新高考數(shù)學(xué)三輪沖刺 押題卷練習(xí)第14題 立體幾何綜合(解析版)_第1頁(yè)
新高考數(shù)學(xué)三輪沖刺 押題卷練習(xí)第14題 立體幾何綜合(解析版)_第2頁(yè)
新高考數(shù)學(xué)三輪沖刺 押題卷練習(xí)第14題 立體幾何綜合(解析版)_第3頁(yè)
新高考數(shù)學(xué)三輪沖刺 押題卷練習(xí)第14題 立體幾何綜合(解析版)_第4頁(yè)
新高考數(shù)學(xué)三輪沖刺 押題卷練習(xí)第14題 立體幾何綜合(解析版)_第5頁(yè)
已閱讀5頁(yè),還剩39頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

立體幾何綜合考點(diǎn)4年考題考情分析立體幾何綜合2023年新高考Ⅰ卷第12題2022年新高考Ⅰ卷第8題2022年新高考Ⅱ卷第11題2021年新高考Ⅰ卷第12題立體幾何會(huì)以單選題、多選題、填空題、解答題4類(lèi)題型進(jìn)行考查,也常在壓軸題位置進(jìn)行考查,難度較難,縱觀近幾年的新高考試題,壓軸題分別考查以正方體為出題背景的相關(guān)幾何體的體積計(jì)算、正四棱錐的外接球及體積范圍、錐體體積的相關(guān)計(jì)算、空間向量的計(jì)算等綜合問(wèn)題,本內(nèi)容是新高考沖刺復(fù)習(xí)的重點(diǎn)復(fù)習(xí)內(nèi)容。可以預(yù)測(cè)2024年新高考命題方向?qū)⒗^續(xù)以立體幾何壓軸內(nèi)容等綜合問(wèn)題展開(kāi)命題.1.(2023·新高考Ⅰ卷高考真題第12題)下列物體中,能夠被整體放入棱長(zhǎng)為1(單位:m)的正方體容器(容器壁厚度忽略不計(jì))內(nèi)的有(

)A.直徑為SKIPIF1<0的球體B.所有棱長(zhǎng)均為SKIPIF1<0的四面體C.底面直徑為SKIPIF1<0,高為SKIPIF1<0的圓柱體D.底面直徑為SKIPIF1<0,高為SKIPIF1<0的圓柱體【答案】ABD【分析】根據(jù)題意結(jié)合正方體的性質(zhì)逐項(xiàng)分析判斷.【詳解】對(duì)于選項(xiàng)A:因?yàn)镾KIPIF1<0,即球體的直徑小于正方體的棱長(zhǎng),所以能夠被整體放入正方體內(nèi),故A正確;對(duì)于選項(xiàng)B:因?yàn)檎襟w的面對(duì)角線長(zhǎng)為SKIPIF1<0,且SKIPIF1<0,所以能夠被整體放入正方體內(nèi),故B正確;對(duì)于選項(xiàng)C:因?yàn)檎襟w的體對(duì)角線長(zhǎng)為SKIPIF1<0,且SKIPIF1<0,所以不能夠被整體放入正方體內(nèi),故C不正確;對(duì)于選項(xiàng)D:因?yàn)镾KIPIF1<0,可知底面正方形不能包含圓柱的底面圓,如圖,過(guò)SKIPIF1<0的中點(diǎn)SKIPIF1<0作SKIPIF1<0,設(shè)SKIPIF1<0,可知SKIPIF1<0,則SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0,且SKIPIF1<0,即SKIPIF1<0,故以SKIPIF1<0為軸可能對(duì)稱放置底面直徑為SKIPIF1<0圓柱,若底面直徑為SKIPIF1<0的圓柱與正方體的上下底面均相切,設(shè)圓柱的底面圓心SKIPIF1<0,與正方體的下底面的切點(diǎn)為SKIPIF1<0,可知:SKIPIF1<0,則SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0,根據(jù)對(duì)稱性可知圓柱的高為SKIPIF1<0,所以能夠被整體放入正方體內(nèi),故D正確;故選:ABD.2.(2023·新高考Ⅰ卷高考真題第8題)已知正四棱錐的側(cè)棱長(zhǎng)為l,其各頂點(diǎn)都在同一球面上.若該球的體積為SKIPIF1<0,且SKIPIF1<0,則該正四棱錐體積的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】設(shè)正四棱錐的高為SKIPIF1<0,由球的截面性質(zhì)列方程求出正四棱錐的底面邊長(zhǎng)與高的關(guān)系,由此確定正四棱錐體積的取值范圍.【詳解】∵球的體積為SKIPIF1<0,所以球的半徑SKIPIF1<0,[方法一]:導(dǎo)數(shù)法設(shè)正四棱錐的底面邊長(zhǎng)為SKIPIF1<0,高為SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0所以正四棱錐的體積SKIPIF1<0,所以SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,所以當(dāng)SKIPIF1<0時(shí),正四棱錐的體積SKIPIF1<0取最大值,最大值為SKIPIF1<0,又SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0時(shí),SKIPIF1<0,所以正四棱錐的體積SKIPIF1<0的最小值為SKIPIF1<0,所以該正四棱錐體積的取值范圍是SKIPIF1<0.故選:C.[方法二]:基本不等式法由方法一故所以SKIPIF1<0當(dāng)且僅當(dāng)SKIPIF1<0取到SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),得SKIPIF1<0,則SKIPIF1<0當(dāng)SKIPIF1<0時(shí),球心在正四棱錐高線上,此時(shí)SKIPIF1<0,SKIPIF1<0,正四棱錐體積SKIPIF1<0,故該正四棱錐體積的取值范圍是SKIPIF1<03.(2022·新高考Ⅱ卷高考真題第11題)如圖,四邊形SKIPIF1<0為正方形,SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0,記三棱錐SKIPIF1<0,SKIPIF1<0,SKIPIF1<0的體積分別為SKIPIF1<0,則(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】CD【分析】直接由體積公式計(jì)算SKIPIF1<0,連接SKIPIF1<0交SKIPIF1<0于點(diǎn)SKIPIF1<0,連接SKIPIF1<0,由SKIPIF1<0計(jì)算出SKIPIF1<0,依次判斷選項(xiàng)即可.【詳解】設(shè)SKIPIF1<0,因?yàn)镾KIPIF1<0平面SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,連接SKIPIF1<0交SKIPIF1<0于點(diǎn)SKIPIF1<0,連接SKIPIF1<0,易得SKIPIF1<0,又SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,則SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,則SKIPIF1<0平面SKIPIF1<0,又SKIPIF1<0,過(guò)SKIPIF1<0作SKIPIF1<0于SKIPIF1<0,易得四邊形SKIPIF1<0為矩形,則SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,故A、B錯(cuò)誤;C、D正確.故選:CD.4.(2021·新高考Ⅰ卷高考真題第12題)在正三棱柱SKIPIF1<0中,SKIPIF1<0,點(diǎn)SKIPIF1<0滿足SKIPIF1<0,其中SKIPIF1<0,SKIPIF1<0,則(

)A.當(dāng)SKIPIF1<0時(shí),SKIPIF1<0的周長(zhǎng)為定值B.當(dāng)SKIPIF1<0時(shí),三棱錐SKIPIF1<0的體積為定值C.當(dāng)SKIPIF1<0時(shí),有且僅有一個(gè)點(diǎn)SKIPIF1<0,使得SKIPIF1<0D.當(dāng)SKIPIF1<0時(shí),有且僅有一個(gè)點(diǎn)SKIPIF1<0,使得SKIPIF1<0平面SKIPIF1<0【答案】BD【分析】對(duì)于A,由于等價(jià)向量關(guān)系,聯(lián)系到一個(gè)三角形內(nèi),進(jìn)而確定點(diǎn)的坐標(biāo);對(duì)于B,將SKIPIF1<0點(diǎn)的運(yùn)動(dòng)軌跡考慮到一個(gè)三角形內(nèi),確定路線,進(jìn)而考慮體積是否為定值;對(duì)于C,考慮借助向量的平移將SKIPIF1<0點(diǎn)軌跡確定,進(jìn)而考慮建立合適的直角坐標(biāo)系來(lái)求解SKIPIF1<0點(diǎn)的個(gè)數(shù);對(duì)于D,考慮借助向量的平移將SKIPIF1<0點(diǎn)軌跡確定,進(jìn)而考慮建立合適的直角坐標(biāo)系來(lái)求解SKIPIF1<0點(diǎn)的個(gè)數(shù).【詳解】易知,點(diǎn)SKIPIF1<0在矩形SKIPIF1<0內(nèi)部(含邊界).對(duì)于A,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,即此時(shí)SKIPIF1<0線段SKIPIF1<0,SKIPIF1<0周長(zhǎng)不是定值,故A錯(cuò)誤;對(duì)于B,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,故此時(shí)SKIPIF1<0點(diǎn)軌跡為線段SKIPIF1<0,而SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,則有SKIPIF1<0到平面SKIPIF1<0的距離為定值,所以其體積為定值,故B正確.對(duì)于C,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,取SKIPIF1<0,SKIPIF1<0中點(diǎn)分別為SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0點(diǎn)軌跡為線段SKIPIF1<0,不妨建系解決,建立空間直角坐標(biāo)系如圖,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0或SKIPIF1<0.故SKIPIF1<0均滿足,故C錯(cuò)誤;對(duì)于D,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,取SKIPIF1<0,SKIPIF1<0中點(diǎn)為SKIPIF1<0.SKIPIF1<0,所以SKIPIF1<0點(diǎn)軌跡為線段SKIPIF1<0.設(shè)SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,此時(shí)SKIPIF1<0與SKIPIF1<0重合,故D正確.故選:BD.【點(diǎn)睛】本題主要考查向量的等價(jià)替換,關(guān)鍵之處在于所求點(diǎn)的坐標(biāo)放在三角形內(nèi).立體幾何基礎(chǔ)公式所有椎體體積公式:SKIPIF1<0,所有柱體體積公式:SKIPIF1<0,球體體積公式:SKIPIF1<0球體表面積公式:SKIPIF1<0,圓柱:SKIPIF1<0圓錐:SKIPIF1<0長(zhǎng)方體(正方體、正四棱柱)的體對(duì)角線的公式已知長(zhǎng)寬高求體對(duì)角線:SKIPIF1<0已知共點(diǎn)三面對(duì)角線求體對(duì)角線:SKIPIF1<0棱長(zhǎng)為SKIPIF1<0的正四面體的內(nèi)切球的半徑為SKIPIF1<0,外接球的半徑為SKIPIF1<0.歐拉定理(歐拉公式)SKIPIF1<0(簡(jiǎn)單多面體的頂點(diǎn)數(shù)V、棱數(shù)E和面數(shù)F).(1)SKIPIF1<0=各面多邊形邊數(shù)和的一半.特別地,若每個(gè)面的邊數(shù)為SKIPIF1<0的多邊形,則面數(shù)F與棱數(shù)E的關(guān)系:SKIPIF1<0;(2)若每個(gè)頂點(diǎn)引出的棱數(shù)為SKIPIF1<0,則頂點(diǎn)數(shù)V與棱數(shù)E的關(guān)系:SKIPIF1<0.5.空間的線線平行或垂直設(shè)SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0;SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0.夾角公式設(shè)SKIPIF1<0,b=SKIPIF1<0,則SKIPIF1<0.6.異面直線所成角SKIPIF1<0=SKIPIF1<0(其中SKIPIF1<0(SKIPIF1<0)為異面直線SKIPIF1<0所成角,SKIPIF1<0分別表示異面直線SKIPIF1<0的方向向量)7.直線SKIPIF1<0與平面所成角,SKIPIF1<0(SKIPIF1<0為平面SKIPIF1<0的法向量).8..二面角SKIPIF1<0的平面角SKIPIF1<0(SKIPIF1<0,SKIPIF1<0為平面SKIPIF1<0,SKIPIF1<0的法向量).異面直線間的距離SKIPIF1<0(SKIPIF1<0是兩異面直線,其公垂向量為SKIPIF1<0,SKIPIF1<0分別是SKIPIF1<0上任一點(diǎn),SKIPIF1<0為SKIPIF1<0間的距離).點(diǎn)SKIPIF1<0到平面SKIPIF1<0的距離SKIPIF1<0(SKIPIF1<0為平面SKIPIF1<0的法向量,SKIPIF1<0是經(jīng)過(guò)面SKIPIF1<0的一條斜線,SKIPIF1<0).1.(2024·全國(guó)·模擬預(yù)測(cè))已知三棱柱SKIPIF1<0中,SKIPIF1<0是邊長(zhǎng)為2的等邊三角形,四邊形SKIPIF1<0為菱形,SKIPIF1<0,平面SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0為SKIPIF1<0的中點(diǎn),SKIPIF1<0為SKIPIF1<0的中點(diǎn),則三棱錐SKIPIF1<0的外接球的表面積為.【答案】SKIPIF1<0【分析】解法一

連接SKIPIF1<0,SKIPIF1<0,記SKIPIF1<0,確定SKIPIF1<0為SKIPIF1<0外接圓的圓心,然后利用面面垂直的性質(zhì)定理證明SKIPIF1<0平面SKIPIF1<0,利用球的性質(zhì)建立方程求解外接球的半徑,代入球的表面積公式求解即可;解法二連接SKIPIF1<0,SKIPIF1<0,利用面面垂直的性質(zhì)定理證明SKIPIF1<0平面SKIPIF1<0,建立空間直角坐標(biāo)系,先求出SKIPIF1<0的外接圓圓心SKIPIF1<0,然后計(jì)算出球心的坐標(biāo),即可求出球的半徑,代入球的表面積公式求解即可.【詳解】解法一

連接SKIPIF1<0,SKIPIF1<0,記SKIPIF1<0,則SKIPIF1<0.連接SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,故SKIPIF1<0為SKIPIF1<0外接圓的圓心.取SKIPIF1<0的中點(diǎn)SKIPIF1<0,連接SKIPIF1<0,則SKIPIF1<0,所以點(diǎn)SKIPIF1<0在SKIPIF1<0的外接圓上.連接SKIPIF1<0,因?yàn)镾KIPIF1<0為等邊三角形,所以SKIPIF1<0,SKIPIF1<0.由平面SKIPIF1<0平面SKIPIF1<0,知平面SKIPIF1<0平面SKIPIF1<0,又平面SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,所以SKIPIF1<0平面SKIPIF1<0.設(shè)三棱錐SKIPIF1<0的外接球半徑為SKIPIF1<0,則SKIPIF1<0,故三棱錐SKIPIF1<0的外接球的表面積為SKIPIF1<0.

解法二

連接SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0為正三角形,SKIPIF1<0,故SKIPIF1<0,因?yàn)槠矫鍿KIPIF1<0平面SKIPIF1<0,平面SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,所以SKIPIF1<0平面SKIPIF1<0,以SKIPIF1<0為SKIPIF1<0軸,SKIPIF1<0為SKIPIF1<0軸,SKIPIF1<0為SKIPIF1<0軸建立如圖所示的空間直角坐標(biāo)系,

得SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,由SKIPIF1<0為等邊三角形,則SKIPIF1<0的外接圓圓心為SKIPIF1<0.設(shè)三棱錐SKIPIF1<0的外接球的球心為SKIPIF1<0,連接SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0平面SKIPIF1<0,又SKIPIF1<0平面SKIPIF1<0,所以SKIPIF1<0.設(shè)SKIPIF1<0,由SKIPIF1<0,可得SKIPIF1<0,解得SKIPIF1<0,因此球心SKIPIF1<0,故外接球半徑SKIPIF1<0,故三棱錐SKIPIF1<0的外接球的表面積SKIPIF1<0.故答案為:SKIPIF1<0【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:求幾何體外接球的半徑,可以根據(jù)題意先畫(huà)出圖形,確定球心的位置,進(jìn)而得到關(guān)于球的半徑的式子,解題時(shí)要注意球心在過(guò)底面外接圓圓心且垂直于底面的直線上,且球心到幾何體各頂點(diǎn)的距離相等.在確定球心的位置后可在直角三角形中表示出球的半徑,此類(lèi)問(wèn)題對(duì)空間想象能力和運(yùn)算求解能力要求較高,難度比較大.2.(2024·全國(guó)·模擬預(yù)測(cè))如圖,在直三棱柱SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0分別為線段SKIPIF1<0,SKIPIF1<0的中點(diǎn),SKIPIF1<0,SKIPIF1<0,平面SKIPIF1<0平面SKIPIF1<0,則四面體ABMN的外接球的表面積為.

【答案】SKIPIF1<0【分析】取BN的中點(diǎn)SKIPIF1<0,連接CD,由等腰三角形的性質(zhì)與面面垂直的性質(zhì)定理證SKIPIF1<0平面ABN,由線面垂直的性質(zhì)定理與判定定理證SKIPIF1<0平面SKIPIF1<0,進(jìn)而推出SKIPIF1<0,利用勾股定理的逆定理證SKIPIF1<0,進(jìn)而確定四面體ABMN的外接球的球心與半徑,利用球的表面積公式即可得解.【詳解】如圖,取BN的中點(diǎn)SKIPIF1<0,連接CD,

因?yàn)镾KIPIF1<0,所以SKIPIF1<0,又平面SKIPIF1<0平面SKIPIF1<0,平面SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,所以SKIPIF1<0平面ABN,又SKIPIF1<0平面ABN,所以SKIPIF1<0,依題意SKIPIF1<0平面ABC,SKIPIF1<0平面ABC,所以SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,所以SKIPIF1<0平面SKIPIF1<0,又BN,SKIPIF1<0平面SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0,連接SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0,又SKIPIF1<0SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0與SKIPIF1<0共斜邊SKIPIF1<0,所以四面體ABMN的外接球的球心為SKIPIF1<0的中點(diǎn),且外接球半徑SKIPIF1<0,所以該球的表面積SKIPIF1<0SKIPIF1<0.【點(diǎn)睛】結(jié)論點(diǎn)睛:(1)正方體或長(zhǎng)方體的外接球的球心為其體對(duì)角線的中點(diǎn);(2)正棱柱的外接球的球心是上下底面中心的連線的中點(diǎn);(3)直三棱柱的外接球的球心是上下底面三角形外心的連線的中點(diǎn);(4)正棱錐的外接球的球心在其高上;(5)若三棱錐的頂點(diǎn)可構(gòu)成共斜邊的直角三角形,則公共斜邊的中點(diǎn)就是外接球的球心.3.(2024·全國(guó)·模擬預(yù)測(cè))某禮品生產(chǎn)廠準(zhǔn)備給如圖所示的八面體形玻璃制品設(shè)計(jì)一個(gè)球形包裝盒.已知該八面體可以看成由一個(gè)棱長(zhǎng)為SKIPIF1<0的大正四面體截去四個(gè)全等的棱長(zhǎng)均為SKIPIF1<0的小正四面體得到的,且小正四面體的其中一個(gè)頂點(diǎn)為大正四面體的頂點(diǎn),則該球形包裝盒的半徑的最小值為.(不考慮包裝盒的質(zhì)量、厚度等)【答案】SKIPIF1<0【分析】分析球形包裝盒半徑最小時(shí)球心的位置以及八面體與正四面體SKIPIF1<0外接球之間的關(guān)系,求正四面體SKIPIF1<0的外接球的半徑,求球形包裝盒的半徑的最小值;【詳解】如圖,已知正四面體SKIPIF1<0的棱長(zhǎng)為SKIPIF1<0,在正四面體SKIPIF1<0中截去一個(gè)小正四面體SKIPIF1<0,且正四面體SKIPIF1<0的棱長(zhǎng)為SKIPIF1<0,取SKIPIF1<0的中點(diǎn)SKIPIF1<0,連接SKIPIF1<0,過(guò)點(diǎn)SKIPIF1<0作SKIPIF1<0平面SKIPIF1<0于點(diǎn)SKIPIF1<0,則SKIPIF1<0在SKIPIF1<0上,且SKIPIF1<0平面SKIPIF1<0,設(shè)SKIPIF1<0與平面SKIPIF1<0的交點(diǎn)為SKIPIF1<0,連接SKIPIF1<0,則SKIPIF1<0為等邊三角形SKIPIF1<0的中心.易知球形包裝盒的半徑的最小值即該八面體外接球的半徑,由對(duì)稱性可知,這個(gè)八面體的外接球的球心與正四面體SKIPIF1<0的外接球的球心重合,且正四面體SKIPIF1<0的外接球球心在線段SKIPIF1<0上.設(shè)正四面體SKIPIF1<0的外接球的球心為SKIPIF1<0,半徑為SKIPIF1<0,連接SKIPIF1<0,則SKIPIF1<0,因?yàn)檎拿骟wSKIPIF1<0的棱長(zhǎng)為SKIPIF1<0,故SKIPIF1<0,由勾股定理得SKIPIF1<0SKIPIF1<0.在SKIPIF1<0中,SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0,則正四面體SKIPIF1<0的外接球半徑為3.因?yàn)榻厝サ男≌拿骟w的棱長(zhǎng)為SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0.連接SKIPIF1<0,在SKIPIF1<0中,SKIPIF1<0,所以SKIPIF1<0,所以球形包裝盒的半徑的最小值為SKIPIF1<0.故答案為:SKIPIF1<0.【點(diǎn)睛】關(guān)鍵點(diǎn)睛:本題解題的關(guān)鍵在于正四面體的外接球的解決問(wèn)題:首先要確定其外接球的球心位置,其次利用正三角形的幾何性質(zhì)以及勾股定理建立方程,最后求出外接球半徑;同時(shí)清晰的作圖也很重要.4.(2024·全國(guó)·模擬預(yù)測(cè))如圖,在長(zhǎng)方體SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,M,N分別為BC,SKIPIF1<0的中點(diǎn),點(diǎn)P在矩形SKIPIF1<0內(nèi)運(yùn)動(dòng)(包括邊界),若SKIPIF1<0平面AMN,則SKIPIF1<0取最小值時(shí),三棱錐SKIPIF1<0的體積為.【答案】SKIPIF1<0/SKIPIF1<0【分析】先利用面面平行的判定定理證得平面SKIPIF1<0平面SKIPIF1<0,從而得到點(diǎn)SKIPIF1<0的軌跡,進(jìn)而求得SKIPIF1<0取得最小值時(shí)點(diǎn)SKIPIF1<0的位置,再利用三棱錐的體積公式即可得解.【詳解】取SKIPIF1<0的中點(diǎn)E,SKIPIF1<0的中點(diǎn)F,連接EF,SKIPIF1<0,SKIPIF1<0,則易得SKIPIF1<0,SKIPIF1<0,因?yàn)镾KIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,故SKIPIF1<0平面SKIPIF1<0,同理:SKIPIF1<0平面AMN,又SKIPIF1<0平面SKIPIF1<0,所以平面SKIPIF1<0平面SKIPIF1<0,又SKIPIF1<0平面AMN,所以SKIPIF1<0平面SKIPIF1<0,即點(diǎn)SKIPIF1<0在平面SKIPIF1<0與平面SKIPIF1<0的交線EF上,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0取最小值.易知SKIPIF1<0,故當(dāng)SKIPIF1<0取最小值時(shí),P為EF的中點(diǎn),此時(shí)SKIPIF1<0的面積SKIPIF1<0SKIPIF1<0,則SKIPIF1<0.故答案為:SKIPIF1<0.【點(diǎn)睛】關(guān)鍵點(diǎn)睛:本題解決的關(guān)鍵是找到利用面面平行求得點(diǎn)SKIPIF1<0的軌跡,從而得解.5.(2024·全國(guó)·模擬預(yù)測(cè))如圖,該“四角反棱柱”是由兩個(gè)相互平行且全等的正方形經(jīng)過(guò)旋轉(zhuǎn)、連接而成,其側(cè)面均為等邊三角形,則該“四角反棱柱”外接球的表面積與側(cè)面面積的比為.【答案】SKIPIF1<0【分析】設(shè)幾何體棱長(zhǎng)為4a,計(jì)算出幾何體側(cè)面積,設(shè)上、下正四邊形的中心分別為SKIPIF1<0,SKIPIF1<0,連接SKIPIF1<0,過(guò)點(diǎn)B作SKIPIF1<0于點(diǎn)C,其中點(diǎn)B為所在棱的中點(diǎn),得OA即該幾何體外接球的半徑,得外接球表面積,計(jì)算比值即得.【詳解】如圖,由題意可知旋轉(zhuǎn)角度為SKIPIF1<0,設(shè)上、下正四邊形的中心分別為SKIPIF1<0,SKIPIF1<0,連接SKIPIF1<0,則SKIPIF1<0的中點(diǎn)O即為外接球的球心,其中點(diǎn)B為所在棱的中點(diǎn),OA即該幾何體外接球的半徑,設(shè)棱長(zhǎng)為4a,則側(cè)面積為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,過(guò)點(diǎn)B作SKIPIF1<0于點(diǎn)C,則SKIPIF1<0,SKIPIF1<0,易得四邊形SKIPIF1<0為矩形,即SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,即該“四角反棱柱”外接球的半徑SKIPIF1<0.外接球表面積為SKIPIF1<0,該“四角反棱柱”外接球的表面積與側(cè)面面積的比為SKIPIF1<0.故答案為:SKIPIF1<0.【點(diǎn)睛】由題意,側(cè)面均為正三角形,所以可知旋轉(zhuǎn)角度為SKIPIF1<0,OA即該幾何體外接球的半徑.6.(2024·全國(guó)·模擬預(yù)測(cè))已知圓錐SKIPIF1<0的母線SKIPIF1<0,側(cè)面積為SKIPIF1<0,則圓錐SKIPIF1<0的內(nèi)切球半徑為;若正四面體SKIPIF1<0能在圓錐SKIPIF1<0內(nèi)任意轉(zhuǎn)動(dòng),則正四面體SKIPIF1<0的最大棱長(zhǎng)為.【答案】SKIPIF1<0SKIPIF1<0【分析】根據(jù)題意可求得底面圓半徑SKIPIF1<0,高SKIPIF1<0,求出軸截面SKIPIF1<0內(nèi)切圓半徑即可得圓錐SKIPIF1<0的內(nèi)切球半徑為SKIPIF1<0,再根據(jù)正四面體外接球與棱長(zhǎng)之間的關(guān)系即可求得最大棱長(zhǎng)為SKIPIF1<0.【詳解】如圖,在圓錐SKIPIF1<0中,設(shè)圓錐母線長(zhǎng)為SKIPIF1<0,底面圓半徑為SKIPIF1<0,

因?yàn)閭?cè)面積為SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0.因?yàn)镾KIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0.棱長(zhǎng)為SKIPIF1<0的正四面體SKIPIF1<0如圖所示,

則正方體的棱長(zhǎng)為SKIPIF1<0,體對(duì)角線長(zhǎng)為SKIPIF1<0,所以棱長(zhǎng)為SKIPIF1<0的正四面體SKIPIF1<0的外接球半徑為SKIPIF1<0.取軸截面SKIPIF1<0,設(shè)SKIPIF1<0內(nèi)切圓的半徑為SKIPIF1<0,則SKIPIF1<0,解得SKIPIF1<0,即圓錐SKIPIF1<0的內(nèi)切球半徑為SKIPIF1<0.因?yàn)檎拿骟wSKIPIF1<0能在圓錐SKIPIF1<0內(nèi)任意轉(zhuǎn)動(dòng),所以SKIPIF1<0,即SKIPIF1<0,所以正四面體SKIPIF1<0的最大棱長(zhǎng)為SKIPIF1<0.故答案為:SKIPIF1<0;SKIPIF1<0【點(diǎn)睛】方法點(diǎn)睛:在求解正四面體外接球(內(nèi)切球)問(wèn)題時(shí),可根據(jù)正四面體的結(jié)構(gòu)特征構(gòu)造正方體求出外接球半徑,也可直接利用結(jié)論:棱長(zhǎng)為SKIPIF1<0的正四面體的外接球半徑為SKIPIF1<0,內(nèi)切球半徑為SKIPIF1<0.7.(2024·云南昆明·一模)已知球SKIPIF1<0的表面積為SKIPIF1<0,正四棱錐SKIPIF1<0的所有頂點(diǎn)都在球SKIPIF1<0的球面上,則該正四棱錐SKIPIF1<0體積的最大值為.【答案】SKIPIF1<0【分析】由球的表面積計(jì)算出球的半徑,設(shè)出該正四棱錐底面邊長(zhǎng)及高,由球的半徑可得底面邊長(zhǎng)與高的關(guān)系,求出該正四棱錐體積的表達(dá)式,結(jié)合導(dǎo)數(shù)計(jì)算即可得.【詳解】由SKIPIF1<0,故該球半徑SKIPIF1<0,設(shè)正四棱錐SKIPIF1<0底面邊長(zhǎng)為SKIPIF1<0,高為SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,則有SKIPIF1<0,化簡(jiǎn)得SKIPIF1<0,SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,故當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,即SKIPIF1<0有極大值SKIPIF1<0,即該正四棱錐SKIPIF1<0體積的最大值為SKIPIF1<0.故答案為:SKIPIF1<0.【點(diǎn)睛】關(guān)鍵點(diǎn)睛:本題關(guān)鍵在于得出體積的表達(dá)式后構(gòu)造函數(shù),借助導(dǎo)數(shù)研究函數(shù)單調(diào)性后可得最值.8.(2024·全國(guó)·模擬預(yù)測(cè))在三棱錐SKIPIF1<0中,SKIPIF1<0兩兩互相垂直,SKIPIF1<0,當(dāng)三棱錐SKIPIF1<0的體積取得最大值時(shí),該三棱錐的內(nèi)切球半徑為.【答案】SKIPIF1<0【分析】設(shè)SKIPIF1<0,表示出三棱錐SKIPIF1<0的體積的表達(dá)式,利用導(dǎo)數(shù)求出體積取最大值時(shí)x的值,從而確定棱錐的各棱長(zhǎng),再根據(jù)等體積法,即可求得答案.【詳解】設(shè)SKIPIF1<0,則SKIPIF1<0,由題意知SKIPIF1<0兩兩互相垂直,可得三棱錐SKIPIF1<0的體積為SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,故SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,在SKIPIF1<0上單調(diào)遞減,故當(dāng)SKIPIF1<0時(shí),SKIPIF1<0取到最大值,此時(shí)三棱錐SKIPIF1<0的體積取得最大值,設(shè)此時(shí)三棱錐SKIPIF1<0的內(nèi)切球的半徑為r,則SKIPIF1<0,則SKIPIF1<0,則SKIPIF1<0即SKIPIF1<0,解得SKIPIF1<0,故答案為:SKIPIF1<0【點(diǎn)睛】關(guān)鍵點(diǎn)睛:本題考查三棱錐體積最大時(shí),其內(nèi)切球的半徑問(wèn)題,解答的關(guān)鍵是求出當(dāng)三棱錐體積最大時(shí)棱錐的棱長(zhǎng),從而再根據(jù)棱錐的等體積法求解.9.(2024·湖南長(zhǎng)沙·一模)已知正四棱錐SKIPIF1<0的頂點(diǎn)均在球SKIPIF1<0的表面上.若正四棱錐的體積為1,則球SKIPIF1<0體積的最小值為.【答案】SKIPIF1<0/SKIPIF1<0【分析】由底面外接圓的半徑、正四棱錐的高以及外接球的半徑的關(guān)系,結(jié)合已知條件可得SKIPIF1<0,故只需求出外接球半徑的最小值即可.【詳解】設(shè)球SKIPIF1<0的半徑為SKIPIF1<0,正四棱錐的高、底面外接圓的半徑分別為SKIPIF1<0,SKIPIF1<0.如圖,球心在正四棱錐內(nèi)時(shí),由SKIPIF1<0,可得SKIPIF1<0,即SKIPIF1<0(*).

球心在正四棱錐外時(shí),亦能得到(*)式.又正四棱錐的體積為SKIPIF1<0,則SKIPIF1<0,代入(*)式可得SKIPIF1<0.通過(guò)對(duì)關(guān)于SKIPIF1<0的函數(shù)SKIPIF1<0求導(dǎo),即SKIPIF1<0,易得函數(shù)SKIPIF1<0在SKIPIF1<0單調(diào)遞減,在SKIPIF1<0單調(diào)遞增,則SKIPIF1<0.從而,球SKIPIF1<0的體積的最小值SKIPIF1<0.故答案為:SKIPIF1<0.【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:關(guān)鍵是首先得到SKIPIF1<0,從而通過(guò)導(dǎo)數(shù)求得外接球半徑的最小值即可順利得解.10.(2024·全國(guó)·一模)在四面體SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則四面體SKIPIF1<0體積的最大值為.【答案】SKIPIF1<0【分析】如圖,作SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0,根據(jù)線面垂直的判定定理可得SKIPIF1<0平面SKIPIF1<0,設(shè)SKIPIF1<0,則SKIPIF1<0,進(jìn)而四面體SKIPIF1<0的體積為SKIPIF1<0,令SKIPIF1<0,利用導(dǎo)數(shù)求出SKIPIF1<0即可求解.【詳解】如圖,作SKIPIF1<0,且SKIPIF1<0,連接SKIPIF1<0,則四邊形SKIPIF1<0為矩形.由SKIPIF1<0,得SKIPIF1<0,又SKIPIF1<0平面SKIPIF1<0,所以SKIPIF1<0平面SKIPIF1<0,即SKIPIF1<0平面SKIPIF1<0,所以四面體SKIPIF1<0的體積為SKIPIF1<0.由SKIPIF1<0平面SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,得SKIPIF1<0,設(shè)SKIPIF1<0,則SKIPIF1<0,在SKIPIF1<0中,SKIPIF1<0,取SKIPIF1<0的中點(diǎn)F,連接SKIPIF1<0,則SKIPIF1<0,得SKIPIF1<0,所以SKIPIF1<0,故四面體SKIPIF1<0的體積為SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,令SKIPIF1<0,令SKIPIF1<0,所以函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增,則SKIPIF1<0,所以SKIPIF1<0.故答案為:SKIPIF1<0【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:本題主要考查空間幾何體的體積,解題關(guān)鍵是證明線面垂直和利用導(dǎo)數(shù)求解體積的最大值.本題中證明SKIPIF1<0平面SKIPIF1<0,表示出四面體的體積為SKIPIF1<0,得到所要求的量.11.(2024·湖南長(zhǎng)沙·一模)如圖是一個(gè)球形圍墻燈,該燈的底座可以近似看作正四棱臺(tái).球形燈與底座剛好相切,切點(diǎn)為正四棱臺(tái)上底面中心,且球形燈內(nèi)切于底座四棱臺(tái)的外接球.若正四棱臺(tái)的上底面邊長(zhǎng)為4,下底面邊長(zhǎng)為2,側(cè)棱長(zhǎng)為SKIPIF1<0,則球形燈半徑SKIPIF1<0與正四棱臺(tái)外接球半徑SKIPIF1<0的比值為.【答案】SKIPIF1<0【分析】設(shè)正四棱臺(tái)SKIPIF1<0上底面與下底面中心分別為SKIPIF1<0,則正四棱臺(tái)的外接球球心為SKIPIF1<0及球形燈的圓心SKIPIF1<0均在直線SKIPIF1<0上.由幾何關(guān)系,求出SKIPIF1<0,求出R的值,再根據(jù)SKIPIF1<0求出r的值,即可得到比值.【詳解】如圖所示,設(shè)正四棱臺(tái)SKIPIF1<0上底面與下底面中心分別為SKIPIF1<0,作截面SKIPIF1<0,則正四棱臺(tái)外接球球心SKIPIF1<0及球形燈的圓心SKIPIF1<0均在直線SKIPIF1<0上,作SKIPIF1<0于H.因?yàn)檎睦馀_(tái)的上底面邊長(zhǎng)為4,下底面邊長(zhǎng)為2,側(cè)棱長(zhǎng)為SKIPIF1<0,則有SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.在SKIPIF1<0中,SKIPIF1<0,在SKIPIF1<0中,SKIPIF1<0,所以SKIPIF1<0,整理得SKIPIF1<0.由圖可知,在圓SKIPIF1<0中,有SKIPIF1<0,解得SKIPIF1<0,所以SKIPIF1<0.故答案為:SKIPIF1<0【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:本題的關(guān)鍵是作出相關(guān)圖形,利用勾股定理等得到相關(guān)方程,從而解出兩個(gè)半徑長(zhǎng).12.(2024·山東日照·一模)已知正四棱錐SKIPIF1<0的所有棱長(zhǎng)都為2;點(diǎn)E在側(cè)棱SC上,過(guò)點(diǎn)E且垂直于SC的平面截該棱錐,得到截面多邊形H,則H的邊數(shù)至多為,H的面積的最大值為.【答案】5SKIPIF1<0/SKIPIF1<0【分析】數(shù)形結(jié)合,作平面與平面SKIPIF1<0平行,即可解決;令SKIPIF1<0,用SKIPIF1<0表示相關(guān)長(zhǎng)度,整理得SKIPIF1<0,結(jié)合二次函數(shù)即可解決.【詳解】取SKIPIF1<0中點(diǎn)SKIPIF1<0且SKIPIF1<0,SKIPIF1<0平面SKIPIF1<0,可知SKIPIF1<0平面SKIPIF1<0,根據(jù)平面的基本性質(zhì),作平面與平面SKIPIF1<0平行,如圖至多為五邊形.令SKIPIF1<0,則SKIPIF1<0,可得SKIPIF1<0,則SKIPIF1<0,可得SKIPIF1<0,所以SKIPIF1<0,又因?yàn)镾KIPIF1<0與SKIPIF1<0的夾角為SKIPIF1<0與SKIPIF1<0夾角,而SKIPIF1<0與SKIPIF1<0垂直,則SKIPIF1<0,可得SKIPIF1<0,可知:當(dāng)SKIPIF1<0時(shí),S取最大值SKIPIF1<0.故答案為:SKIPIF1<0;SKIPIF1<0.【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:根據(jù)平面的性質(zhì)分析截面的形狀,結(jié)合幾何知識(shí)求相應(yīng)的長(zhǎng)度和面積,進(jìn)而分析求解.13.(2024·山東菏澤·一模)如圖,在正四棱臺(tái)SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,該棱臺(tái)體積SKIPIF1<0,則該棱臺(tái)外接球的表面積為.

【答案】SKIPIF1<0【分析】作出輔助線,找到球心的位置,求出外接球半徑,得到外接球表面積.【詳解】連接SKIPIF1<0,取SKIPIF1<0的中點(diǎn)SKIPIF1<0,連接SKIPIF1<0,則外接球球心在直線SKIPIF1<0上,設(shè)球心為SKIPIF1<0,如圖所示,則SKIPIF1<0,

則SKIPIF1<0⊥平面SKIPIF1<0,因?yàn)檎睦馀_(tái)SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,故SKIPIF1<0,所以SKIPIF1<0,設(shè)四棱臺(tái)的高為SKIPIF1<0,故SKIPIF1<0,解得SKIPIF1<0,故SKIPIF1<0,設(shè)SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,故SKIPIF1<0,解得SKIPIF1<0,故半徑SKIPIF1<0,故該棱臺(tái)外接球的表面積為SKIPIF1<0.故答案為:SKIPIF1<0【點(diǎn)睛】方法點(diǎn)睛:解決與球有關(guān)的內(nèi)切或外接的問(wèn)題時(shí),解題的關(guān)鍵是確定球心的位置.對(duì)于外切的問(wèn)題要注意球心到各個(gè)面的距離相等且都為球半徑;對(duì)于球的內(nèi)接幾何體的問(wèn)題,注意球心到各個(gè)頂點(diǎn)的距離相等,解題時(shí)要構(gòu)造出由球心到截面圓的垂線段、小圓的半徑和球半徑組成的直角三角形,利用勾股定理求得球的半徑14.(2024·廣東汕頭·一模)如圖,在正方體SKIPIF1<0中,SKIPIF1<0是棱SKIPIF1<0的中點(diǎn),記平面SKIPIF1<0與平面SKIPIF1<0的交線為SKIPIF1<0,平面SKIPIF1<0與平面SKIPIF1<0的交線為SKIPIF1<0,若直線SKIPIF1<0分別與SKIPIF1<0所成的角為SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0.【答案】SKIPIF1<0/0.5SKIPIF1<0/SKIPIF1<0【分析】利用平面基本事實(shí)作出直線SKIPIF1<0,進(jìn)而求出SKIPIF1<0;利用面面平行的性質(zhì)結(jié)合等角定理,再利用和角的正切計(jì)算即得.【詳解】在正方體SKIPIF1<0中,SKIPIF1<0是棱SKIPIF1<0的中點(diǎn),延長(zhǎng)SKIPIF1<0與SKIPIF1<0延長(zhǎng)線交于點(diǎn)SKIPIF1<0,連接SKIPIF1<0,則直線SKIPIF1<0即為直線SKIPIF1<0,SKIPIF1<0,由SKIPIF1<0

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論