云南省耿馬縣民族中學(xué)2025屆高三下學(xué)期期末質(zhì)量監(jiān)控?cái)?shù)學(xué)試題含解析_第1頁
云南省耿馬縣民族中學(xué)2025屆高三下學(xué)期期末質(zhì)量監(jiān)控?cái)?shù)學(xué)試題含解析_第2頁
云南省耿馬縣民族中學(xué)2025屆高三下學(xué)期期末質(zhì)量監(jiān)控?cái)?shù)學(xué)試題含解析_第3頁
云南省耿馬縣民族中學(xué)2025屆高三下學(xué)期期末質(zhì)量監(jiān)控?cái)?shù)學(xué)試題含解析_第4頁
云南省耿馬縣民族中學(xué)2025屆高三下學(xué)期期末質(zhì)量監(jiān)控?cái)?shù)學(xué)試題含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

云南省耿馬縣民族中學(xué)2025屆高三下學(xué)期期末質(zhì)量監(jiān)控?cái)?shù)學(xué)試題注意事項(xiàng)1.考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回.2.答題前,請(qǐng)務(wù)必將自己的姓名、準(zhǔn)考證號(hào)用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請(qǐng)認(rèn)真核對(duì)監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號(hào)與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對(duì)應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動(dòng),請(qǐng)用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號(hào)等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知實(shí)數(shù)滿足則的最大值為()A.2 B. C.1 D.02.設(shè)為銳角,若,則的值為()A. B. C. D.3.若直線y=kx+1與圓x2+y2=1相交于P、Q兩點(diǎn),且∠POQ=120°(其中O為坐標(biāo)原點(diǎn)),則k的值為()A. B. C.或- D.和-4.二項(xiàng)式展開式中,項(xiàng)的系數(shù)為()A. B. C. D.5.已知點(diǎn)是雙曲線上一點(diǎn),若點(diǎn)到雙曲線的兩條漸近線的距離之積為,則雙曲線的離心率為()A. B. C. D.26.在中,內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,且.若,的面積為,則()A.5 B. C.4 D.167.已知集合,則()A. B.C. D.8.若直線與曲線相切,則()A.3 B. C.2 D.9.在中,內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,D是AB的中點(diǎn),若,且,則面積的最大值是()A. B. C. D.10.設(shè)則以線段為直徑的圓的方程是()A. B.C. D.11.復(fù)數(shù)的()A.第一象限 B.第二象限 C.第三象限 D.第四象限12.高斯是德國著名的數(shù)學(xué)家,近代數(shù)學(xué)奠基者之一,享有“數(shù)學(xué)王子”的稱號(hào),用其名字命名的“高斯函數(shù)”為:設(shè),用表示不超過的最大整數(shù),則稱為高斯函數(shù),例如:,,已知函數(shù)(),則函數(shù)的值域?yàn)椋ǎ〢. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在正方體中,已知點(diǎn)在直線上運(yùn)動(dòng),則下列四個(gè)命題中:①三棱錐的體積不變;②;③當(dāng)為中點(diǎn)時(shí),二面角的余弦值為;④若正方體的棱長為2,則的最小值為;其中說法正確的是____________(寫出所有說法正確的編號(hào))14.已知函數(shù),若,則___________.15.已知,分別是橢圓:()的左、右焦點(diǎn),過左焦點(diǎn)的直線與橢圓交于、兩點(diǎn),且,,則橢圓的離心率為__________.16.在中,角,,的對(duì)邊分別是,,,若,,則的面積的最大值為______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知數(shù)列滿足,且.(1)求證:數(shù)列是等差數(shù)列,并求出數(shù)列的通項(xiàng)公式;(2)求數(shù)列的前項(xiàng)和.18.(12分)在直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),以軸正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.(1)寫出直線的普通方程和曲線的直角坐標(biāo)方程;(2)設(shè)直線與曲線相交于兩點(diǎn),的頂點(diǎn)也在曲線上運(yùn)動(dòng),求面積的最大值.19.(12分)某學(xué)生為了測試煤氣灶燒水如何節(jié)省煤氣的問題設(shè)計(jì)了一個(gè)實(shí)驗(yàn),并獲得了煤氣開關(guān)旋鈕旋轉(zhuǎn)的弧度數(shù)與燒開一壺水所用時(shí)間的一組數(shù)據(jù),且作了一定的數(shù)據(jù)處理(如下表),得到了散點(diǎn)圖(如下圖).表中,.(1)根據(jù)散點(diǎn)圖判斷,與哪一個(gè)更適宜作燒水時(shí)間關(guān)于開關(guān)旋鈕旋轉(zhuǎn)的弧度數(shù)的回歸方程類型?(不必說明理由)(2)根據(jù)判斷結(jié)果和表中數(shù)據(jù),建立關(guān)于的回歸方程;(3)若單位時(shí)間內(nèi)煤氣輸出量與旋轉(zhuǎn)的弧度數(shù)成正比,那么,利用第(2)問求得的回歸方程知為多少時(shí),燒開一壺水最省煤氣?附:對(duì)于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘法估計(jì)值分別為,20.(12分)已知函數(shù)的圖象向左平移后與函數(shù)圖象重合.(1)求和的值;(2)若函數(shù),求的單調(diào)遞增區(qū)間及圖象的對(duì)稱軸方程.21.(12分)為踐行“綠水青山就是金山銀山”的發(fā)展理念和提高生態(tài)環(huán)境的保護(hù)意識(shí),高二年級(jí)準(zhǔn)備成立一個(gè)環(huán)境保護(hù)興趣小組.該年級(jí)理科班有男生400人,女生200人;文科班有男生100人,女生300人.現(xiàn)按男、女用分層抽樣從理科生中抽取6人,按男、女分層抽樣從文科生中抽取4人,組成環(huán)境保護(hù)興趣小組,再從這10人的興趣小組中抽出4人參加學(xué)校的環(huán)保知識(shí)競賽.(1)設(shè)事件為“選出的這4個(gè)人中要求有兩個(gè)男生兩個(gè)女生,而且這兩個(gè)男生必須文、理科生都有”,求事件發(fā)生的概率;(2)用表示抽取的4人中文科女生的人數(shù),求的分布列和數(shù)學(xué)期望.22.(10分)如圖,在三棱柱中,已知四邊形為矩形,,,,的角平分線交于.(1)求證:平面平面;(2)求二面角的余弦值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.B【解析】

作出可行域,平移目標(biāo)直線即可求解.【詳解】解:作出可行域:由得,由圖形知,經(jīng)過點(diǎn)時(shí),其截距最大,此時(shí)最大得,當(dāng)時(shí),故選:B考查線性規(guī)劃,是基礎(chǔ)題.2.D【解析】

用誘導(dǎo)公式和二倍角公式計(jì)算.【詳解】.故選:D.本題考查誘導(dǎo)公式、余弦的二倍角公式,解題關(guān)鍵是找出已知角和未知角之間的聯(lián)系.3.C【解析】

直線過定點(diǎn),直線y=kx+1與圓x2+y2=1相交于P、Q兩點(diǎn),且∠POQ=120°(其中O為原點(diǎn)),可以發(fā)現(xiàn)∠QOx的大小,求得結(jié)果.【詳解】如圖,直線過定點(diǎn)(0,1),∵∠POQ=120°∴∠OPQ=30°,?∠1=120°,∠2=60°,∴由對(duì)稱性可知k=±.故選C.本題考查過定點(diǎn)的直線系問題,以及直線和圓的位置關(guān)系,是基礎(chǔ)題.4.D【解析】

寫出二項(xiàng)式的通項(xiàng)公式,再分析的系數(shù)求解即可.【詳解】二項(xiàng)式展開式的通項(xiàng)為,令,得,故項(xiàng)的系數(shù)為.故選:D本題主要考查了二項(xiàng)式定理的運(yùn)算,屬于基礎(chǔ)題.5.A【解析】

設(shè)點(diǎn)的坐標(biāo)為,代入橢圓方程可得,然后分別求出點(diǎn)到兩條漸近線的距離,由距離之積為,并結(jié)合,可得到的齊次方程,進(jìn)而可求出離心率的值.【詳解】設(shè)點(diǎn)的坐標(biāo)為,有,得.雙曲線的兩條漸近線方程為和,則點(diǎn)到雙曲線的兩條漸近線的距離之積為,所以,則,即,故,即,所以.故選:A.本題考查雙曲線的離心率,構(gòu)造的齊次方程是解決本題的關(guān)鍵,屬于中檔題.6.C【解析】

根據(jù)正弦定理邊化角以及三角函數(shù)公式可得,再根據(jù)面積公式可求得,再代入余弦定理求解即可.【詳解】中,,由正弦定理得,又,∴,又,∴,∴,又,∴.∵,∴,∵,∴由余弦定理可得,∴,可得.故選:C本題主要考查了解三角形中正余弦定理與面積公式的運(yùn)用,屬于中檔題.7.B【解析】

先由得或,再計(jì)算即可.【詳解】由得或,,,又,.故選:B本題主要考查了集合的交集,補(bǔ)集的運(yùn)算,考查學(xué)生的運(yùn)算求解能力.8.A【解析】

設(shè)切點(diǎn)為,對(duì)求導(dǎo),得到,從而得到切線的斜率,結(jié)合直線方程的點(diǎn)斜式化簡得切線方程,聯(lián)立方程組,求得結(jié)果.【詳解】設(shè)切點(diǎn)為,∵,∴由①得,代入②得,則,,故選A.該題考查的是有關(guān)直線與曲線相切求參數(shù)的問題,涉及到的知識(shí)點(diǎn)有導(dǎo)數(shù)的幾何意義,直線方程的點(diǎn)斜式,屬于簡單題目.9.A【解析】

根據(jù)正弦定理可得,求出,根據(jù)平方關(guān)系求出.由兩端平方,求的最大值,根據(jù)三角形面積公式,求出面積的最大值.【詳解】中,,由正弦定理可得,整理得,由余弦定理,得.D是AB的中點(diǎn),且,,即,即,,當(dāng)且僅當(dāng)時(shí),等號(hào)成立.的面積,所以面積的最大值為.故選:.本題考查正、余弦定理、不等式、三角形面積公式和向量的數(shù)量積運(yùn)算,屬于中檔題.10.A【解析】

計(jì)算的中點(diǎn)坐標(biāo)為,圓半徑為,得到圓方程.【詳解】的中點(diǎn)坐標(biāo)為:,圓半徑為,圓方程為.故選:.本題考查了圓的標(biāo)準(zhǔn)方程,意在考查學(xué)生的計(jì)算能力.11.C【解析】所對(duì)應(yīng)的點(diǎn)為(-1,-2)位于第三象限.【考點(diǎn)定位】本題只考查了復(fù)平面的概念,屬于簡單題.12.B【解析】

利用換元法化簡解析式為二次函數(shù)的形式,根據(jù)二次函數(shù)的性質(zhì)求得的取值范圍,由此求得的值域.【詳解】因?yàn)椋ǎ?,所以,令(),則(),函數(shù)的對(duì)稱軸方程為,所以,,所以,所以的值域?yàn)?故選:B本小題考查函數(shù)的定義域與值域等基礎(chǔ)知識(shí),考查學(xué)生分析問題,解決問題的能力,運(yùn)算求解能力,轉(zhuǎn)化與化歸思想,換元思想,分類討論和應(yīng)用意識(shí).二、填空題:本題共4小題,每小題5分,共20分。13.①②④【解析】

①∵,∴平面

,得出上任意一點(diǎn)到平面的距離相等,所以判斷命題①;②由已知得出點(diǎn)P在面上的射影在上,根據(jù)線面垂直的判定和性質(zhì)或三垂線定理,可判斷命題②;③當(dāng)為中點(diǎn)時(shí),以點(diǎn)D為坐標(biāo)原點(diǎn),建立空間直角系,如下圖所示,運(yùn)用二面角的空間向量求解方法可求得二面角的余弦值,可判斷命題③;④過作平面交于點(diǎn),做點(diǎn)關(guān)于面對(duì)稱的點(diǎn),使得點(diǎn)在平面內(nèi),根據(jù)對(duì)稱性和兩點(diǎn)之間線段最短,可求得當(dāng)點(diǎn)在點(diǎn)時(shí),在一條直線上,取得最小值.可判斷命題④.【詳解】①∵,∴平面

,所以上任意一點(diǎn)到平面的距離相等,所以三棱錐的體積不變,所以①正確;

②在直線上運(yùn)動(dòng)時(shí),點(diǎn)P在面上的射影在上,所以DP在面上的射影在上,又,所以,所以②正確;③當(dāng)為中點(diǎn)時(shí),以點(diǎn)D為坐標(biāo)原點(diǎn),建立空間直角系,如下圖所示,設(shè)正方體的棱長為2.則:,,所以,設(shè)面的法向量為,則,即,令,則,設(shè)面的法向量為,,即,,由圖示可知,二面角是銳二面角,所以二面角的余弦值為,所以③不正確;④過作平面交于點(diǎn),做點(diǎn)關(guān)于面對(duì)稱的點(diǎn),使得點(diǎn)在平面內(nèi),則,所以,當(dāng)點(diǎn)在點(diǎn)時(shí),在一條直線上,取得最小值.因?yàn)檎襟w的棱長為2,所以設(shè)點(diǎn)的坐標(biāo)為,,,所以,所以,又所以,所以,,,故④正確.

故答案為:①②④.本題考查空間里的線線,線面,面面關(guān)系,幾何體的體積,在求解空間里的兩線段的和的最小值,仍可以運(yùn)用對(duì)稱的思想,兩點(diǎn)之間線段最短進(jìn)行求解,屬于難度題.14.【解析】

根據(jù)題意,利用函數(shù)奇偶性的定義判斷函數(shù)的奇偶性,利用函數(shù)奇偶性的性質(zhì)求解即可.【詳解】因?yàn)楹瘮?shù),其定義域?yàn)椋云涠x域關(guān)于原點(diǎn)對(duì)稱,又,所以函數(shù)為奇函數(shù),因?yàn)?,所?故答案為:本題考查函數(shù)奇偶性的判斷及其性質(zhì);考查運(yùn)算求解能力;熟練掌握函數(shù)奇偶性的判斷方法是求解本題的關(guān)鍵;屬于中檔題、??碱}型.15.【解析】

設(shè),則,,由知,,,作,垂足為C,則C為的中點(diǎn),在和中分別求出,進(jìn)而求出的關(guān)系式,即可求出橢圓的離心率.【詳解】如圖,設(shè),則,,由橢圓定義知,,因?yàn)?所以,,作,垂足為C,則C為的中點(diǎn),在中,因?yàn)?所以,在中,由余弦定理可得,,即,解得,所以橢圓的離心率為.故答案為:本題考查橢圓的離心率和直線與橢圓的位置關(guān)系;利用橢圓的定義,結(jié)合焦點(diǎn)三角形和余弦定理是求解本題的關(guān)鍵;屬于中檔題、??碱}型.16.【解析】

化簡得到,,根據(jù)余弦定理和均值不等式得到,根據(jù)面積公式計(jì)算得到答案.【詳解】,即,,故.根據(jù)余弦定理:,即.當(dāng)時(shí)等號(hào)成立,故.故答案為:.本題考查了三角恒等變換,余弦定理,均值不等式,面積公式,意在考查學(xué)生的綜合應(yīng)用能力和計(jì)算能力.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1)證明見解析,;(2).【解析】

(1)將等式變形為,進(jìn)而可證明出是等差數(shù)列,確定數(shù)列的首項(xiàng)和公差,可求得的表達(dá)式,進(jìn)而可得出數(shù)列的通項(xiàng)公式;(2)利用錯(cuò)位相減法可求得數(shù)列的前項(xiàng)和.【詳解】(1)因?yàn)?,所以,即,所以?shù)列是等差數(shù)列,且公差,其首項(xiàng)所以,解得;(2),①,②①②,得,所以.本題考查利用遞推公式證明等差數(shù)列,同時(shí)也考查了錯(cuò)位相減法求和,考查推理能力與計(jì)算能力,屬于中等題.18.(1):,:;(2)【解析】

(1)由直線參數(shù)方程消去參數(shù)即可得直線的普通方程,根據(jù)極坐標(biāo)方程和直角坐標(biāo)方程互化的公式即可得曲線的直角坐標(biāo)方程;(2)由即可得的底,由點(diǎn)到直線的距離的最大值為即可得高的最大值,即可得解.【詳解】(1)由消去參數(shù)得直線的普通方程為,由得,曲線的直角坐標(biāo)方程為;(2)曲線即,圓心到直線的距離,所以,又點(diǎn)到直線的距離的最大值為,所以面積的最大值為.本題考查了參數(shù)方程、極坐標(biāo)方程和直角坐標(biāo)方程的互化,考查了直線與圓的位置關(guān)系,屬于中檔題.19.(1)選取更合適;(2);(3)時(shí),煤氣用量最小.【解析】

(1)根據(jù)散點(diǎn)圖的特點(diǎn),可得更適合;(2)先建立關(guān)于的回歸方程,再得出關(guān)于的回歸方程;(3)寫出函數(shù)關(guān)系,利用基本不等式得出最小值及其成立的條件.【詳解】(1)選取更適宜作燒水時(shí)間關(guān)于開關(guān)旋鈕旋轉(zhuǎn)的弧度數(shù)的回歸方程類型;(2)由公式可得:,,所以所求回歸直線方程為:;(3)根據(jù)題意,設(shè),則煤氣用量,當(dāng)且僅當(dāng)時(shí),等號(hào)成立,即時(shí),煤氣用量最小.此題考查根據(jù)題意求回歸方程,利用線性回歸方程的求法得解,結(jié)合基本不等式求最值.20.(1),;(2),,.【解析】

(1)直接利用同角三角函數(shù)關(guān)系式的變換的應(yīng)用求出結(jié)果.(2)首先把函數(shù)的關(guān)系式變形成正弦型函數(shù),進(jìn)一步利用正弦型函數(shù)的性質(zhì)的應(yīng)用求出結(jié)果.【詳解】(1)由題意得,,(2)由,解得,所以對(duì)稱軸為,.由,解得,所以單調(diào)遞增區(qū)間為.,本題考查的知識(shí)要點(diǎn):三角函數(shù)關(guān)系式的恒等變換,正弦型函數(shù)的性質(zhì)的應(yīng)用,主要考查學(xué)生的運(yùn)算能力和轉(zhuǎn)換能力,屬于基礎(chǔ)題型.21.(1);(2)見

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論