版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
四川省廣安市2025屆高三下學期第三次聯(lián)考數(shù)學試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.在中,,分別為,的中點,為上的任一點,實數(shù),滿足,設、、、的面積分別為、、、,記(),則取到最大值時,的值為()A.-1 B.1 C. D.2.已知數(shù)列,,,…,是首項為8,公比為得等比數(shù)列,則等于()A.64 B.32 C.2 D.43.已知某幾何體的三視圖如圖所示,其中正視圖與側視圖是全等的直角三角形,則該幾何體的各個面中,最大面的面積為()A.2 B.5 C. D.4.函數(shù)()的圖像可以是()A. B.C. D.5.已知橢圓內(nèi)有一條以點為中點的弦,則直線的方程為()A. B.C. D.6.運行如圖程序,則輸出的S的值為()A.0 B.1 C.2018 D.20177.已知,且,則在方向上的投影為()A. B. C. D.8.如果實數(shù)滿足條件,那么的最大值為()A. B. C. D.9.已知命題p:若,,則;命題q:,使得”,則以下命題為真命題的是()A. B. C. D.10.二項式展開式中,項的系數(shù)為()A. B. C. D.11.等比數(shù)列若則()A.±6 B.6 C.-6 D.12.設函數(shù)在上可導,其導函數(shù)為,若函數(shù)在處取得極大值,則函數(shù)的圖象可能是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.如圖,兩個同心圓的半徑分別為和,為大圓的一條直徑,過點作小圓的切線交大圓于另一點,切點為,點為劣弧上的任一點(不包括兩點),則的最大值是__________.14.的展開式中,的系數(shù)為____________.15.從甲、乙、丙、丁、戊五人中任選兩名代表,甲被選中的概率為__________.16.在三棱錐中,,三角形為等邊三角形,二面角的余弦值為,當三棱錐的體積最大值為時,三棱錐的外接球的表面積為______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,三棱臺的底面是正三角形,平面平面,.(1)求證:;(2)若,求直線與平面所成角的正弦值.18.(12分)已知函數(shù),.(1)討論的單調(diào)性;(2)當時,證明:.19.(12分)在直角坐標平面中,已知的頂點,,為平面內(nèi)的動點,且.(1)求動點的軌跡的方程;(2)設過點且不垂直于軸的直線與交于,兩點,點關于軸的對稱點為,證明:直線過軸上的定點.20.(12分)設函數(shù),().(1)若曲線在點處的切線方程為,求實數(shù)a、m的值;(2)若對任意恒成立,求實數(shù)a的取值范圍;(3)關于x的方程能否有三個不同的實根?證明你的結論.21.(12分)已知函數(shù),(Ⅰ)當時,證明;(Ⅱ)已知點,點,設函數(shù),當時,試判斷的零點個數(shù).22.(10分)設點分別是橢圓的左,右焦點,為橢圓上任意一點,且的最小值為1.(1)求橢圓的方程;(2)如圖,直線與軸交于點,過點且斜率的直線與橢圓交于兩點,為線段的中點,直線交直線于點,證明:直線.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.D【解析】
根據(jù)三角形中位線的性質(zhì),可得到的距離等于△的邊上高的一半,從而得到,由此結合基本不等式求最值,得到當取到最大值時,為的中點,再由平行四邊形法則得出,根據(jù)平面向量基本定理可求得,從而可求得結果.【詳解】如圖所示:因為是△的中位線,所以到的距離等于△的邊上高的一半,所以,由此可得,當且僅當時,即為的中點時,等號成立,所以,由平行四邊形法則可得,,將以上兩式相加可得,所以,又已知,根據(jù)平面向量基本定理可得,從而.故選:D本題考查了向量加法的平行四邊形法則,考查了平面向量基本定理的應用,考查了基本不等式求最值,屬于中檔題.2.A【解析】
根據(jù)題意依次計算得到答案.【詳解】根據(jù)題意知:,,故,,.故選:.本題考查了數(shù)列值的計算,意在考查學生的計算能力.3.D【解析】
根據(jù)三視圖還原出幾何體,找到最大面,再求面積.【詳解】由三視圖可知,該幾何體是一個三棱錐,如圖所示,將其放在一個長方體中,并記為三棱錐.,,,故最大面的面積為.選D.本題主要考查三視圖的識別,復雜的三視圖還原為幾何體時,一般借助長方體來實現(xiàn).4.B【解析】
根據(jù),可排除,然后采用導數(shù),判斷原函數(shù)的單調(diào)性,可得結果.【詳解】由題可知:,所以當時,,又,令,則令,則所以函數(shù)在單調(diào)遞減在單調(diào)遞增,故選:B本題考查函數(shù)的圖像,可從以下指標進行觀察:(1)定義域;(2)奇偶性;(3)特殊值;(4)單調(diào)性;(5)值域,屬基礎題.5.C【解析】
設,,則,,相減得到,解得答案.【詳解】設,,設直線斜率為,則,,相減得到:,的中點為,即,故,直線的方程為:.故選:.本題考查了橢圓內(nèi)點差法求直線方程,意在考查學生的計算能力和應用能力.6.D【解析】
依次運行程序框圖給出的程序可得第一次:,不滿足條件;第二次:,不滿足條件;第三次:,不滿足條件;第四次:,不滿足條件;第五次:,不滿足條件;第六次:,滿足條件,退出循環(huán).輸出1.選D.7.C【解析】
由向量垂直的向量表示求出,再由投影的定義計算.【詳解】由可得,因為,所以.故在方向上的投影為.故選:C.本題考查向量的數(shù)量積與投影.掌握向量垂直與數(shù)量積的關系是解題關鍵.8.B【解析】
解:當直線過點時,最大,故選B9.B【解析】
先判斷命題的真假,進而根據(jù)復合命題真假的真值表,即可得答案.【詳解】,,因為,,所以,所以,即命題p為真命題;畫出函數(shù)和圖象,知命題q為假命題,所以為真.故選:B.本題考查真假命題的概念,以及真值表的應用,解題的關鍵是判斷出命題的真假,難度較易.10.D【解析】
寫出二項式的通項公式,再分析的系數(shù)求解即可.【詳解】二項式展開式的通項為,令,得,故項的系數(shù)為.故選:D本題主要考查了二項式定理的運算,屬于基礎題.11.B【解析】
根據(jù)等比中項性質(zhì)代入可得解,由等比數(shù)列項的性質(zhì)確定值即可.【詳解】由等比數(shù)列中等比中項性質(zhì)可知,,所以,而由等比數(shù)列性質(zhì)可知奇數(shù)項符號相同,所以,故選:B.本題考查了等比數(shù)列中等比中項的簡單應用,注意項的符號特征,屬于基礎題.12.B【解析】
由題意首先確定導函數(shù)的符號,然后結合題意確定函數(shù)在區(qū)間和處函數(shù)的特征即可確定函數(shù)圖像.【詳解】函數(shù)在上可導,其導函數(shù)為,且函數(shù)在處取得極大值,當時,;當時,;當時,.時,,時,,當或時,;當時,.故選:根據(jù)函數(shù)取得極大值,判斷導函數(shù)在極值點附近左側為正,右側為負,由正負情況討論圖像可能成立的選項,是判斷圖像問題常見方法,有一定難度.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
以為坐標原點,所在的直線為軸,的垂直平分線為軸,建立平面直角坐標系,從而可得、,,,然后利用向量數(shù)量積的坐標運算可得,再根據(jù)輔助角公式以及三角函數(shù)的性質(zhì)即可求解.【詳解】以為坐標原點,所在的直線為軸,的垂直平分線為軸,建立平面直角坐標系,則、,由,且,所以,所以,即又平分,所以,則,設,則,,所以,所以,,所以的最大值是.故答案為:本題考查了向量數(shù)量積的坐標運算、利用向量解決幾何問題,同時考查了輔助角公式以及三角函數(shù)的性質(zhì),屬于中檔題.14.16【解析】
要得到的系數(shù),只要求出二項式中的系數(shù)減去的系數(shù)的2倍即可【詳解】的系數(shù)為.故答案為:16此題考查二項式的系數(shù),屬于基礎題.15.【解析】
甲被選中,只需從乙、丙、丁、戊中,再選一人即有種方法,從甲、乙、丙、丁、戊五人中任選兩名共有種方法,根據(jù)公式即可求得概率.【詳解】甲被選中,只需從乙、丙、丁、戊中,再選一人即有種方法,從甲、乙、丙、丁、戊五人中任選兩名共有種方法,.故答案為:.本題考查古典概型的概率的計算,考查學生分析問題的能力,難度容易.16.【解析】
根據(jù)題意作出圖象,利用三垂線定理找出二面角的平面角,再設出的長,即可求出三棱錐的高,然后利用利用基本不等式即可確定三棱錐的體積最大值,從而得出各棱的長度,最后根據(jù)球的幾何性質(zhì),利用球心距,半徑,底面半徑之間的關系即可求出三棱錐的外接球的表面積.【詳解】如圖所示:過點作面,垂足為,過點作交于點,連接.則為二面角的平面角的補角,即有.∵易證面,∴,而三角形為等邊三角形,∴為的中點.設,.∴.故三棱錐的體積為當且僅當時,,即.∴三點共線.設三棱錐的外接球的球心為,半徑為.過點作于,∴四邊形為矩形.則,,,在中,,解得.三棱錐的外接球的表面積為.故答案為:.本題主要考查三棱錐的外接球的表面積的求法,涉及二面角的運用,基本不等式的應用,以及球的幾何性質(zhì)的應用,意在考查學生的直觀想象能力,數(shù)學運算能力和邏輯推理能力,屬于較難題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(Ⅰ)見證明;(Ⅱ)【解析】
(Ⅰ)取的中點為,連結,易證四邊形為平行四邊形,即,由于,為的中點,可得到,從而得到,即可證明平面,從而得到;(Ⅱ)易證,,兩兩垂直,以,,分別為,,軸,建立如圖所示的空間直角坐標系,求出平面的一個法向量為,設與平面所成角為,則,即可得到答案.【詳解】解:(Ⅰ)取的中點為,連結.由是三棱臺得,平面平面,從而.∵,∴,∴四邊形為平行四邊形,∴.∵,為的中點,∴,∴.∵平面平面,且交線為,平面,∴平面,而平面,∴.(Ⅱ)連結.由是正三角形,且為中點,則.由(Ⅰ)知,平面,,∴,,∴,,兩兩垂直.以,,分別為,,軸,建立如圖所示的空間直角坐標系.設,則,,,,∴,,.設平面的一個法向量為.由可得,.令,則,,∴.設與平面所成角為,則.本題考查了空間幾何中,面面垂直的性質(zhì),線線垂直的證明,及線面角的求法,考查了學生的邏輯推理能力與計算求解能力,屬于中檔題.18.(1)見解析;(2)見解析【解析】
(1)求導得,分類討論和,利用導數(shù)研究含參數(shù)的函數(shù)單調(diào)性;(2)根據(jù)(1)中求得的的單調(diào)性,得出在處取得最大值為,構造函數(shù),利用導數(shù),推出,即可證明不等式.【詳解】解:(1)由于,得,當時,,此時在上遞增;當時,由,解得,若,則,若,,此時在遞增,在上遞減.(2)由(1)知在處取得最大值為:,設,則,令,則,則在單調(diào)遞減,∴,即,則在單調(diào)遞減∴,∴,∴.本題考查利用導數(shù)研究函數(shù)的單調(diào)性和最值,涉及分類討論和構造新函數(shù),通過導數(shù)證明不等式,考查轉化思想和計算能力.19.(1)();(2)證明見解析.【解析】
(1)設點,分別用表示、表示和余弦定理表示,將表示為、的方程,再化簡即可;(2)設直線方程代入的軌跡方程,得,設點,,,表示出直線,取,得,即可證明直線過軸上的定點.【詳解】(1)設,由已知,∴,∴(),化簡得點的軌跡的方程為:();(2)由(1)知,過點的直線的斜率為0時與無交點,不合題意故可設直線的方程為:(),代入的方程得:.設,,則,,.∴直線:.令,得.直線過軸上的定點.本題主要考查軌跡方程的求法、余弦定理的應用和利用直線和圓錐曲線的位置關系求定點問題,考查學生的計算能力,屬于中檔題.20.(1),;(2);(3)不能,證明見解析【解析】
(1)求出,結合導數(shù)的幾何意義即可求解;(2)構造,則原題等價于對任意恒成立,即時,,利用導數(shù)求最值即可,值得注意的是,可以通過代特殊值,由求出的范圍,再研究該范圍下單調(diào)性;(3)構造并進行求導,研究單調(diào)性,結合函數(shù)零點存在性定理證明即可.【詳解】(1),,曲線在點處的切線方程為,,解得.(2)記,整理得,由題知,對任意恒成立,對任意恒成立,即時,,,解得,當時,對任意,,,,,即在單調(diào)遞增,此時,實數(shù)的取值范圍為.(3)關于的方程不可能有三個不同的實根,以下給出證明:記,,則關于的方程有三個不同的實根,等價于函數(shù)有三個零點,,當時,,記,則,在單調(diào)遞增,,即,,在單調(diào)遞增,至多有一個零點;當時,記,則,在單調(diào)遞增,即在單調(diào)遞增,至多有一個零點,則至多有兩個單調(diào)區(qū)間,至多有兩個零點.因此,不可能有三個零點.關于的方程不可能有三個不同的實根.本題考查了導數(shù)幾何意義的應用、利用導數(shù)研究函數(shù)單調(diào)性以及函數(shù)的零點存在性定理,考查了轉化與化歸的數(shù)學思想,屬于難題.21.(Ⅰ)詳見解析;(Ⅱ)1.【解析】
(Ⅰ)令,;則.易得,.即可證明;(Ⅱ),分①,②,③當時,討論的零點個數(shù)即可.【詳解】解:(Ⅰ)令,;則.令,,易得在遞減,在遞增,∴,∴在恒成立.∵在遞減,在遞增.∴.∵;(Ⅱ)∵點,點,∴,.①當時,可知,∴∴,,∴.∴在單調(diào)遞增,,.∴在上有一個零點,②當時,,,∴,∴在恒成立,∴在無零點.③當時,,.∴在單調(diào)遞減,,.∴在存在一個零點.綜上,的零點個數(shù)為1..本題考查了利用導數(shù)解決函數(shù)零點問題
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 拆遷鐵門出售合同范例
- 租車不租司機合同范例
- 武漢商貿(mào)職業(yè)學院《商務交流綜合實踐》2023-2024學年第一學期期末試卷
- 石材礦山英文合同范例
- 會員擔保合同范例
- 掛靠培訓合同范例
- 廠方瓷磚合同范例
- 清洗電器合同范例
- 武漢科技職業(yè)學院《精細品化學》2023-2024學年第一學期期末試卷
- 建設道路合同范例
- 2024油氣管道無人機巡檢作業(yè)標準
- 廣東省深圳市寶安區(qū)多校2024-2025學年九年級上學期期中歷史試題
- 重大(2023)版信息科技五年級上冊教學設計
- 工業(yè)循環(huán)水處理行業(yè)市場調(diào)研分析報告
- 廣州市海珠區(qū)六中鷺翔杯物理體驗卷
- 標準查新報告
- 2025公司集團蛇年新春年會游園(靈蛇舞動共創(chuàng)輝煌主題)活動策劃方案-31P
- 《計算機視覺》教學課件-第08章1-神經(jīng)網(wǎng)絡和深度學習1
- 人教版2024年小學二年級上學期語文期末考試往年真題
- 2024湖南省電子信息產(chǎn)業(yè)研究院招聘3人高頻難、易錯點500題模擬試題附帶答案詳解
- 安全月度例會匯報材料模板
評論
0/150
提交評論