漸近線的距離為2,列方程即可求出,進(jìn)而求出漸近線的方程.【詳解】設(shè)左焦點(diǎn)為,一條漸近線的方程為,由左焦點(diǎn)到漸近線的距離為2,可得,所以漸近線方程為,即為,故選:B本題考查雙曲線的漸近線的方程,考查了點(diǎn)到直線的距離公式,屬于中檔題.6.C【解析】
利用復(fù)數(shù)的三角形式的乘法運(yùn)算法則即可得出.【詳解】z1z2=(cos23°+isin23°)?(cos37°+isin37°)=cos60°+isin60°=.故答案為C.熟練掌握復(fù)數(shù)的三角形式的乘法運(yùn)算法則是解題的關(guān)鍵,復(fù)數(shù)問(wèn)題高考必考,常見(jiàn)考點(diǎn)有:點(diǎn)坐標(biāo)和復(fù)數(shù)的對(duì)應(yīng)關(guān)系,點(diǎn)的象限和復(fù)數(shù)的對(duì)應(yīng)關(guān)系,復(fù)數(shù)的加減乘除運(yùn)算,復(fù)數(shù)的模長(zhǎng)的計(jì)算.7.B【解析】
由平面向量垂直的數(shù)量積關(guān)系化簡(jiǎn),即可由平面向量數(shù)量積定義求得與的夾角.【詳解】根據(jù)平面向量數(shù)量積的垂直關(guān)系可得,,所以,即,由平面向量數(shù)量積定義可得,所以,而,即與的夾角為.故選:B本題考查了平面向量數(shù)量積的運(yùn)算,平面向量夾角的求法,屬于基礎(chǔ)題.8.D【解析】
由變形可得,可知函數(shù)在為增函數(shù),由恒成立,求解參數(shù)即可求得取值范圍.【詳解】,即函數(shù)在時(shí)是單調(diào)增函數(shù).則恒成立..令,則時(shí),單調(diào)遞減,時(shí)單調(diào)遞增.故選:D.本題考查構(gòu)造函數(shù),借助單調(diào)性定義判斷新函數(shù)的單調(diào)性問(wèn)題,考查恒成立時(shí)求解參數(shù)問(wèn)題,考查學(xué)生的分析問(wèn)題的能力和計(jì)算求解的能力,難度較難.9.A【解析】
先根據(jù)得到為的重心,從而,故可得,利用可得,故可計(jì)算的值.【詳解】因?yàn)樗詾榈闹匦?,所?所以,所以,因?yàn)椋?,故選A.對(duì)于,一般地,如果為的重心,那么,反之,如果為平面上一點(diǎn),且滿足,那么為的重心.10.D【解析】根據(jù)四個(gè)列聯(lián)表中的等高條形圖可知,圖中D中共享與不共享的企業(yè)經(jīng)濟(jì)活躍度的差異最大,它最能體現(xiàn)共享經(jīng)濟(jì)對(duì)該部門(mén)的發(fā)展有顯著效果,故選D.11.B【解析】
據(jù)題意以菱形對(duì)角線交點(diǎn)為坐標(biāo)原點(diǎn)建立平面直角坐標(biāo)系,用坐標(biāo)表示出,再根據(jù)坐標(biāo)形式下向量的數(shù)量積運(yùn)算計(jì)算出結(jié)果.【詳解】設(shè)與交于點(diǎn),以為原點(diǎn),的方向?yàn)檩S,的方向?yàn)檩S,建立直角坐標(biāo)系,則,,,,,所以.故選:B.本題考查建立平面直角坐標(biāo)系解決向量的數(shù)量積問(wèn)題,難度一般.長(zhǎng)方形、正方形、菱形中的向量數(shù)量積問(wèn)題,如果直接計(jì)算較麻煩可考慮用建系的方法求解.12.A【解析】
根據(jù)雙曲線方程(),確定焦點(diǎn)位置,再根據(jù)漸近線方程得到求解.【詳解】因?yàn)殡p曲線(),所以,又因?yàn)闈u近線方程為,所以,所以.故選:A.本題主要考查雙曲線的幾何性質(zhì),還考查了運(yùn)算求解的能力,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
由切線的性質(zhì),可知,切由直角三角形PAO,PBO,即可設(shè),進(jìn)而表示,由圖像觀察可知進(jìn)而求出x的范圍,再用的式子表示,整理后利用換元法與雙勾函數(shù)求出最小值.【詳解】由題可知,,設(shè),由切線的性質(zhì)可知,則顯然,則或(舍去)因?yàn)榱?,則,由雙勾函數(shù)單調(diào)性可知其在區(qū)間上單調(diào)遞增,所以故答案為:本題考查在以直線與圓的位置關(guān)系為背景下求向量數(shù)量積的最值問(wèn)題,應(yīng)用函數(shù)形式表示所求式子,進(jìn)而利用分析函數(shù)單調(diào)性或基本不等式求得最值,屬于較難題.14.【解析】
設(shè)等比數(shù)列的公比為,根據(jù)題意求出和的值,進(jìn)而可求得和的值,利用等比數(shù)列求和公式可求得的值.【詳解】由等比數(shù)列的性質(zhì)可得,,由于與的等差中項(xiàng)為,則,則,,,,,因此,.故答案為:.本題考查等比數(shù)列求和,解答的關(guān)鍵就是等比數(shù)列的公比,考查計(jì)算能力,屬于基礎(chǔ)題.15.【解析】
求導(dǎo),研究函數(shù)單調(diào)性,分析,即得解【詳解】由題意得,,令,解得,令,解得.在上遞減,在遞增.,而,故在區(qū)間上的最小值和最大值分別是.故答案為:本題考查了導(dǎo)數(shù)在函數(shù)最值的求解中的應(yīng)用,考查了學(xué)生綜合分析,轉(zhuǎn)化劃歸,數(shù)學(xué)運(yùn)算的能力,屬于中檔題16.【解析】
先求導(dǎo)數(shù),求解導(dǎo)數(shù)為零的根,結(jié)合根的分布求解.【詳解】因?yàn)?,所以,令得,因?yàn)楹瘮?shù)有大于0的極值點(diǎn),所以,即.本題主要考查利用導(dǎo)數(shù)研究函數(shù)的極值點(diǎn)問(wèn)題,極值點(diǎn)為導(dǎo)數(shù)的變號(hào)零點(diǎn),側(cè)重考查轉(zhuǎn)化化歸思想.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(1)(2)【解析】
(1)當(dāng)時(shí),不等式可化為:,再利用絕對(duì)值的意義,分,,討論求解.(2)根據(jù)可得,得到函數(shù)的圖象與兩坐標(biāo)軸的交點(diǎn)坐標(biāo)分別為,再利用三角形面積公式由求解.【詳解】(1)當(dāng)時(shí),不等式可化為:①當(dāng)時(shí),不等式化為,解得:②當(dāng)時(shí),不等式化為,解得:,③當(dāng)時(shí),不等式化為解集為,綜上,不等式的解集為.(2)由題得,所以函數(shù)的圖象與兩坐標(biāo)軸的交點(diǎn)坐標(biāo)分別為,的面積為,由,得(舍),或,所以,參數(shù)的取值范圍是.本題主要考查絕對(duì)值不等式的解法和絕對(duì)值函數(shù)的應(yīng)用,還考查分類(lèi)討論的思想和運(yùn)算求解的能力,屬于中檔題.18.(1);(2)【解析】
試題分析:(1)根據(jù)余弦定理求出B,帶入條件求出,利用同角三角函數(shù)關(guān)系求其余弦,再利用兩角差的余弦定理即可求出;(2)根據(jù)(1)及面積公式可得,利用正弦定理即可求出.試題解析:(1)由,得,∴.∵,∴.由,得,∴.∴.(2)由(1),得.由及題設(shè)條件,得,∴.由,得,∴,∴.點(diǎn)睛:解決三角形中的角邊問(wèn)題時(shí),要根據(jù)條件選擇正余弦定理,將問(wèn)題轉(zhuǎn)化統(tǒng)一為邊的問(wèn)題或角的問(wèn)題,利用三角中兩角和差等公式處理,特別注意內(nèi)角和定理的運(yùn)用,涉及三角形面積最值問(wèn)題時(shí),注意均值不等式的利用,特別求角的時(shí)候,要注意分析角的范圍,才能寫(xiě)出角的大小.19.(1);函數(shù)的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為;(2)詳見(jiàn)解析.【解析】
試題分析:(1)由題得,根據(jù)曲線在點(diǎn)處的切線方程,列出方程組,求得的值,得到的解析式,即可求解函數(shù)的單調(diào)區(qū)間;(2)由(1)得根據(jù)由,整理得,設(shè),轉(zhuǎn)化為函數(shù)的最值,即可作出證明.試題解析:(1)由題得,函數(shù)的定義域?yàn)?,,因?yàn)榍€在點(diǎn)處的切線方程為,所以解得.令,得,當(dāng)時(shí),,在區(qū)間內(nèi)單調(diào)遞減;當(dāng)時(shí),,在區(qū)間內(nèi)單調(diào)遞增.所以函數(shù)的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為.(2)由(1)得,.由,得,即.要證,需證,即證,設(shè),則要證,等價(jià)于證:.令,則,∴在區(qū)間內(nèi)單調(diào)遞增,,即,故.20.(1)可以用線性回歸模型擬合與的關(guān)系;(2),預(yù)測(cè)2月10日全國(guó)累計(jì)報(bào)告確診病例數(shù)約有4.5萬(wàn)人.【解析】
(1)根據(jù)已知數(shù)據(jù),利用公式求得,再根據(jù)的值越大說(shuō)明它們的線性相關(guān)性越高來(lái)判斷.(2)由(1)的相關(guān)數(shù)據(jù),求得,,寫(xiě)出回歸方程,然后將代入回歸方程求解.【詳解】(1)由已知數(shù)據(jù)得,,,所以,,所以.因?yàn)榕c的相關(guān)近似為0.99,說(shuō)明它們的線性相關(guān)性相當(dāng)高,從而可以用線性回歸模型擬合與的關(guān)系.(2)由(1)得,,,所以,關(guān)于的回歸方程為:,2月10日,即代入回歸方程得:.所以預(yù)測(cè)2月10日全國(guó)累計(jì)報(bào)告確診病例數(shù)約有4.5萬(wàn)人.本題主要考查線性回歸分析和回歸方程的求解及應(yīng)用,還考查了運(yùn)算求解的能力,屬于中檔題.2
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 無(wú)源單項(xiàng)逆變器課程設(shè)計(jì)
- 現(xiàn)代陶藝概論課程設(shè)計(jì)
- 武漢市模具課程設(shè)計(jì)
- 2022-2023學(xué)年湖南湘潭市湘潭縣五年級(jí)下冊(cè)語(yǔ)文期末試卷及答案
- 1922一次函數(shù)第1課時(shí)教學(xué)設(shè)計(jì)人教版數(shù)學(xué)八年級(jí)下冊(cè)
- 《Unit1Don'twalk!》(教案)-2024-2025學(xué)年北師大版(一起)英語(yǔ)三年級(jí)上冊(cè)
- 2024年政府重點(diǎn)扶持的環(huán)保產(chǎn)業(yè)合作項(xiàng)目招商引資合同范本2篇
- 2024年文化創(chuàng)意產(chǎn)業(yè)投資借款合作合同模板3篇
- 【教無(wú)憂】高中語(yǔ)文教案選擇性必修下冊(cè)(2019)古詩(shī)誦讀《登快閣》
- 2024人民醫(yī)院新生兒監(jiān)護(hù)設(shè)備采購(gòu)與新生兒護(hù)理培訓(xùn)合同3篇
- 2024-2025學(xué)年寒假致學(xué)生家長(zhǎng)的一封信(安全版)
- 人才引進(jìn)政策購(gòu)房合同模板
- 《兩用物項(xiàng)證》課件
- 《電梯維保規(guī)則》課件
- DB54T 0425.1-2024 公共數(shù)據(jù) 數(shù)據(jù)元規(guī)范 第一部分:總則
- 江蘇省泰州市2023-2024學(xué)年高一上學(xué)期期末語(yǔ)文試題及答案
- 2024年高考政治選必二《法律與生活》重要知識(shí)問(wèn)題梳理總結(jié)
- 孕早期nt檢查課件
- 期末復(fù)習(xí)(試題)-2024-2025學(xué)年三年級(jí)上冊(cè)數(shù)學(xué)蘇教版
- 浙江省杭州市2023-2024學(xué)年高一上學(xué)期1月期末英語(yǔ)試題 含解析
- 人教版(2024新版)英語(yǔ)七年級(jí)上冊(cè)期末復(fù)習(xí)綜合測(cè)試卷(含答案)
評(píng)論
0/150
提交評(píng)論