新疆兵地2025年第二學(xué)期高三期末調(diào)研測試數(shù)學(xué)試題含解析_第1頁
新疆兵地2025年第二學(xué)期高三期末調(diào)研測試數(shù)學(xué)試題含解析_第2頁
新疆兵地2025年第二學(xué)期高三期末調(diào)研測試數(shù)學(xué)試題含解析_第3頁
新疆兵地2025年第二學(xué)期高三期末調(diào)研測試數(shù)學(xué)試題含解析_第4頁
新疆兵地2025年第二學(xué)期高三期末調(diào)研測試數(shù)學(xué)試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

新疆兵地2025年第二學(xué)期高三期末調(diào)研測試數(shù)學(xué)試題注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知集合,則等于()A. B. C. D.2.年某省將實行“”的新高考模式,即語文、數(shù)學(xué)、英語三科必選,物理、歷史二選一,化學(xué)、生物、政治、地理四選二,若甲同學(xué)選科沒有偏好,且不受其他因素影響,則甲同學(xué)同時選擇歷史和化學(xué)的概率為A. B. C. D.3.設(shè),其中a,b是實數(shù),則()A.1 B.2 C. D.4.復(fù)數(shù)滿足(為虛數(shù)單位),則的值是()A. B. C. D.5.在中,,,,點,分別在線段,上,且,,則().A. B. C.4 D.96.設(shè)是虛數(shù)單位,,,則()A. B. C.1 D.27.如圖在直角坐標(biāo)系中,過原點作曲線的切線,切點為,過點分別作、軸的垂線,垂足分別為、,在矩形中隨機(jī)選取一點,則它在陰影部分的概率為()A. B. C. D.8.的展開式中,含項的系數(shù)為()A. B. C. D.9.已知不重合的平面和直線,則“”的充分不必要條件是()A.內(nèi)有無數(shù)條直線與平行 B.且C.且 D.內(nèi)的任何直線都與平行10.一個超級斐波那契數(shù)列是一列具有以下性質(zhì)的正整數(shù):從第三項起,每一項都等于前面所有項之和(例如:1,3,4,8,16…).則首項為2,某一項為2020的超級斐波那契數(shù)列的個數(shù)為()A.3 B.4 C.5 D.611.已知復(fù)數(shù)滿足,則()A. B. C. D.12.設(shè)全集為R,集合,,則A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知數(shù)列的前項和公式為,則數(shù)列的通項公式為___.14.由于受到網(wǎng)絡(luò)電商的沖擊,某品牌的洗衣機(jī)在線下的銷售受到影響,承受了一定的經(jīng)濟(jì)損失,現(xiàn)將地區(qū)200家實體店該品牌洗衣機(jī)的月經(jīng)濟(jì)損失統(tǒng)計如圖所示,估算月經(jīng)濟(jì)損失的平均數(shù)為,中位數(shù)為n,則_________.15.定義在上的偶函數(shù)滿足,且,當(dāng)時,.已知方程在區(qū)間上所有的實數(shù)根之和為.將函數(shù)的圖象向右平移個單位長度,得到函數(shù)的圖象,則__________,__________.16.如果拋物線上一點到準(zhǔn)線的距離是6,那么______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知是拋物線的焦點,點在軸上,為坐標(biāo)原點,且滿足,經(jīng)過點且垂直于軸的直線與拋物線交于、兩點,且.(1)求拋物線的方程;(2)直線與拋物線交于、兩點,若,求點到直線的最大距離.18.(12分)在多面體中,四邊形是正方形,平面,,,為的中點.(1)求證:;(2)求平面與平面所成角的正弦值.19.(12分)如圖所示,四棱錐P﹣ABCD中,PC⊥底面ABCD,PC=CD=2,E為AB的中點,底面四邊形ABCD滿足∠ADC=∠DCB=90°,AD=1,BC=1.(Ⅰ)求證:平面PDE⊥平面PAC;(Ⅱ)求直線PC與平面PDE所成角的正弦值;(Ⅲ)求二面角D﹣PE﹣B的余弦值.20.(12分)如圖,四棱錐中,底面ABCD為菱形,平面ABCD,BD交AC于點E,F(xiàn)是線段PC中點,G為線段EC中點.Ⅰ求證:平面PBD;Ⅱ求證:.21.(12分)某超市在節(jié)日期間進(jìn)行有獎促銷,規(guī)定凡在該超市購物滿400元的顧客,均可獲得一次摸獎機(jī)會.摸獎規(guī)則如下:獎盒中放有除顏色不同外其余完全相同的4個球(紅、黃、黑、白).顧客不放回的每次摸出1個球,若摸到黑球則摸獎停止,否則就繼續(xù)摸球.按規(guī)定摸到紅球獎勵20元,摸到白球或黃球獎勵10元,摸到黑球不獎勵.(1)求1名顧客摸球2次摸獎停止的概率;(2)記X為1名顧客摸獎獲得的獎金數(shù)額,求隨機(jī)變量X的分布列和數(shù)學(xué)期望.22.(10分)已知正實數(shù)滿足.(1)求的最小值.(2)證明:

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.C【解析】

先化簡集合A,再與集合B求交集.【詳解】因為,,所以.故選:C本題主要考查集合的基本運(yùn)算以及分式不等式的解法,屬于基礎(chǔ)題.2.B【解析】

甲同學(xué)所有的選擇方案共有種,甲同學(xué)同時選擇歷史和化學(xué)后,只需在生物、政治、地理三科中再選擇一科即可,共有種選擇方案,根據(jù)古典概型的概率計算公式,可得甲同學(xué)同時選擇歷史和化學(xué)的概率,故選B.3.D【解析】

根據(jù)復(fù)數(shù)相等,可得,然后根據(jù)復(fù)數(shù)模的計算,可得結(jié)果.【詳解】由題可知:,即,所以則故選:D本題考查復(fù)數(shù)模的計算,考驗計算,屬基礎(chǔ)題.4.C【解析】

直接利用復(fù)數(shù)的除法的運(yùn)算法則化簡求解即可.【詳解】由得:本題正確選項:本題考查復(fù)數(shù)的除法的運(yùn)算法則的應(yīng)用,考查計算能力.5.B【解析】

根據(jù)題意,分析可得,由余弦定理求得的值,由可得結(jié)果.【詳解】根據(jù)題意,,則在中,又,則則則則故選:B此題考查余弦定理和向量的數(shù)量積運(yùn)算,掌握基本概念和公式即可解決,屬于簡單題目.6.C【解析】

由,可得,通過等號左右實部和虛部分別相等即可求出的值.【詳解】解:,,解得:.故選:C.本題考查了復(fù)數(shù)的運(yùn)算,考查了復(fù)數(shù)相等的涵義.對于復(fù)數(shù)的運(yùn)算類問題,易錯點是把當(dāng)成進(jìn)行運(yùn)算.7.A【解析】

設(shè)所求切線的方程為,聯(lián)立,消去得出關(guān)于的方程,可得出,求出的值,進(jìn)而求得切點的坐標(biāo),利用定積分求出陰影部分區(qū)域的面積,然后利用幾何概型概率公式可求得所求事件的概率.【詳解】設(shè)所求切線的方程為,則,聯(lián)立,消去得①,由,解得,方程①為,解得,則點,所以,陰影部分區(qū)域的面積為,矩形的面積為,因此,所求概率為.故選:A.本題考查定積分的計算以及幾何概型,同時也涉及了二次函數(shù)的切線方程的求解,考查計算能力,屬于中等題.8.B【解析】

在二項展開式的通項公式中,令的冪指數(shù)等于,求出的值,即可求得含項的系數(shù).【詳解】的展開式通項為,令,得,可得含項的系數(shù)為.故選:B.本題主要考查二項式定理的應(yīng)用,二項展開式的通項公式,二項式系數(shù)的性質(zhì),屬于基礎(chǔ)題.9.B【解析】

根據(jù)充分不必要條件和直線和平面,平面和平面的位置關(guān)系,依次判斷每個選項得到答案.【詳解】A.內(nèi)有無數(shù)條直線與平行,則相交或,排除;B.且,故,當(dāng),不能得到且,滿足;C.且,,則相交或,排除;D.內(nèi)的任何直線都與平行,故,若,則內(nèi)的任何直線都與平行,充要條件,排除.故選:.本題考查了充分不必要條件和直線和平面,平面和平面的位置關(guān)系,意在考查學(xué)生的綜合應(yīng)用能力.10.A【解析】

根據(jù)定義,表示出數(shù)列的通項并等于2020.結(jié)合的正整數(shù)性質(zhì)即可確定解的個數(shù).【詳解】由題意可知首項為2,設(shè)第二項為,則第三項為,第四項為,第五項為第n項為且,則,因為,當(dāng)?shù)闹悼梢詾?;即?個這種超級斐波那契數(shù)列,故選:A.本題考查了數(shù)列新定義的應(yīng)用,注意自變量的取值范圍,對題意理解要準(zhǔn)確,屬于中檔題.11.A【解析】

根據(jù)復(fù)數(shù)的運(yùn)算法則,可得,然后利用復(fù)數(shù)模的概念,可得結(jié)果.【詳解】由題可知:由,所以所以故選:A本題主要考查復(fù)數(shù)的運(yùn)算,考驗計算,屬基礎(chǔ)題.12.B【解析】分析:由題意首先求得,然后進(jìn)行交集運(yùn)算即可求得最終結(jié)果.詳解:由題意可得:,結(jié)合交集的定義可得:.本題選擇B選項.點睛:本題主要考查交集的運(yùn)算法則,補(bǔ)集的運(yùn)算法則等知識,意在考查學(xué)生的轉(zhuǎn)化能力和計算求解能力.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】

由題意,根據(jù)數(shù)列的通項與前n項和之間的關(guān)系,即可求得數(shù)列的通項公式.【詳解】由題意,可知當(dāng)時,;當(dāng)時,.又因為不滿足,所以.本題主要考查了利用數(shù)列的通項與前n項和之間的關(guān)系求解數(shù)列的通項公式,其中解答中熟記數(shù)列的通項與前n項和之間的關(guān)系,合理準(zhǔn)確推導(dǎo)是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題.14.360【解析】

先計算第一塊小矩形的面積,第二塊小矩形的面積,,面積和超過0.5,所以中位數(shù)在第二塊求解,然后再求得平均數(shù)作差即可.【詳解】第一塊小矩形的面積,第二塊小矩形的面積,故;而,故.故答案為:360.本題考查頻率分布直方圖、樣本的數(shù)字特征,考查運(yùn)算求解能力以及數(shù)形結(jié)合思想,屬于基礎(chǔ)題.15.24【解析】

根據(jù)函數(shù)為偶函數(shù)且,所以的周期為,的實數(shù)根是函數(shù)和函數(shù)的圖象的交點的橫坐標(biāo),在平面直角坐標(biāo)系中畫出函數(shù)圖象,根據(jù)函數(shù)的對稱性可得所有實數(shù)根的和為,從而可得參數(shù)的值,最后求出函數(shù)的解析式,代入求值即可.【詳解】解:因為為偶函數(shù)且,所以的周期為.因為時,,所以可作出在區(qū)間上的圖象,而方程的實數(shù)根是函數(shù)和函數(shù)的圖象的交點的橫坐標(biāo),結(jié)合函數(shù)和函數(shù)在區(qū)間上的簡圖,可知兩個函數(shù)的圖象在區(qū)間上有六個交點.由圖象的對稱性可知,此六個交點的橫坐標(biāo)之和為,所以,故.因為,所以.故.故答案為:;本題考查函數(shù)的奇偶性、周期性、對稱性的應(yīng)用,函數(shù)方程思想,數(shù)形結(jié)合思想,屬于難題.16.【解析】

先求出拋物線的準(zhǔn)線方程,然后根據(jù)點到準(zhǔn)線的距離為6,列出,直接求出結(jié)果.【詳解】拋物線的準(zhǔn)線方程為,由題意得,解得.∵點在拋物線上,∴,∴,故答案為:.本小題主要考查拋物線的定義,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1);(2).【解析】

(1)求得點的坐標(biāo),可得出直線的方程,與拋物線的方程聯(lián)立,結(jié)合求出正實數(shù)的值,進(jìn)而可得出拋物線的方程;(2)設(shè)點,,設(shè)的方程為,將直線的方程與拋物線的方程聯(lián)立,列出韋達(dá)定理,結(jié)合求得的值,可得出直線所過定點的坐標(biāo),由此可得出點到直線的最大距離.【詳解】(1)易知點,又,所以點,則直線的方程為.聯(lián)立,解得或,所以.故拋物線的方程為;(2)設(shè)的方程為,聯(lián)立有,設(shè)點,,則,所以.所以,解得.所以直線的方程為,恒過點.又點,故當(dāng)直線與軸垂直時,點到直線的最大距離為.本題考查拋物線方程的求解,同時也考查了拋物線中最值問題的求解,涉及韋達(dá)定理設(shè)而不求法的應(yīng)用,考查運(yùn)算求解能力,屬于中等題.18.(1)證明見解析(2)【解析】

(1)首先證明,,,∴平面.即可得到平面,.(2)以為坐標(biāo)原點,,,所在的直線分別為軸、軸、軸建立空間直角坐標(biāo)系,分別求出平面和平面的法向量,帶入公式求解即可.【詳解】(1)∵平面,平面,∴.又∵四邊形是正方形,∴.∵,∴平面.∵平面,∴.又∵,為的中點,∴.∵,∴平面.∵平面,∴.(2)∵平面,,∴平面.以為坐標(biāo)原點,,,所在的直線分別為軸、軸、軸建立空間直角坐標(biāo)系.如圖所示:則,,,.∴,,.設(shè)為平面的法向量,則,得,令,則.由題意知為平面的一個法向量,∴,∴平面與平面所成角的正弦值為.本題第一問考查線線垂直,先證線面垂直時解題關(guān)鍵,第二問考查二面角,建立空間直角坐標(biāo)系是解題關(guān)鍵,屬于中檔題.19.(Ⅰ)證明見解析(Ⅱ).(Ⅲ)﹣.【解析】

(Ⅰ)由題知,如圖以點為原點,直線分別為軸,建立空間直角坐標(biāo)系,計算,證明,從而平面PAC,即可得證;(Ⅱ)求解平面PDE的一個法向量,計算,即可得直線PC與平面PDE所成角的正弦值;(Ⅲ)求解平面PBE的一個法向量,計算,即可得二面角D﹣PE﹣B的余弦值.【詳解】(Ⅰ)PC⊥底面ABCD,,如圖以點為原點,直線分別為軸,建立空間直角坐標(biāo)系,則,,,,又,平面PAC,平面PDE,平面PDE⊥平面PAC;(Ⅱ)設(shè)為平面PDE的一個法向量,又,則,取,得,直線PC與平面PDE所成角的正弦值;(Ⅲ)設(shè)為平面PBE的一個法向量,又則,取,得,,二面角D﹣PE﹣B的余弦值﹣.本題主要考查了平面與平面的垂直,直線與平面所成角的計算,二面角大小的求解,考查了空間向量在立體幾何中的應(yīng)用,考查了學(xué)生的空間想象能力與運(yùn)算求解能力.20.(1)見解析;(2)見解析.【解析】分析:(1)先證明,再證明FG//平面PBD.(2)先證明平面,再證明BD⊥FG.詳解:證明:(1)連結(jié)PE,因為G.、F為EC和PC的中點,,又平面,平面,所以平面(II)因為菱形ABCD,所以,又PA⊥面ABCD,平面,所以,因為平面,平面,且,平面,平面,∴BD⊥FG.點睛:(1)本題主要考查空間位置關(guān)系的證明,意在考查學(xué)生對這些基礎(chǔ)知識的掌握水平和空間想象轉(zhuǎn)化能力.(2)證明空間位置關(guān)系,一般有幾何法和向量法,本題利用幾何法比較方便.21.(1);(2)20.【解析】

(1)1名顧客摸球2次摸獎停止,說明第一次是從紅球、黃球、白球中摸一球,第二次摸的是黑球,即求概率;(2)的可能取值為:0,10,20,30,1.分別求出取各個值時的概率,即可求出分布列和數(shù)學(xué)期望.【詳解】(1)1名顧客摸球2次摸獎停止,說明第一次是從紅球、黃球、白球中摸一球,第二次摸的是黑球

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論