湖北省黃岡市蔡河中學(xué)2021-2022學(xué)年高三3月份第一次模擬考試數(shù)學(xué)試卷含解析_第1頁
湖北省黃岡市蔡河中學(xué)2021-2022學(xué)年高三3月份第一次模擬考試數(shù)學(xué)試卷含解析_第2頁
湖北省黃岡市蔡河中學(xué)2021-2022學(xué)年高三3月份第一次模擬考試數(shù)學(xué)試卷含解析_第3頁
湖北省黃岡市蔡河中學(xué)2021-2022學(xué)年高三3月份第一次模擬考試數(shù)學(xué)試卷含解析_第4頁
湖北省黃岡市蔡河中學(xué)2021-2022學(xué)年高三3月份第一次模擬考試數(shù)學(xué)試卷含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2021-2022高考數(shù)學(xué)模擬試卷注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知集合A,則集合()A. B. C. D.2.已知函數(shù),若所有點,所構(gòu)成的平面區(qū)域面積為,則()A. B. C.1 D.3.若向量,則()A.30 B.31 C.32 D.334.中心在原點,對稱軸為坐標軸的雙曲線的兩條漸近線與圓都相切,則雙曲線的離心率是()A.2或 B.2或 C.或 D.或5.已知集合,,則()A. B.C.或 D.6.已知甲、乙兩人獨立出行,各租用共享單車一次(假定費用只可能為、、元).甲、乙租車費用為元的概率分別是、,甲、乙租車費用為元的概率分別是、,則甲、乙兩人所扣租車費用相同的概率為()A. B. C. D.7.已知集合,,,則()A. B. C. D.8.已知實數(shù),滿足約束條件,則的取值范圍是()A. B. C. D.9.若某幾何體的三視圖(單位:cm)如圖所示,則此幾何體的體積是()A.36cm3 B.48cm3 C.60cm3 D.72cm310.雙曲線的漸近線方程為()A. B. C. D.11.如圖,在正方體中,已知、、分別是線段上的點,且.則下列直線與平面平行的是()A. B. C. D.12.《九章算術(shù)》勾股章有一“引葭赴岸”問題“今有餅池徑丈,葭生其中,出水兩尺,引葭赴岸,適與岸齊,問水深,葭各幾何?”,其意思是:有一個直徑為一丈的圓柱形水池,池中心生有一顆類似蘆葦?shù)闹参?,露出水面兩尺,若把它引向岸邊,正好與岸邊齊,問水有多深,該植物有多高?其中一丈等于十尺,如圖若從該葭上隨機取一點,則該點取自水下的概率為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在中,角的平分線交于,,,則面積的最大值為__________.14.在中,角的對邊分別為,且.若為鈍角,,則的面積為____________.15.已知橢圓與雙曲線有相同的焦點、,其中為左焦點.點為兩曲線在第一象限的交點,、分別為曲線、的離心率,若是以為底邊的等腰三角形,則的取值范圍為________.16.在三棱錐中,已知,且平面平面,則三棱錐外接球的表面積為______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)設(shè)不等式的解集為M,.(1)證明:;(2)比較與的大小,并說明理由.18.(12分)的內(nèi)角所對的邊分別是,且,.(1)求;(2)若邊上的中線,求的面積.19.(12分)如圖1,四邊形為直角梯形,,,,,,為線段上一點,滿足,為的中點,現(xiàn)將梯形沿折疊(如圖2),使平面平面.(1)求證:平面平面;(2)能否在線段上找到一點(端點除外)使得直線與平面所成角的正弦值為?若存在,試確定點的位置;若不存在,請說明理由.20.(12分)已知函數(shù).(1)解不等式;(2)若函數(shù)最小值為,且,求的最小值.21.(12分)已知矩形紙片中,,將矩形紙片的右下角沿線段折疊,使矩形的頂點B落在矩形的邊上,記該點為E,且折痕的兩端點M,N分別在邊上.設(shè),的面積為S.(1)將l表示成θ的函數(shù),并確定θ的取值范圍;(2)求l的最小值及此時的值;(3)問當(dāng)θ為何值時,的面積S取得最小值?并求出這個最小值.22.(10分)某商場以分期付款方式銷售某種商品,根據(jù)以往資料統(tǒng)計,顧客購買該商品選擇分期付款的期數(shù)的分布列為:2340.4其中,(Ⅰ)求購買該商品的3位顧客中,恰有2位選擇分2期付款的概率;(Ⅱ)商場銷售一件該商品,若顧客選擇分2期付款,則商場獲得利潤l00元,若顧客選擇分3期付款,則商場獲得利潤150元,若顧客選擇分4期付款,則商場獲得利潤200元.商場銷售兩件該商品所獲的利潤記為(單位:元)(ⅰ)求的分布列;(ⅱ)若,求的數(shù)學(xué)期望的最大值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.A【解析】

化簡集合,,按交集定義,即可求解.【詳解】集合,,則.故選:A.【點睛】本題考查集合間的運算,屬于基礎(chǔ)題.2.D【解析】

依題意,可得,在上單調(diào)遞增,于是可得在上的值域為,繼而可得,解之即可.【詳解】解:,因為,,所以,在上單調(diào)遞增,則在上的值域為,因為所有點所構(gòu)成的平面區(qū)域面積為,所以,解得,故選:D.【點睛】本題考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,理解題意,得到是關(guān)鍵,考查運算能力,屬于中檔題.3.C【解析】

先求出,再與相乘即可求出答案.【詳解】因為,所以.故選:C.【點睛】本題考查了平面向量的坐標運算,考查了學(xué)生的計算能力,屬于基礎(chǔ)題.4.A【解析】

根據(jù)題意,由圓的切線求得雙曲線的漸近線的方程,再分焦點在x、y軸上兩種情況討論,進而求得雙曲線的離心率.【詳解】設(shè)雙曲線C的漸近線方程為y=kx,是圓的切線得:,得雙曲線的一條漸近線的方程為∴焦點在x、y軸上兩種情況討論:

①當(dāng)焦點在x軸上時有:②當(dāng)焦點在y軸上時有:∴求得雙曲線的離心率2或.

故選:A.【點睛】本小題主要考查直線與圓的位置關(guān)系、雙曲線的簡單性質(zhì)等基礎(chǔ)知識,考查運算求解能力,考查數(shù)形結(jié)合思想.解題的關(guān)鍵是:由圓的切線求得直線的方程,再由雙曲線中漸近線的方程的關(guān)系建立等式,從而解出雙曲線的離心率的值.此題易忽視兩解得出錯誤答案.5.D【解析】

首先求出集合,再根據(jù)補集的定義計算可得;【詳解】解:∵,解得∴,∴.故選:D【點睛】本題考查補集的概念及運算,一元二次不等式的解法,屬于基礎(chǔ)題.6.B【解析】

甲、乙兩人所扣租車費用相同即同為1元,或同為2元,或同為3元,由獨立事件的概率公式計算即得.【詳解】由題意甲、乙租車費用為3元的概率分別是,∴甲、乙兩人所扣租車費用相同的概率為.故選:B.【點睛】本題考查獨立性事件的概率.掌握獨立事件的概率乘法公式是解題基礎(chǔ).7.D【解析】

根據(jù)集合的基本運算即可求解.【詳解】解:,,,則故選:D.【點睛】本題主要考查集合的基本運算,屬于基礎(chǔ)題.8.B【解析】

畫出可行域,根據(jù)可行域上的點到原點距離,求得的取值范圍.【詳解】由約束條件作出可行域是由,,三點所圍成的三角形及其內(nèi)部,如圖中陰影部分,而可理解為可行域內(nèi)的點到原點距離的平方,顯然原點到所在的直線的距離是可行域內(nèi)的點到原點距離的最小值,此時,點到原點的距離是可行域內(nèi)的點到原點距離的最大值,此時.所以的取值范圍是.故選:B【點睛】本小題考查線性規(guī)劃,兩點間距離公式等基礎(chǔ)知識;考查運算求解能力,數(shù)形結(jié)合思想,應(yīng)用意識.9.B【解析】試題分析:該幾何體上面是長方體,下面是四棱柱;長方體的體積,四棱柱的底面是梯形,體積為,因此總的體積.考點:三視圖和幾何體的體積.10.C【解析】

根據(jù)雙曲線的標準方程,即可寫出漸近線方程.【詳解】雙曲線,雙曲線的漸近線方程為,故選:C【點睛】本題主要考查了雙曲線的簡單幾何性質(zhì),屬于容易題.11.B【解析】

連接,使交于點,連接、,可證四邊形為平行四邊形,可得,利用線面平行的判定定理即可得解.【詳解】如圖,連接,使交于點,連接、,則為的中點,在正方體中,且,則四邊形為平行四邊形,且,、分別為、的中點,且,所以,四邊形為平行四邊形,則,平面,平面,因此,平面.故選:B.【點睛】本題主要考查了線面平行的判定,考查了推理論證能力和空間想象能力,屬于中檔題.12.C【解析】

由題意知:,,設(shè),則,在中,列勾股方程可解得,然后由得出答案.【詳解】解:由題意知:,,設(shè),則在中,列勾股方程得:,解得所以從該葭上隨機取一點,則該點取自水下的概率為故選C.【點睛】本題考查了幾何概型中的長度型,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13.15【解析】

由角平分線定理得,利用余弦定理和三角形面積公式,借助三角恒等變化求出面積的最大值.【詳解】畫出圖形:因為,,由角平分線定理得,設(shè),則由余弦定理得:即當(dāng)且僅當(dāng),即時取等號所以面積的最大值為15故答案為:15【點睛】此題考查解三角形面積的最值問題,通過三角恒等變形后利用均值不等式處理,屬于一般性題目.14.【解析】

轉(zhuǎn)化為,利用二倍角公式可求解得,結(jié)合余弦定理可得b,再利用面積公式可得解.【詳解】因為,所以.又因為,且為銳角,所以.由余弦定理得,即,解得,所以故答案為:【點睛】本題考查了正弦定理和余弦定理的綜合應(yīng)用,考查了學(xué)生綜合分析,轉(zhuǎn)化劃歸,數(shù)學(xué)運算的能力,屬于中檔題.15.【解析】

設(shè),由橢圓和雙曲線的定義得到,根據(jù)是以為底邊的等腰三角形,得到,從而有,根據(jù),得到,再利用導(dǎo)數(shù)法求的范圍.【詳解】設(shè),由橢圓的定義得,由雙曲線的定義得,所以,因為是以為底邊的等腰三角形,所以,即,因為,所以,因為,所以,所以,即,而,因為,所以在上遞增,所以.故答案為:【點睛】本題主要考查橢圓,雙曲線的定義和幾何性質(zhì),還考查了運算求解的能力,屬于中檔題.16.【解析】

取的中點,設(shè)等邊三角形的中心為,連接.根據(jù)等邊三角形的性質(zhì)可求得,,由等腰直角三角形的性質(zhì),得,根據(jù)面面垂直的性質(zhì)得平面,,由勾股定理求得,可得為三棱錐外接球的球心,根據(jù)球體的表面積公式可求得此外接球的表面積.【詳解】在等邊三角形中,取的中點,設(shè)等邊三角形的中心為,連接.由,得,,由已知可得是以為斜邊的等腰直角三角形,,又由已知可得平面平面,平面,,,所以,為三棱錐外接球的球心,外接球半徑,三棱錐外接球的表面積為.故答案為:【點睛】本題考查三棱錐的外接球的表面積,關(guān)鍵在于根據(jù)三棱錐的面的關(guān)系、棱的關(guān)系和長度求得外接球的球心的位置,球的半徑,屬于中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1)證明見解析;(2).【解析】試題分析:(1)首先求得集合M,然后結(jié)合絕對值不等式的性質(zhì)即可證得題中的結(jié)論;(2)利用平方做差的方法可證得|1-4ab|>2|a-b|.試題解析:(Ⅰ)證明:記f(x)=|x-1|-|x+2|,則f(x)=,所以解得-<x<,故M=(-,).所以,||≤|a|+|b|<×+×=.(Ⅱ)由(Ⅰ)得0≤a2<,0≤b2<.|1-4ab|2-4|a-b|2=(1-8ab+16a2b2)-4(a2-2ab+b2)=4(a2-1)(b2-1)>0.所以,|1-4ab|>2|a-b|.18.(1),(2)【解析】

(1)先由正弦定理,得到,進而可得,再由,即可得出結(jié)果;(2)先由余弦定理得,,再根據(jù)題中數(shù)據(jù),可得,從而可求出,得到,進而可求出結(jié)果.【詳解】(1)由正弦定理得,所以,因為,所以,即,所以,又因為,所以,.(2)在和中,由余弦定理得,.因為,,,,又因為,即,所以,所以,又因為,所以.所以的面積.【點睛】本題主要考查解三角形,靈活運用正弦定理和余弦定理即可,屬于??碱}型.19.(1)證明見解析;(2)存在點是線段的中點,使得直線與平面所成角的正弦值為.【解析】

(1)在直角梯形中,根據(jù),,得為等邊三角形,再由余弦定理求得,滿足,得到,再根據(jù)平面平面,利用面面垂直的性質(zhì)定理證明.(2)建立空間直角坐標系:假設(shè)在上存在一點使直線與平面所成角的正弦值為,且,,求得平面的一個法向量,再利用線面角公式求解.【詳解】(1)證明:在直角梯形中,,,因此為等邊三角形,從而,又,由余弦定理得:,∴,即,且折疊后與位置關(guān)系不變,又∵平面平面,且平面平面.∴平面,∵平面,∴平面平面.(2)∵為等邊三角形,為的中點,∴,又∵平面平面,且平面平面,∴平面,取的中點,連結(jié),則,從而,以為坐標原點建立如圖所示的空間直角坐標系:則,,則,假設(shè)在上存在一點使直線與平面所成角的正弦值為,且,,∵,∴,故,∴,又,該平面的法向量為,,令得,∴,解得或(舍),綜上可知,存在點是線段的中點,使得直線與平面所成角的正弦值為.【點睛】本題主要考查面面垂直的性質(zhì)定理和向量法研究線面角問題,還考查了轉(zhuǎn)化化歸的思想和運算求解的能力,屬于中檔題.20.(1)(2)【解析】

(1)利用零點分段法,求得不等式的解集.(2)先求得,即,再根據(jù)“的代換”的方法,結(jié)合基本不等式,求得的最小值.【詳解】(1)當(dāng)時,,即,無解;當(dāng)時,,即,得;當(dāng)時,,即,得.故所求不等式的解集為.(2)因為,所以,則,.當(dāng)且僅當(dāng)即時取等號.故的最小值為.【點睛】本小題主要考查零點分段法解絕對值不等式,考查利用基本不等式求最值,考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,屬于中檔題.21.(1)(2),的最小值為.(3)時,面積取最小值為【解析】

(1),利用三角函數(shù)定義分別表示,且,即可得到關(guān)于的解析式;,,則,即可得到的范圍;(2)由(1),若求l的最小值即求的最大值,即可求的最大值,設(shè)為,令,則,即可設(shè),利用導(dǎo)函數(shù)判斷函數(shù)的單調(diào)性,即可求得的最大值,進而求解;(3)由題,,則,設(shè),,利用導(dǎo)函數(shù)求得的最大值,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論