新高考數(shù)學(xué)三輪沖刺通關(guān)練習(xí)10 導(dǎo)數(shù)(易錯(cuò)點(diǎn)+九大題型)(解析版)_第1頁
新高考數(shù)學(xué)三輪沖刺通關(guān)練習(xí)10 導(dǎo)數(shù)(易錯(cuò)點(diǎn)+九大題型)(解析版)_第2頁
新高考數(shù)學(xué)三輪沖刺通關(guān)練習(xí)10 導(dǎo)數(shù)(易錯(cuò)點(diǎn)+九大題型)(解析版)_第3頁
新高考數(shù)學(xué)三輪沖刺通關(guān)練習(xí)10 導(dǎo)數(shù)(易錯(cuò)點(diǎn)+九大題型)(解析版)_第4頁
新高考數(shù)學(xué)三輪沖刺通關(guān)練習(xí)10 導(dǎo)數(shù)(易錯(cuò)點(diǎn)+九大題型)(解析版)_第5頁
已閱讀5頁,還剩44頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

秘籍10導(dǎo)數(shù)目錄【高考預(yù)測(cè)】概率預(yù)測(cè)+題型預(yù)測(cè)+考向預(yù)測(cè)【應(yīng)試秘籍】總結(jié)??键c(diǎn)及應(yīng)對(duì)的策略【誤區(qū)點(diǎn)撥】點(diǎn)撥常見的易錯(cuò)點(diǎn)易錯(cuò)點(diǎn):對(duì)數(shù)單身狗、指數(shù)找基友【搶分通關(guān)】精選名校模擬題,講解通關(guān)策略【題型一】公切線求參【題型二】“過點(diǎn)”切線條數(shù)【題型三】切線法解題【題型四】恒成立求參【題型五】能成立求參【題型六】零點(diǎn)與隱零點(diǎn)【題型七】雙變量問題【題型八】構(gòu)造函數(shù)求參【題型九】極值點(diǎn)偏移概率預(yù)測(cè)☆☆☆☆☆題型預(yù)測(cè)選擇題、填空題、解答題☆☆☆☆☆考向預(yù)測(cè)導(dǎo)數(shù)構(gòu)造導(dǎo)數(shù)在新結(jié)構(gòu)試卷中的考察重點(diǎn)偏向于小題,原屬于導(dǎo)數(shù)的壓軸題有所改變,但導(dǎo)數(shù)在高考中的考察依然屬于重點(diǎn),題型很多,結(jié)合的內(nèi)容也偏多,比如常出現(xiàn)的比較大小和恒成立問題等都結(jié)合著構(gòu)造函數(shù)的思想,而如何構(gòu)造就需要學(xué)生對(duì)出題人的出題思路再根據(jù)構(gòu)造函數(shù)的思維從而進(jìn)行推理,是不簡(jiǎn)單的知識(shí)點(diǎn)。易錯(cuò)點(diǎn):對(duì)數(shù)單身狗、指數(shù)找基友在處理含對(duì)數(shù)的等式、不等式時(shí),通常要將對(duì)數(shù)型的函數(shù)“獨(dú)立分離”出來,這樣再對(duì)新函數(shù)求導(dǎo)時(shí),就不含對(duì)數(shù)了,從而避免了多次求導(dǎo).這種讓對(duì)數(shù)“孤軍奮戰(zhàn)”的變形過程,俗稱之為“對(duì)數(shù)單身狗”.目標(biāo)希望是這樣的:由SKIPIF1<0SKIPIF1<0SKIPIF1<0;在處理含指數(shù)的等式、不等式時(shí),通常要將指數(shù)型函數(shù)與其它函數(shù)(乘或除)結(jié)合起來,這樣再對(duì)新函數(shù)求導(dǎo)時(shí),就避免了多次求導(dǎo).俗稱之為“指數(shù)找朋友”或“指數(shù)常下沉”.乘法:SKIPIF1<0;除法:SKIPIF1<0.例已知當(dāng)SKIPIF1<0時(shí),SKIPIF1<0恒成立,則實(shí)數(shù)SKIPIF1<0的取值范圍是.【解】原不等式等價(jià)于SKIPIF1<0對(duì)所有SKIPIF1<0都成立.構(gòu)造函數(shù)SKIPIF1<0,則SKIPIF1<0;(上面的變形應(yīng)用了含參的二次三項(xiàng)式的“十字相乘法”分解)令SKIPIF1<0,解得SKIPIF1<0(區(qū)間端點(diǎn)),SKIPIF1<0.SKIPIF1<0當(dāng)SKIPIF1<0即SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0在SKIPIF1<0SKIPIF1<0,所以SKIPIF1<0,滿足題意;SKIPIF1<0當(dāng)SKIPIF1<0即SKIPIF1<0時(shí),SKIPIF1<0在SKIPIF1<0SKIPIF1<0,所以SKIPIF1<0,不合題意;綜上,實(shí)數(shù)SKIPIF1<0的取值范圍是SKIPIF1<0.變式1:已知函數(shù)SKIPIF1<0.⑴當(dāng)SKIPIF1<0時(shí),求曲線SKIPIF1<0在SKIPIF1<0處的切線方程;⑵若當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,求SKIPIF1<0的取值范圍.⑴【解】當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0,因?yàn)镾KIPIF1<0,SKIPIF1<0,所以曲線SKIPIF1<0在SKIPIF1<0處的切線方程為SKIPIF1<0.⑵【解】當(dāng)SKIPIF1<0時(shí),SKIPIF1<0等價(jià)于SKIPIF1<0(對(duì)數(shù)單身);構(gòu)造函數(shù)SKIPIF1<0,則SKIPIF1<0,注意到SKIPIF1<0;(分子不好分解,分子的SKIPIF1<0,分子的對(duì)稱軸SKIPIF1<0)SKIPIF1<0當(dāng)SKIPIF1<0,即SKIPIF1<0時(shí),因?yàn)镾KIPIF1<0,所以分子SKIPIF1<0,即SKIPIF1<0;所以,SKIPIF1<0在SKIPIF1<0上SKIPIF1<0,故SKIPIF1<0;SKIPIF1<0當(dāng)SKIPIF1<0,即SKIPIF1<0時(shí),分子的判別式SKIPIF1<0;由分子SKIPIF1<0,解得兩根SKIPIF1<0,SKIPIF1<0;注意到SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0;從而,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0在SKIPIF1<0上減,SKIPIF1<0,不滿足SKIPIF1<0恒成立.綜上,SKIPIF1<0的取值范圍是SKIPIF1<0.【題型一】公切線求參(1)以曲線上的點(diǎn)(x0,f(x0))為切點(diǎn)的切線方程的求解步驟:①求出函數(shù)f(x)的導(dǎo)數(shù)f′(x);②求切線的斜率f′(x0);③寫出切線方程y-f(x0)=f′(x0)(x-x0),并化簡(jiǎn).(2)如果已知點(diǎn)(x1,y1)不在曲線上,則設(shè)出切點(diǎn)(x0,y0),解方程組SKIPIF1<0得切點(diǎn)(x0,y0),進(jìn)而確定切線方程.【例1】(2023·山西·模擬預(yù)測(cè))已知函數(shù)SKIPIF1<0若對(duì)任意SKIPIF1<0,曲線SKIPIF1<0在點(diǎn)SKIPIF1<0和SKIPIF1<0處的切線互相平行或重合,則實(shí)數(shù)SKIPIF1<0(

)A.0 B.1 C.2 D.3【答案】C【詳解】由函數(shù)SKIPIF1<0,可得SKIPIF1<0,因?yàn)榍€SKIPIF1<0在點(diǎn)SKIPIF1<0和SKIPIF1<0處的切線互相平行或重合,可得SKIPIF1<0為偶函數(shù),所以SKIPIF1<0,解得SKIPIF1<0.故選:C.【例2】(2024·全國·模擬預(yù)測(cè))已知函數(shù)SKIPIF1<0的圖象上存在不同的兩點(diǎn)SKIPIF1<0,使得曲線SKIPIF1<0在點(diǎn)SKIPIF1<0處的切線都與直線SKIPIF1<0垂直,則實(shí)數(shù)SKIPIF1<0的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【詳解】由題意知SKIPIF1<0SKIPIF1<0,因?yàn)榍芯€與直線SKIPIF1<0垂直,所以曲線SKIPIF1<0在點(diǎn)SKIPIF1<0處的切線斜率都是SKIPIF1<0,即關(guān)于SKIPIF1<0的方程SKIPIF1<0有兩個(gè)不相等的正實(shí)數(shù)根,化簡(jiǎn)得,SKIPIF1<0有兩個(gè)不相等的正實(shí)數(shù)根,則SKIPIF1<0,解得SKIPIF1<0.故選:A.【變式1】(2024·全國·模擬預(yù)測(cè))曲線SKIPIF1<0在SKIPIF1<0處的切線與曲線SKIPIF1<0相切于點(diǎn)SKIPIF1<0,若SKIPIF1<0且SKIPIF1<0,則實(shí)數(shù)SKIPIF1<0的值為.【答案】SKIPIF1<0【詳解】函數(shù)SKIPIF1<0在SKIPIF1<0處的切線斜率為SKIPIF1<0則切線方程為SKIPIF1<0,函數(shù)SKIPIF1<0在SKIPIF1<0處的切線斜率為SKIPIF1<0,則切線方程為SKIPIF1<0,即SKIPIF1<0,由題意有SKIPIF1<0①且SKIPIF1<0②,故SKIPIF1<0,SKIPIF1<0SKIPIF1<0,從而SKIPIF1<0SKIPIF1<0,整理得SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0.代入式②,得SKIPIF1<0,即SKIPIF1<0.故答案為:SKIPIF1<0【變式2】(2024·四川瀘州·三模)設(shè)函數(shù)SKIPIF1<0,SKIPIF1<0.(1)求函數(shù)SKIPIF1<0的單調(diào)區(qū)間;(2)若總存在兩條直線和曲線SKIPIF1<0與SKIPIF1<0都相切,求SKIPIF1<0的取值范圍.【答案】(1)單調(diào)遞增區(qū)間為SKIPIF1<0,單調(diào)遞減區(qū)間為SKIPIF1<0(2)SKIPIF1<0【詳解】(1)SKIPIF1<0,SKIPIF1<0,令SKIPIF1<0,得SKIPIF1<0,令SKIPIF1<0,得SKIPIF1<0,所以函數(shù)SKIPIF1<0的單調(diào)遞增區(qū)間為SKIPIF1<0,單調(diào)遞減區(qū)間為SKIPIF1<0;(2)∵SKIPIF1<0∴SKIPIF1<0在SKIPIF1<0處的切線方程為SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0在點(diǎn)SKIPIF1<0處的切線方程為SKIPIF1<0,由題意得SKIPIF1<0,則SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,所以函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增,即函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增,又SKIPIF1<0,且當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,所以SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0單調(diào)遞減;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0單調(diào)遞增,所以SKIPIF1<0,若總存在兩條直線和曲線SKIPIF1<0與SKIPIF1<0都相切,則曲線SKIPIF1<0與SKIPIF1<0軸有兩個(gè)不同的交點(diǎn),則SKIPIF1<0,所以SKIPIF1<0,此時(shí)SKIPIF1<0,而SKIPIF1<0,故SKIPIF1<0,所以SKIPIF1<0的取值范圍為SKIPIF1<0.【變式3】(2024·陜西安康·模擬預(yù)測(cè))已知函數(shù)SKIPIF1<0.(1)求曲線SKIPIF1<0與SKIPIF1<0的公切線的條數(shù);(2)若SKIPIF1<0,求SKIPIF1<0的取值范圍.【答案】(1)2條(2)SKIPIF1<0【詳解】(1)設(shè)SKIPIF1<0的切點(diǎn)分別為SKIPIF1<0,則SKIPIF1<0,故SKIPIF1<0在切點(diǎn)處的切線方程分別為SKIPIF1<0,SKIPIF1<0則需滿足;SKIPIF1<0,故SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0,因此曲線SKIPIF1<0與SKIPIF1<0有兩條不同的公切線,(2)由SKIPIF1<0可得SKIPIF1<0,即SKIPIF1<0對(duì)于SKIPIF1<0恒成立,SKIPIF1<0,結(jié)合SKIPIF1<0解得SKIPIF1<0設(shè)SKIPIF1<0,則當(dāng)SKIPIF1<0時(shí)SKIPIF1<0單調(diào)遞減,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0單調(diào)遞增,故當(dāng)SKIPIF1<0,故SKIPIF1<0因此SKIPIF1<0,SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,令SKIPIF1<0,得SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),此時(shí)SKIPIF1<0,SKIPIF1<0,故SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,所以SKIPIF1<0,所以SKIPIF1<0,由于SKIPIF1<0進(jìn)而SKIPIF1<0,滿足題意,當(dāng)SKIPIF1<0時(shí),此時(shí)SKIPIF1<0,令SKIPIF1<0,解得SKIPIF1<0單調(diào)遞增,令SKIPIF1<0,解得SKIPIF1<0單調(diào)遞減,故SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,由于SKIPIF1<0,所以SKIPIF1<0,故SKIPIF1<0在SKIPIF1<0單調(diào)遞減,故SKIPIF1<0,即可SKIPIF1<0,因此SKIPIF1<0所以SKIPIF1<0,由于SKIPIF1<0進(jìn)而SKIPIF1<0,滿足題意,綜上可得SKIPIF1<0【題型二】“過點(diǎn)”切線條數(shù)導(dǎo)數(shù)運(yùn)算及切線的理解應(yīng)注意的問題:一是利用公式求導(dǎo)時(shí)要特別注意除法公式中分子的符號(hào),防止與乘法公式混淆.二是直線與曲線公共點(diǎn)的個(gè)數(shù)不是切線的本質(zhì),直線與曲線只有一個(gè)公共點(diǎn),直線不一定是曲線的切線,同樣,直線是曲線的切線,則直線與曲線可能有兩個(gè)或兩個(gè)以上的公共點(diǎn).【例1】(2024·山西呂梁·二模)若曲線SKIPIF1<0在點(diǎn)SKIPIF1<0處的切線過原點(diǎn)SKIPIF1<0,則SKIPIF1<0.【答案】SKIPIF1<0【詳解】因?yàn)镾KIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0在點(diǎn)SKIPIF1<0處的切線方程為SKIPIF1<0.又切線過原點(diǎn)SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0.故答案為:SKIPIF1<0【例2】(2024·北京海淀·一模)已知SKIPIF1<0,函數(shù)SKIPIF1<0的零點(diǎn)個(gè)數(shù)為SKIPIF1<0,過點(diǎn)SKIPIF1<0與曲線SKIPIF1<0相切的直線的條數(shù)為SKIPIF1<0,則SKIPIF1<0的值分別為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【詳解】令SKIPIF1<0,即SKIPIF1<0時(shí),SKIPIF1<0,解得SKIPIF1<0,SKIPIF1<0時(shí),SKIPIF1<0,無解,故SKIPIF1<0,設(shè)過點(diǎn)SKIPIF1<0與曲線SKIPIF1<0相切的直線的切點(diǎn)為SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,則有SKIPIF1<0,有SKIPIF1<0,整理可得SKIPIF1<0,即SKIPIF1<0,即當(dāng)SKIPIF1<0時(shí),有一條切線,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,則有SKIPIF1<0,有SKIPIF1<0,整理可得SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,令SKIPIF1<0,可得SKIPIF1<0,故當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,即SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,即SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,由SKIPIF1<0,SKIPIF1<0,故SKIPIF1<0在SKIPIF1<0上沒有零點(diǎn),又SKIPIF1<0,故SKIPIF1<0在SKIPIF1<0上必有唯一零點(diǎn),即當(dāng)SKIPIF1<0時(shí),亦可有一條切線符合要求,故SKIPIF1<0.故選:B.【變式1】(2024·全國·模擬預(yù)測(cè))若曲線SKIPIF1<0(SKIPIF1<0且SKIPIF1<0)有兩條過坐標(biāo)原點(diǎn)的切線,則SKIPIF1<0的取值范圍為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【詳解】由SKIPIF1<0,得SKIPIF1<0.設(shè)切點(diǎn)為SKIPIF1<0,則SKIPIF1<0,所以曲線SKIPIF1<0在點(diǎn)SKIPIF1<0處的切線方程為SKIPIF1<0,將點(diǎn)SKIPIF1<0的坐標(biāo)代入切線方程,得SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0.顯然SKIPIF1<0,所以SKIPIF1<0.設(shè)SKIPIF1<0(SKIPIF1<0且SKIPIF1<0),則SKIPIF1<0.當(dāng)SKIPIF1<0時(shí),SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0.所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0和SKIPIF1<0上分別單調(diào)遞增.又當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,且SKIPIF1<0的極小值為SKIPIF1<0,所以SKIPIF1<0的大致圖象如圖.由題意可知,函數(shù)SKIPIF1<0的圖象與直線SKIPIF1<0有兩個(gè)不同的交點(diǎn),結(jié)合圖象可知SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0.故選:C.【變式2】(2024·全國·模擬預(yù)測(cè))過坐標(biāo)原點(diǎn)作曲線SKIPIF1<0的切線,則切線共有(

)A.1條 B.2條 C.3條 D.4條【答案】A【詳解】設(shè)切點(diǎn)為SKIPIF1<0,由SKIPIF1<0可得SKIPIF1<0,則過坐標(biāo)原點(diǎn)的切線的斜率SKIPIF1<0,故SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0,故過坐標(biāo)原點(diǎn)的切線共有1條.故選:A.【題型三】切線法解題涉及到交點(diǎn)或者零點(diǎn)的小題題型,函數(shù)圖像通過求導(dǎo),大多數(shù)屬于凸凹型函數(shù),則可以用切線分隔(分界)思維來求解。切線,多涉及到“過點(diǎn)”型切線,【例1】(2024·黑龍江雙鴨山·模擬預(yù)測(cè))已知函數(shù)SKIPIF1<0.(1)若SKIPIF1<0的圖象在點(diǎn)SKIPIF1<0處的切線與直線SKIPIF1<0垂直,求SKIPIF1<0的值;(2)討論SKIPIF1<0的單調(diào)性與極值.【答案】(1)SKIPIF1<0(2)答案見解析.【詳解】(1)由題得,SKIPIF1<0的定義域?yàn)镾KIPIF1<0.SKIPIF1<0.

SKIPIF1<0的圖象在點(diǎn)SKIPIF1<0處的切線與直線l:2xSKIPIF1<0垂直,SKIPIF1<0,

解得SKIPIF1<0.(2)由(1)知SKIPIF1<0.①當(dāng)SKIPIF1<0時(shí),SKIPIF1<0恒成立.SKIPIF1<0在SKIPIF1<0上為減函數(shù),此時(shí)SKIPIF1<0無極值;

②當(dāng)SKIPIF1<0時(shí),由SKIPIF1<0,得SKIPIF1<0,由SKIPIF1<0,得SKIPIF1<0,

SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增,故SKIPIF1<0的極小值為SKIPIF1<0.

綜上可得,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0在SKIPIF1<0上為減函數(shù),SKIPIF1<0無極值;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增.SKIPIF1<0的極小值為SKIPIF1<0,無極大值.【例2】(2024·全國·模擬預(yù)測(cè))已知函數(shù)SKIPIF1<0,且曲線SKIPIF1<0在點(diǎn)SKIPIF1<0處的切線方程為SKIPIF1<0.(1)求實(shí)數(shù)SKIPIF1<0,SKIPIF1<0的值;(2)證明:函數(shù)SKIPIF1<0有兩個(gè)零點(diǎn).【答案】(1)SKIPIF1<0(2)證明見解析【詳解】(1)由題意可得SKIPIF1<0,由切線方程可知其斜率為SKIPIF1<0,所以SKIPIF1<0,解得SKIPIF1<0;(2)由SKIPIF1<0可得SKIPIF1<0,所以SKIPIF1<0.函數(shù)SKIPIF1<0有兩個(gè)零點(diǎn)即函數(shù)SKIPIF1<0有兩個(gè)零點(diǎn).SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0單調(diào)遞減;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0單調(diào)遞增.又SKIPIF1<0,SKIPIF1<0,SKIPIF1<00,所以SKIPIF1<0,SKIPIF1<0.由零點(diǎn)存在定理可得SKIPIF1<0使得SKIPIF1<0,SKIPIF1<0使得SKIPIF1<0,所以函數(shù)SKIPIF1<0有兩個(gè)零點(diǎn).【變式1】(2024·四川攀枝花·三模)已知函數(shù)SKIPIF1<0.(1)當(dāng)SKIPIF1<0時(shí),求函數(shù)SKIPIF1<0在SKIPIF1<0處的切線方程;(2)設(shè)函數(shù)SKIPIF1<0的導(dǎo)函數(shù)為SKIPIF1<0,若SKIPIF1<0,證明:SKIPIF1<0.【答案】(1)SKIPIF1<0(2)證明見解析【詳解】(1)當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,則SKIPIF1<0.而SKIPIF1<0,所以SKIPIF1<0.所以SKIPIF1<0在SKIPIF1<0處的切線方程為SKIPIF1<0,即SKIPIF1<0.(2)因?yàn)镾KIPIF1<0,且SKIPIF1<0所以SKIPIF1<0,所以SKIPIF1<0.因?yàn)镾KIPIF1<0,SKIPIF1<0,所以SKIPIF1<0.所以SKIPIF1<0.因?yàn)镾KIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0.設(shè)SKIPIF1<0.則SKIPIF1<0.當(dāng)SKIPIF1<0時(shí),SKIPIF1<0單調(diào)遞減;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0單調(diào)遞增.所以當(dāng)SKIPIF1<0時(shí),SKIPIF1<0.所以SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0.【變式2】(2024·廣東深圳·二模)已知函數(shù)SKIPIF1<0,SKIPIF1<0是SKIPIF1<0的導(dǎo)函數(shù),且SKIPIF1<0.(1)若曲線SKIPIF1<0在SKIPIF1<0處的切線為SKIPIF1<0,求k,b的值;(2)在(1)的條件下,證明:SKIPIF1<0.【答案】(1)SKIPIF1<0,SKIPIF1<0;(2)證明見解析.【詳解】(1)因?yàn)镾KIPIF1<0,所以SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0.則曲線SKIPIF1<0在點(diǎn)SKIPIF1<0處的切線斜率為SKIPIF1<0.又因?yàn)镾KIPIF1<0,所以曲線SKIPIF1<0在點(diǎn)SKIPIF1<0處的切線方程為SKIPIF1<0,即得SKIPIF1<0,SKIPIF1<0.(2)設(shè)函數(shù)SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,設(shè)SKIPIF1<0,則SKIPIF1<0,所以,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0單調(diào)遞增.又因?yàn)镾KIPIF1<0,所以,SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0單調(diào)遞增;SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0單調(diào)遞減.又當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,綜上SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增,所以當(dāng)SKIPIF1<0時(shí),SKIPIF1<0取得最小值SKIPIF1<0,即SKIPIF1<0,所以,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0.【題型四】恒成立求參不等式的恒成立求參數(shù)問題,不等式恒成立問題常見方法:①分離參數(shù)SKIPIF1<0恒成立(SKIPIF1<0即可)或SKIPIF1<0恒成立(SKIPIF1<0即可);②數(shù)形結(jié)合(SKIPIF1<0圖像在SKIPIF1<0上方即可);③討論最值SKIPIF1<0或SKIPIF1<0恒成立.涉及到不等式整數(shù)解的問題時(shí),要充分利用導(dǎo)數(shù)研究函數(shù)單調(diào)性,結(jié)合單調(diào)性考查整數(shù)解相鄰整數(shù)點(diǎn)函數(shù)值的符號(hào)問題,列不等式求解,考查運(yùn)算能力與分析問題的能力.在研究函數(shù)時(shí)用導(dǎo)數(shù)求極值研究極值時(shí),無法正常求出極值點(diǎn),可設(shè)出極值點(diǎn)構(gòu)造等式或者方程作分析,進(jìn)行合適的等量代換或者合適的換元消元消參,考查了分析推理能力,運(yùn)算能力,綜合應(yīng)用能力,難度很大.【例1】(2024·全國·模擬預(yù)測(cè))不等式SKIPIF1<0在SKIPIF1<0上恒成立,則實(shí)數(shù)a的取值范圍是.【答案】SKIPIF1<0【詳解】SKIPIF1<0,即SKIPIF1<0,設(shè)SKIPIF1<0,則SKIPIF1<0,令SKIPIF1<0得SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,則SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,則SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,所以SKIPIF1<0,即SKIPIF1<0,則SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時(shí),取等號(hào),又易知SKIPIF1<0單調(diào)遞增,SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上存在唯一零點(diǎn),故SKIPIF1<0,又SKIPIF1<0恒成立,則SKIPIF1<0.故答案為:SKIPIF1<0.【例2】(2024·湖南衡陽·模擬預(yù)測(cè))已知函數(shù)SKIPIF1<0是偶函數(shù),不等式SKIPIF1<0恒成立,則b的最大值為.【答案】1【詳解】因?yàn)楹瘮?shù)SKIPIF1<0是偶函數(shù),所以SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,化簡(jiǎn)得SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0,又因?yàn)镾KIPIF1<0且SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0.經(jīng)檢驗(yàn),SKIPIF1<0對(duì)任意SKIPIF1<0恒成立,所以SKIPIF1<0.又因?yàn)镾KIPIF1<0,且SKIPIF1<0為偶函數(shù),所以SKIPIF1<0時(shí),SKIPIF1<0單調(diào)遞增,SKIPIF1<0時(shí),SKIPIF1<0單調(diào)遞減,所以SKIPIF1<0在SKIPIF1<0單調(diào)遞減,在SKIPIF1<0單調(diào)遞增.因?yàn)镾KIPIF1<0恒成立,所以SKIPIF1<0恒成立.令函數(shù)SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0時(shí),SKIPIF1<0,函數(shù)SKIPIF1<0單調(diào)遞減;SKIPIF1<0時(shí),SKIPIF1<0,函數(shù)SKIPIF1<0單調(diào)遞增,所以SKIPIF1<0,所以SKIPIF1<0恒成立,所以SKIPIF1<0恒成立,即SKIPIF1<0恒成立.令函數(shù)SKIPIF1<0,所以SKIPIF1<0所以SKIPIF1<0時(shí),SKIPIF1<0,函數(shù)SKIPIF1<0單調(diào)遞增;SKIPIF1<0時(shí),SKIPIF1<0,函數(shù)SKIPIF1<0單調(diào)遞減,所以SKIPIF1<0在SKIPIF1<0單調(diào)遞增,在SKIPIF1<0單調(diào)遞減,所以SKIPIF1<0,所以SKIPIF1<0恒成立.又因?yàn)镾KIPIF1<0,且SKIPIF1<0,所以存在SKIPIF1<0,使得SKIPIF1<0,所以SKIPIF1<0的解集為SKIPIF1<0,所以b的最大值為1.故答案為:1【例3】(2024·江蘇鹽城·模擬預(yù)測(cè))已知函數(shù)SKIPIF1<0.(1)討論SKIPIF1<0的單調(diào)性;(2)若不等式SKIPIF1<0恒成立,求SKIPIF1<0的取值范圍.【答案】(1)答案見解析(2)SKIPIF1<0【詳解】(1)因?yàn)镾KIPIF1<0,所以SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,故SKIPIF1<0恒成立,所以SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),令SKIPIF1<0,解得SKIPIF1<0(舍去負(fù)根),令SKIPIF1<0,得SKIPIF1<0,此時(shí)SKIPIF1<0單調(diào)遞增;令SKIPIF1<0,得SKIPIF1<0,此時(shí)SKIPIF1<0單調(diào)遞減.綜上所述:當(dāng)SKIPIF1<0時(shí),SKIPIF1<0在SKIPIF1<0上單調(diào)遞減;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增.(2)由SKIPIF1<0恒成立,得SKIPIF1<0在SKIPIF1<0上恒成立,所以SKIPIF1<0在SKIPIF1<0上恒成立.令SKIPIF1<0,則SKIPIF1<0.令SKIPIF1<0,易知SKIPIF1<0在SKIPIF1<0上單調(diào)遞減且SKIPIF1<0,所以當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,在SKIPIF1<0上單調(diào)遞減,所以SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0的取值范圍為SKIPIF1<0【變式1】(2024·湖南衡陽·模擬預(yù)測(cè))已知函數(shù)SKIPIF1<0,函數(shù)SKIPIF1<0.(1)若直線SKIPIF1<0與函數(shù)SKIPIF1<0交于點(diǎn)A,直線SKIPIF1<0與函數(shù)SKIPIF1<0交于點(diǎn)B,且函數(shù)SKIPIF1<0在點(diǎn)A處的切線與函數(shù)SKIPIF1<0在點(diǎn)B處的切線相互平行,求a的取值范圍;(2)函數(shù)SKIPIF1<0在其定義域內(nèi)有兩個(gè)不同的極值點(diǎn)SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0,存在實(shí)數(shù)SKIPIF1<0使得不等式SKIPIF1<0恒成立,求實(shí)數(shù)SKIPIF1<0的取值范圍.【答案】(1)a的取值范圍為SKIPIF1<0(2)SKIPIF1<0的取值范圍為SKIPIF1<0.【詳解】(1)因?yàn)镾KIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0;因?yàn)镾KIPIF1<0在SKIPIF1<0處的切線與SKIPIF1<0在SKIPIF1<0處的切線相互平行,所以SKIPIF1<0,即SKIPIF1<0在SKIPIF1<0上有解,所以SKIPIF1<0在SKIPIF1<0上有解,設(shè)SKIPIF1<0,則SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,所以函數(shù)SKIPIF1<0的值域?yàn)镾KIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,所以a的取值范圍為SKIPIF1<0;(2)因?yàn)镾KIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0;因?yàn)镾KIPIF1<0是SKIPIF1<0的兩個(gè)極值點(diǎn),所以SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0;因?yàn)镾KIPIF1<0,SKIPIF1<0,則由SKIPIF1<0得:SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0;令SKIPIF1<0,則SKIPIF1<0;令SKIPIF1<0,則SKIPIF1<0;①當(dāng)SKIPIF1<0時(shí),SKIPIF1<0恒成立,SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,所以SKIPIF1<0,即SKIPIF1<0恒成立,滿足題意;②當(dāng)SKIPIF1<0時(shí),若SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,此時(shí)SKIPIF1<0,即SKIPIF1<0,不合題意;所以由不等式SKIPIF1<0恒成立,可得SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0的取值范圍為SKIPIF1<0.【變式2】(2024·全國·模擬預(yù)測(cè))已知函數(shù)SKIPIF1<0,SKIPIF1<0.(1)證明:SKIPIF1<0.(2)若SKIPIF1<0恒成立,求實(shí)數(shù)SKIPIF1<0的取值范圍.【答案】(1)證明見解析(2)SKIPIF1<0【詳解】(1)方法一:設(shè)SKIPIF1<0,則SKIPIF1<0定義域?yàn)镾KIPIF1<0,SKIPIF1<0;SKIPIF1<0與SKIPIF1<0均為增函數(shù),SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,又SKIPIF1<0,SKIPIF1<0當(dāng)SKIPIF1<0時(shí),SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0;SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增,SKIPIF1<0,即SKIPIF1<0;方法二:設(shè)SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0當(dāng)SKIPIF1<0時(shí),SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0;SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增,SKIPIF1<0,即SKIPIF1<0,左右同時(shí)取對(duì)數(shù)得:SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0.(2)方法一:取SKIPIF1<0得:SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,下面證明SKIPIF1<0恒成立,即證明SKIPIF1<0恒成立;①當(dāng)SKIPIF1<0時(shí),由(1)知:SKIPIF1<0,SKIPIF1<0只需證SKIPIF1<0,即證SKIPIF1<0,即證SKIPIF1<0,只需證SKIPIF1<0,即證SKIPIF1<0;令SKIPIF1<0,則SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,SKIPIF1<0,SKIPIF1<0,即當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0當(dāng)SKIPIF1<0時(shí),SKIPIF1<0恒成立;②當(dāng)SKIPIF1<0時(shí),由(1)知:SKIPIF1<0,SKIPIF1<0只需證SKIPIF1<0;設(shè)SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,SKIPIF1<0,即SKIPIF1<0,即當(dāng)SKIPIF1<0時(shí),SKIPIF1<0恒成立;綜上所述:當(dāng)SKIPIF1<0時(shí),SKIPIF1<0恒成立,SKIPIF1<0實(shí)數(shù)SKIPIF1<0的取值范圍為SKIPIF1<0;方法二:由已知得:SKIPIF1<0恒成立;設(shè)SKIPIF1<0,則SKIPIF1<0SKIPIF1<0,令SKIPIF1<0當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0,SKIPIF1<0在SKIPIF1<0上單調(diào)遞減;當(dāng)SKIPIF1<0時(shí),由(1)知:SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,SKIPIF1<0,SKIPIF1<0,即實(shí)數(shù)SKIPIF1<0的取值范圍為SKIPIF1<0.【題型五】能成立求參對(duì)于利用導(dǎo)數(shù)研究函數(shù)的綜合問題的求解策略:1、通常要構(gòu)造新函數(shù),利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,求出最值,從而求出參數(shù)的取值范圍;2、利用可分離變量,構(gòu)造新函數(shù),直接把問題轉(zhuǎn)化為函數(shù)的最值問題.3、根據(jù)恒成立或有解求解參數(shù)的取值時(shí),一般涉及分離參數(shù)法,但壓軸試題中很少碰到分離參數(shù)后構(gòu)造的新函數(shù)能直接求出最值點(diǎn)的情況,進(jìn)行求解,若參變分離不易求解問題,就要考慮利用分類討論法和放縮法,注意恒成立與存在性問題的區(qū)別.【例1】已知函數(shù)SKIPIF1<0.(1)二次函數(shù)SKIPIF1<0,在“①曲線SKIPIF1<0,SKIPIF1<0有1個(gè)交點(diǎn);②SKIPIF1<0”中選擇一個(gè)作為條件,另一個(gè)作為結(jié)論,進(jìn)行證明;(2)若關(guān)于x的不等式SKIPIF1<0在SKIPIF1<0上能成立,求實(shí)數(shù)m的取值范圍.注:如果選擇多個(gè)條件分別解答,按第一個(gè)解答計(jì)分.【答案】(1)答案見解析(2)SKIPIF1<0【詳解】(1)若選①為條件:函數(shù)SKIPIF1<0的定義域?yàn)镾KIPIF1<0,令SKIPIF1<0,即SKIPIF1<0,則SKIPIF1<0.令SKIPIF1<0,則直線SKIPIF1<0與曲線SKIPIF1<0有1個(gè)交點(diǎn),且SKIPIF1<0,令SKIPIF1<0,解得SKIPIF1<0,故當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,∴函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,在SKIPIF1<0上單調(diào)遞減,且當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,故當(dāng)曲線SKIPIF1<0有1個(gè)交點(diǎn)時(shí),SKIPIF1<0.若選②為條件:函數(shù)SKIPIF1<0的定義域?yàn)镾KIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,則SKIPIF1<0.令SKIPIF1<0,則SKIPIF1<0,令SKIPIF1<0,解得SKIPIF1<0,故當(dāng)SKIPIF1<0時(shí),SKIPIF1<

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論