版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
第07講拋物線(精講)目錄第一部分:知識點精準(zhǔn)記憶第二部分:課前自我評估測試第三部分:典型例題剖析題型一:拋物線的定義及其應(yīng)用題型二:拋物線的標(biāo)準(zhǔn)方程題型三:拋物線的簡單幾何性質(zhì)題型四:與拋物線有關(guān)的最值問題角度1:利用拋物線定義求最值角度2:利用函數(shù)思想求最值第四部分:高考真題感悟第一部分:知識點精準(zhǔn)記憶第一部分:知識點精準(zhǔn)記憶知識點一:拋物線的定義1、拋物線的定義:平面內(nèi)與一個定點SKIPIF1<0和一條定直線SKIPIF1<0(其中定點SKIPIF1<0不在定直線SKIPIF1<0上)的距離相等的點的軌跡叫做拋物線,定點SKIPIF1<0叫做拋物線的焦點,定直線SKIPIF1<0叫做拋物線的準(zhǔn)線.2、拋物線的數(shù)學(xué)表達式:SKIPIF1<0(SKIPIF1<0為點SKIPIF1<0到準(zhǔn)線SKIPIF1<0的距離).知識點二:拋物線的標(biāo)準(zhǔn)方程和幾何性質(zhì)標(biāo)準(zhǔn)方程SKIPIF1<0(SKIPIF1<0)SKIPIF1<0(SKIPIF1<0)SKIPIF1<0(SKIPIF1<0)SKIPIF1<0(SKIPIF1<0)圖形范圍SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0對稱軸SKIPIF1<0軸SKIPIF1<0軸SKIPIF1<0軸SKIPIF1<0軸焦點坐標(biāo)SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0準(zhǔn)線方程SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0頂點坐標(biāo)SKIPIF1<0離心率SKIPIF1<0通徑長SKIPIF1<0知識點三:拋物線的焦半徑公式如下:(SKIPIF1<0為焦準(zhǔn)距)(1)焦點SKIPIF1<0在SKIPIF1<0軸正半軸,拋物線上任意一點SKIPIF1<0,則SKIPIF1<0;(2)焦點SKIPIF1<0在SKIPIF1<0軸負(fù)半軸,拋物線上任意一點SKIPIF1<0,則SKIPIF1<0;(3)焦點SKIPIF1<0在SKIPIF1<0軸正半軸,拋物線上任意一點SKIPIF1<0,則SKIPIF1<0;(4)焦點SKIPIF1<0在SKIPIF1<0軸負(fù)半軸,拋物線上任意一點SKIPIF1<0,則SKIPIF1<0.第二部分:課前自我評估測試第二部分:課前自我評估測試1.(2022·湖南衡陽·高二期末)拋物線SKIPIF1<0的焦點到其準(zhǔn)線的距離為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.2 D.4【答案】C解:拋物線SKIPIF1<0,即SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0,所以拋物線的焦點到其準(zhǔn)線的距離為SKIPIF1<0.故選:C2.(2022·北京平谷·高二期末)拋物線SKIPIF1<0的焦點到其準(zhǔn)線的距離是(
)A.1 B.2 C.3 D.4【答案】A解:拋物線SKIPIF1<0的焦點為SKIPIF1<0,準(zhǔn)線方程為SKIPIF1<0,所以焦點到準(zhǔn)線的距離SKIPIF1<0;故選:A3.(2022·北京·清華附中高二階段練習(xí))已知拋物線SKIPIF1<0:SKIPIF1<0的焦點為SKIPIF1<0,點SKIPIF1<0在拋物線上,SKIPIF1<0,則點SKIPIF1<0的橫坐標(biāo)為(
)A.6 B.5 C.4 D.2【答案】C解:設(shè)點SKIPIF1<0的橫坐標(biāo)為SKIPIF1<0,拋物線SKIPIF1<0的準(zhǔn)線方程為SKIPIF1<0,SKIPIF1<0點SKIPIF1<0在拋物線上,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.故選:C.4.(2022·四川省資中縣球溪高級中學(xué)高二階段練習(xí)(文))拋物線SKIPIF1<0的準(zhǔn)線方程是SKIPIF1<0,則實數(shù)a的值(
)A.SKIPIF1<0 B.SKIPIF1<0 C.8 D.-8【答案】A由題意得:SKIPIF1<0,解得:SKIPIF1<0.故選:A5.(2022·湖北·模擬預(yù)測)已知拋物線SKIPIF1<0,過其焦點F的直線l與其交與A、B兩點,SKIPIF1<0,其準(zhǔn)線方程為___________.【答案】SKIPIF1<0設(shè)線段AB中點為D,則F為線段BD中點,過A、B、D、F分別向拋物線準(zhǔn)線作垂線,垂足分別為SKIPIF1<0、SKIPIF1<0、SKIPIF1<0、SKIPIF1<0,SKIPIF1<0,SKIPIF1<0由梯形中位線得SKIPIF1<0,SKIPIF1<0,∴準(zhǔn)線方程為SKIPIF1<0故答案為:SKIPIF1<0.第三部分:典型例題剖析第三部分:典型例題剖析題型一:拋物線的定義及其應(yīng)用典型例題例題1.(2022·上海普陀·二模)已知點SKIPIF1<0,直線SKIPIF1<0,若動點SKIPIF1<0到SKIPIF1<0的距離等于SKIPIF1<0,則點SKIPIF1<0的軌跡是(
)A.橢圓 B.雙曲線C.拋物線 D.直線【答案】C由拋物線的定義(平面內(nèi),到定點與定直線的距離相等的點的軌跡叫做拋物線)可知,點SKIPIF1<0的軌跡是拋物線.故選:C例題2.(2022·福建福州·高二期中)在平面直角坐標(biāo)系SKIPIF1<0中,動點SKIPIF1<0到直線SKIPIF1<0的距離比它到定點SKIPIF1<0的距離小1,則SKIPIF1<0的軌跡方程為(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】D由題意知動點SKIPIF1<0到直線SKIPIF1<0的距離與定點SKIPIF1<0的距離相等,由拋物線的定義知,P的軌跡是以SKIPIF1<0為焦點,SKIPIF1<0為準(zhǔn)線的拋物線,所以SKIPIF1<0,軌跡方程為SKIPIF1<0,故選:D例題3.(2022·全國·高三專題練習(xí))動點SKIPIF1<0到y(tǒng)軸的距離比它到定點SKIPIF1<0的距離小2,求動點SKIPIF1<0的軌跡方程.【答案】SKIPIF1<0或SKIPIF1<0.解:∵動點M到y(tǒng)軸的距離比它到定點SKIPIF1<0的距離小2,∴動點M到定點SKIPIF1<0的距離與它到定直線SKIPIF1<0的距離相等.∴動點M到軌跡是以SKIPIF1<0為焦點,SKIPIF1<0為準(zhǔn)線的拋物線,且SKIPIF1<0.∴拋物線的方程為SKIPIF1<0,又∵x軸上點SKIPIF1<0左側(cè)的點到y(tǒng)軸的距離比它到SKIPIF1<0點的距離小2,∴M點的軌跡方程為SKIPIF1<0②.綜上,得動點M的軌跡方程為SKIPIF1<0或SKIPIF1<0.同類題型歸類練1.(2022·山東·青島二中高二階段練習(xí))已知動圓M與直線y=2相切,且與定圓SKIPIF1<0外切,則動圓圓心M的軌跡方程為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A設(shè)動圓圓心為M(x,y),半徑為r,由題意可得M到C(0,-3)的距離與到直線y=3的距離相等,由拋物線的定義可知,動圓圓心的軌跡是以C(0,-3)為焦點,以y=3為準(zhǔn)線的一條拋物線,所以SKIPIF1<0,其方程為SKIPIF1<0,故選:A2.(2022·江蘇·高二)與點SKIPIF1<0和直線SKIPIF1<0的距離相等的點的軌跡方程是______.【答案】SKIPIF1<0解:由拋物線的定義可得平面內(nèi)與點SKIPIF1<0和直線SKIPIF1<0的距離相等的點的軌跡為拋物線,且SKIPIF1<0為焦點,直線SKIPIF1<0為準(zhǔn)線,設(shè)拋物線的方程為SKIPIF1<0,可知SKIPIF1<0,解得SKIPIF1<0,所以該拋物線方程是SKIPIF1<0,故答案為:SKIPIF1<03.(2022·全國·高三專題練習(xí))已知動點SKIPIF1<0的坐標(biāo)滿足SKIPIF1<0,則動點SKIPIF1<0的軌跡方程為_____________.【答案】SKIPIF1<0設(shè)SKIPIF1<0直線SKIPIF1<0SKIPIF1<0,則動點SKIPIF1<0到點SKIPIF1<0的距離為SKIPIF1<0,動點SKIPIF1<0到直線SKIPIF1<0SKIPIF1<0的距離為SKIPIF1<0,又因為SKIPIF1<0SKIPIF1<0,所以動點M的軌跡是以SKIPIF1<0為焦點,SKIPIF1<0為準(zhǔn)線的拋物線,其軌跡方程為SKIPIF1<0.故答案為:SKIPIF1<0題型二:拋物線的標(biāo)準(zhǔn)方程典型例題例題1.(2022·云南曲靖·高二期末)過拋物線SKIPIF1<0的焦點SKIPIF1<0的直線交拋物線于點SKIPIF1<0,SKIPIF1<0,交其準(zhǔn)線于點SKIPIF1<0,若SKIPIF1<0,則此拋物線方程為__________.【答案】SKIPIF1<0如圖,作SKIPIF1<0準(zhǔn)線于SKIPIF1<0,SKIPIF1<0準(zhǔn)線于SKIPIF1<0,設(shè)SKIPIF1<0,由拋物線定義得SKIPIF1<0,SKIPIF1<0,故SKIPIF1<0,在直角三角形SKIPIF1<0中,因為SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,從而得SKIPIF1<0,設(shè)準(zhǔn)線與x軸交于SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0,因此拋物線方程為SKIPIF1<0.故答案為:SKIPIF1<0.例題2.(2022·全國·高二課時練習(xí))求適合下列條件的拋物線的方程.(1)焦點為SKIPIF1<0,準(zhǔn)線方程為SKIPIF1<0;(2)頂點在原點,準(zhǔn)線方程為SKIPIF1<0;(3)頂點在原點,以SKIPIF1<0軸為對稱軸,過點SKIPIF1<0.【答案】(1)SKIPIF1<0(2)SKIPIF1<0(3)SKIPIF1<0(1)解:根據(jù)題意,可設(shè)所求拋物線的標(biāo)準(zhǔn)方程為SKIPIF1<0,則SKIPIF1<0,可得SKIPIF1<0,故所求拋物線的標(biāo)準(zhǔn)方程為SKIPIF1<0.(2)解:根據(jù)題意,可設(shè)所求拋物線的標(biāo)準(zhǔn)方程為SKIPIF1<0,則SKIPIF1<0,可得SKIPIF1<0,故所求拋物線的標(biāo)準(zhǔn)方程為SKIPIF1<0.(3)解:根據(jù)題意,設(shè)所求拋物線的標(biāo)準(zhǔn)方程為SKIPIF1<0,則SKIPIF1<0,得SKIPIF1<0,故所求拋物線的標(biāo)準(zhǔn)方程為SKIPIF1<0.同類題型歸類練1.(2022·全國·高二課時練習(xí))已知點SKIPIF1<0到點SKIPIF1<0的距離比點SKIPIF1<0到直線SKIPIF1<0的距離小SKIPIF1<0,求點SKIPIF1<0的軌跡方程.【答案】SKIPIF1<0解:由題意可知,點SKIPIF1<0到點SKIPIF1<0的距離和點SKIPIF1<0到直線SKIPIF1<0的距離相等,故點SKIPIF1<0的軌跡是以點SKIPIF1<0為焦點,以直線SKIPIF1<0為準(zhǔn)線的拋物線,設(shè)點SKIPIF1<0的軌跡方程為SKIPIF1<0,則SKIPIF1<0,解得SKIPIF1<0,故點SKIPIF1<0的軌跡方程為SKIPIF1<0.2.(2022·全國·高二課時練習(xí))根據(jù)下列條件,求拋物線的標(biāo)準(zhǔn)方程、頂點坐標(biāo)和焦點坐標(biāo).(1)準(zhǔn)線方程為SKIPIF1<0;(2)準(zhǔn)線方程為SKIPIF1<0;(3)準(zhǔn)線方程為SKIPIF1<0.【答案】(1)拋物線方程為SKIPIF1<0,頂點坐標(biāo)為SKIPIF1<0,焦點坐標(biāo)為SKIPIF1<0(2)拋物線方程為SKIPIF1<0,頂點坐標(biāo)為SKIPIF1<0,焦點坐標(biāo)為SKIPIF1<0(3)拋物線方程為SKIPIF1<0,頂點坐標(biāo)為SKIPIF1<0,焦點坐標(biāo)為SKIPIF1<0(1)由題意設(shè)拋物線的方程為SKIPIF1<0,因為準(zhǔn)線方程為SKIPIF1<0,所以SKIPIF1<0,得SKIPIF1<0,所以拋物線方程為SKIPIF1<0,頂點坐標(biāo)為SKIPIF1<0,焦點坐標(biāo)為SKIPIF1<0.(2)由題意設(shè)拋物線方程為SKIPIF1<0,因為準(zhǔn)線方程為SKIPIF1<0,所以SKIPIF1<0,得SKIPIF1<0,所以拋物線方程為SKIPIF1<0,頂點坐標(biāo)為SKIPIF1<0,焦點坐標(biāo)為SKIPIF1<0.(3)由題意設(shè)拋物線方程為SKIPIF1<0,因為準(zhǔn)線方程為SKIPIF1<0,所以SKIPIF1<0,得SKIPIF1<0,所以拋物線方程為SKIPIF1<0,頂點坐標(biāo)為SKIPIF1<0,焦點坐標(biāo)為SKIPIF1<0.題型三:拋物線的簡單幾何性質(zhì)典型例題例題1.(2022·河南·駐馬店市基礎(chǔ)教學(xué)研究室高二期末(理))已知拋物線SKIPIF1<0:SKIPIF1<0,則過拋物線SKIPIF1<0的焦點,弦長為整數(shù)且不超過2022的直線的條數(shù)是(
)A.4037 B.4044 C.2019 D.2022【答案】A∵拋物線C:SKIPIF1<0,即SKIPIF1<0,由拋物線的性質(zhì)可得,過拋物線焦點中,長度最短的為垂直于y軸的那條弦,則過拋物線C的焦點,長度最短的弦的長為SKIPIF1<0,由拋物線的對稱性可得,弦長在5到2022之間的有共有SKIPIF1<0條,故弦長為整數(shù)且不超過2022的直線的條數(shù)是SKIPIF1<0.故選:A.例題2.(多選)(2022·湖南永州·高二期末)已知拋物線SKIPIF1<0的焦點SKIPIF1<0,點SKIPIF1<0為SKIPIF1<0上任意一點,若點SKIPIF1<0,下列結(jié)論正確的是(
)A.SKIPIF1<0的最小值為2B.拋物線SKIPIF1<0關(guān)于SKIPIF1<0軸對稱C.過點SKIPIF1<0與拋物線SKIPIF1<0有一個公共點的直線有且只有一條D.點SKIPIF1<0到點SKIPIF1<0的距離與到焦點SKIPIF1<0距離之和的最小值為4【答案】CD設(shè)SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,又拋物線的焦點為SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0時,等號成立.所以SKIPIF1<0的最小值是1,A錯;拋物線的焦點在SKIPIF1<0軸上,拋物線關(guān)于SKIPIF1<0軸對稱,B錯;易知點SKIPIF1<0在拋物線的內(nèi)部(含有焦點的部分),因此過SKIPIF1<0與對稱軸平行的直線與拋物線只有一個公共點,其他直線與拋物線都有兩個公共點,C正確;記拋物線的準(zhǔn)線為SKIPIF1<0,準(zhǔn)線方程為SKIPIF1<0,過SKIPIF1<0作SKIPIF1<0于SKIPIF1<0,過SKIPIF1<0作SKIPIF1<0于SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,所以當(dāng)SKIPIF1<0三點共線,即SKIPIF1<0與SKIPIF1<0重合時,SKIPIF1<0最小,最小值為SKIPIF1<0.D正確.故選:CD.同類題型歸類練1.(2022·全國·高三專題練習(xí))點SKIPIF1<0到拋物線SKIPIF1<0的準(zhǔn)線的距離為6,那么拋物線的標(biāo)準(zhǔn)方程是(
)A.SKIPIF1<0 B.SKIPIF1<0或SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0或SKIPIF1<0【答案】D將SKIPIF1<0轉(zhuǎn)化為SKIPIF1<0,當(dāng)SKIPIF1<0時,拋物線開口向上,準(zhǔn)線方程SKIPIF1<0,點SKIPIF1<0到準(zhǔn)線的距離為SKIPIF1<0,解得SKIPIF1<0,所以拋物線方程為SKIPIF1<0,即SKIPIF1<0;當(dāng)SKIPIF1<0時,拋物線開口向下,準(zhǔn)線方程SKIPIF1<0,點SKIPIF1<0到準(zhǔn)線的距離為SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0(舍去),所以拋物線方程為SKIPIF1<0,即SKIPIF1<0.所以拋物線的方程為SKIPIF1<0或SKIPIF1<0故選:D2.(2022·福建·廈門一中高二階段練習(xí))拋物線SKIPIF1<0上一點SKIPIF1<0到焦點的距離為SKIPIF1<0,則實數(shù)SKIPIF1<0的值為A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A解:因為拋物線SKIPIF1<0過點SKIPIF1<0,所以SKIPIF1<0,拋物線SKIPIF1<0的焦點為SKIPIF1<0,由拋物線的定義可知SKIPIF1<0,解得SKIPIF1<0.故選:A.3.(2022·四川·閬中中學(xué)高二階段練習(xí)(理))已知拋物線SKIPIF1<0,以SKIPIF1<0為圓心,半徑為5的圓與拋物線SKIPIF1<0交于SKIPIF1<0兩點,若SKIPIF1<0,則SKIPIF1<0(
)A.4 B.8 C.10 D.16【答案】B以SKIPIF1<0為圓心,半徑為5的圓的方程為SKIPIF1<0,由拋物線SKIPIF1<0,得到拋物線關(guān)于x軸對稱,又∵上面的圓的圓心在x軸上,∴圓的圖形也關(guān)于x軸對稱,∴它們的交點A,B關(guān)于x軸對稱,因為|AB|=8,∴A,B點的縱坐標(biāo)的絕對值都是4,∵它們在拋物線上,于是A點的橫坐標(biāo)的值SKIPIF1<0,不妨設(shè)A在x軸上方,則A點的坐標(biāo)為SKIPIF1<0,又∵A在圓上,∴SKIPIF1<0,解得SKIPIF1<0,故選:B.題型四:與拋物線有關(guān)的最值問題角度1:利用拋物線定義求最值典型例題例題1.(2022·新疆維吾爾自治區(qū)喀什第二中學(xué)高二期中(理))已知SKIPIF1<0,SKIPIF1<0為拋物線SKIPIF1<0的焦點,點SKIPIF1<0在拋物線上移動,當(dāng)SKIPIF1<0取最小值時,點SKIPIF1<0的坐標(biāo)為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D如圖所示,過SKIPIF1<0點作準(zhǔn)線SKIPIF1<0的垂線,垂足為SKIPIF1<0,由拋物線定義,知SKIPIF1<0SKIPIF1<0當(dāng)SKIPIF1<0在拋物線上移動時,SKIPIF1<0的值在變化,顯然SKIPIF1<0移動到SKIPIF1<0時,SKIPIF1<0三點共線,SKIPIF1<0最小,此時SKIPIF1<0,把SKIPIF1<0代入SKIPIF1<0,得SKIPIF1<0,所以當(dāng)SKIPIF1<0取最小值時,點SKIPIF1<0的坐標(biāo)為SKIPIF1<0.故選:D.例題2.(2022·廣西南寧·高二期末(理))已知拋物線SKIPIF1<0焦點的坐標(biāo)為SKIPIF1<0,SKIPIF1<0為拋物線上的任意一點,SKIPIF1<0,則SKIPIF1<0的最小值為(
)A.3 B.4 C.5 D.SKIPIF1<0【答案】A因為拋物線SKIPIF1<0焦點的坐標(biāo)為SKIPIF1<0,所以SKIPIF1<0,解得SKIPIF1<0.記拋物線的準(zhǔn)線為l,作SKIPIF1<0于SKIPIF1<0,作SKIPIF1<0于SKIPIF1<0,則由拋物線的定義得SKIPIF1<0,當(dāng)且僅當(dāng)P為BA與拋物線的交點時,等號成立.故選:A.同類題型歸類練1.(2022·全國·高三專題練習(xí))已知拋物線SKIPIF1<0的焦點為SKIPIF1<0,定點SKIPIF1<0,設(shè)SKIPIF1<0為拋物線上的動點,SKIPIF1<0的最小值為__________,此時點SKIPIF1<0坐標(biāo)為__________.【答案】
3
SKIPIF1<0過點SKIPIF1<0作SKIPIF1<0垂直于準(zhǔn)線,過SKIPIF1<0作SKIPIF1<0垂直于準(zhǔn)線,SKIPIF1<0,SKIPIF1<0取到最小值時,且為SKIPIF1<0;點SKIPIF1<0與點SKIPIF1<0的縱坐標(biāo)相同,可設(shè)點SKIPIF1<0為SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,解得SKIPIF1<0,所以點SKIPIF1<0,SKIPIF1<0.故答案為:3;SKIPIF1<02.(2022·陜西安康·高二期末(文))已知M為拋物線SKIPIF1<0上的動點,F(xiàn)為拋物線的焦點,SKIPIF1<0,則SKIPIF1<0的最小值為___________.【答案】4解:如圖所示:設(shè)點M在準(zhǔn)線上的射影為D,由拋物線的定義知SKIPIF1<0,∴要求SKIPIF1<0的最小值,即求SKIPIF1<0的最小值,當(dāng)D,M,P三點共線時,SKIPIF1<0最小,最小值為SKIPIF1<0.故答案為:43.(2022·全國·高三專題練習(xí))已知點SKIPIF1<0在拋物線SKIPIF1<0上,點SKIPIF1<0在圓SKIPIF1<0上,則SKIPIF1<0長度的最小值為___________.【答案】3因為拋物線和圓都關(guān)于橫軸對稱,所以不妨設(shè)SKIPIF1<0,設(shè)圓SKIPIF1<0的圓心坐標(biāo)為:SKIPIF1<0,半徑為1,因此SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,所以SKIPIF1<0長度的最小值為SKIPIF1<0,故答案為:SKIPIF1<04.(2022·重慶長壽·高二期末)已知P為拋物線SKIPIF1<0上任意一點,F(xiàn)為拋物線的焦點,SKIPIF1<0為平面內(nèi)一定點,則SKIPIF1<0的最小值為__________.【答案】5由題意,拋物線的準(zhǔn)線為SKIPIF1<0,焦點坐標(biāo)為SKIPIF1<0,過點SKIPIF1<0向準(zhǔn)線作垂線,垂足為SKIPIF1<0,則SKIPIF1<0,當(dāng)SKIPIF1<0共線時,和最?。贿^點SKIPIF1<0向準(zhǔn)線作垂線,垂足為SKIPIF1<0,則SKIPIF1<0,所以最小值為5.故答案為:5.5.(2022·上海市青浦高級中學(xué)高二階段練習(xí))已知點SKIPIF1<0是拋物線SKIPIF1<0上的一個動點,則點SKIPIF1<0到點SKIPIF1<0的距離與SKIPIF1<0到SKIPIF1<0軸的距離之和的最小值為___________.【答案】1由拋物線SKIPIF1<0可知其焦點為SKIPIF1<0,由拋物線的定義可知SKIPIF1<0,故點SKIPIF1<0到點SKIPIF1<0的距離與SKIPIF1<0到SKIPIF1<0軸的距離之和為SKIPIF1<0,即點SKIPIF1<0到點SKIPIF1<0的距離與SKIPIF1<0到SKIPIF1<0軸的距離之和的最小值為1.故答案為:SKIPIF1<0.6.(2022·江蘇·高二)如圖所示,已知P為拋物線SKIPIF1<0上的一個動點,點SKIPIF1<0,F(xiàn)為拋物線C的焦點,若SKIPIF1<0的最小值為3,則拋物線C的標(biāo)準(zhǔn)方程為______.【答案】SKIPIF1<0過點P、Q分別作準(zhǔn)線的垂線,垂直分別為M、N,由拋物線定義可知SKIPIF1<0,當(dāng)P,M,Q三點共線時等號成立所以SKIPIF1<0,解得SKIPIF1<0所以拋物線C的標(biāo)準(zhǔn)方程為SKIPIF1<0.故答案為:SKIPIF1<0角度2:利用函數(shù)思想求最值典型例題例題1.(2022·四川瀘州·高二期末(文))動點SKIPIF1<0在拋物線SKIPIF1<0上,則點SKIPIF1<0到點SKIPIF1<0的距離的最小值為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.12【答案】B設(shè)SKIPIF1<0,則SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0取得最小值,最小值為SKIPIF1<0故選:B例題2.(2022·遼寧·東北育才學(xué)校模擬預(yù)測)已知拋物線SKIPIF1<0,圓SKIPIF1<0.若點SKIPIF1<0,SKIPIF1<0分別在SKIPIF1<0,SKIPIF1<0上運動,且設(shè)點SKIPIF1<0,則SKIPIF1<0的最小值為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A易知SKIPIF1<0即為拋物線SKIPIF1<0的焦點,即SKIPIF1<0,設(shè)SKIPIF1<0,∴SKIPIF1<0∴SKIPIF1<0當(dāng)SKIPIF1<0時,上式SKIPIF1<0,取等條件:SKIPIF1<0,即SKIPIF1<0時,取得最小值SKIPIF1<0故選:A.例題3.(2022·全國·高三專題練習(xí))已知拋物線SKIPIF1<0的焦點坐標(biāo)為SKIPIF1<0,則拋物線上的動點SKIPIF1<0到點SKIPIF1<0的距離SKIPIF1<0的最小值為(
)A.2 B.4 C.SKIPIF1<0 D.SKIPIF1<0【答案】C解:由題意,拋物線的標(biāo)準(zhǔn)方程為:SKIPIF1<0,設(shè)拋物線上的動點SKIPIF1<0的坐標(biāo)為SKIPIF1<0,則:SKIPIF1<0由SKIPIF1<0,所以SKIPIF1<0由SKIPIF1<0,所以SKIPIF1<0,即動點SKIPIF1<0到點SKIPIF1<0的距離SKIPIF1<0的最小值為SKIPIF1<0.故選:C同類題型歸類練1.(2022·內(nèi)蒙古·包鋼一中一模(文))已知圓SKIPIF1<0,點SKIPIF1<0在拋物線SKIPIF1<0上運動,過點SKIPIF1<0引直線SKIPIF1<0,SKIPIF1<0與圓SKIPIF1<0相切,切點分別為SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0的最小值為(
)A.SKIPIF1<0 B.2 C.SKIPIF1<0 D.8【答案】C圓SKIPIF1<0的方程:SKIPIF1<0,可知SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,故四邊形SKIPIF1<0的面積SKIPIF1<0,SKIPIF1<0,當(dāng)SKIPIF1<0取最小值時SKIPIF1<0最小,設(shè)SKIPIF1<0,則SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0取最小值為SKIPIF1<0,SKIPIF1<0的最小值為SKIPIF1<0.故選:SKIPIF1<0.2.(2022·黑龍江大慶·三模(理))已知F是拋物線SKIPIF1<0的焦點,A為拋物線上的動點,點SKIPIF1<0,則當(dāng)SKIPIF1<0取最大值時,SKIPIF1<0的值為___________.【答案】SKIPIF1<0設(shè)SKIPIF1<0,則SKIPIF1<0,而SKIPIF1<0,所以SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時等號成立,所以SKIPIF1<0取最大值時SKIPIF1<0,此時SKIPIF1<0.故答案為:SKIPIF1<03.(2022·全國·高二課時練習(xí))若拋物線SKIPIF1<0上一點SKIPIF1<0到焦點的距離為6,P、Q分別為拋物線與圓SKIPIF1<0上的動點,則SKIPIF1<0的最小值為______.【答案】SKIPIF1<0##SKIPIF1<0由題設(shè)及拋物線定義知:SKIPIF1<0,可得SKIPIF1<0,故SKIPIF1<0,而SKIPIF1<0的圓心為SKIPIF1<0,半徑為1,所以SKIPIF1<0最小,則SKIPIF1<0共線且SKIPIF1<0,故只需SKIPIF1<0最小,令SKIPIF1<0,則SKIPIF1<0,且SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,故SKIPIF1<0的最小值為SKIPIF1<0.故答案為:SKIPIF1<0第四部分:高考真題感悟第四部分:高考真題感悟1.(2022·全國·高考真題(文))設(shè)F為拋物線SKIPIF1<0的焦點,點A在C上,點SKIPIF1<0,若SKIPIF1<0,則SKIPIF1<0(
)A.2 B.SKIPIF1<0 C.3 D.SKIPIF1<0【答案】B由題意得,SKIPIF1<0,則SKIPIF1<0,即點SKIPIF1<0到準(zhǔn)線SKIPIF1<0的距離為2,所以點SKIPIF1<0的橫坐標(biāo)為SKIPIF1<0,不妨設(shè)點SKIPIF1<0在SKIPIF1<0軸上方,代入得,SKIPIF1<0,所以SKIPIF1<0.故選:B2.(2021·天津·高考真題)已知雙曲線SKIPIF1<0的右焦點與拋物線SKIPIF1<0的焦點重合,拋物線的準(zhǔn)線交雙曲線于A,B兩點,交雙曲線的漸近線于C、D兩點,若SKIPIF1<0.則雙曲線的離心率為(
)A.SKIPIF1<0
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 描寫秋景的初一作文600字5篇
- 初中物理教學(xué)心得體會
- 大學(xué)畢業(yè)求職信合集五篇
- 對創(chuàng)業(yè)的認(rèn)識和理解范文五篇
- 七年級下冊歷史知識要點歸納總結(jié)
- 光電技術(shù)轉(zhuǎn)讓協(xié)議書(2篇)
- 租賃經(jīng)營合同范本
- 旅游汽車租賃合同樣書
- 2025電腦購銷合同合同范本
- 2025煤炭買賣合同
- 在建工程重大安全隱患局部停工整改令(格式)
- 《落花生》-完整版課件
- 2021年貴安新區(qū)產(chǎn)業(yè)發(fā)展控股集團有限公司招聘筆試試題及答案解析
- 安全文化培訓(xùn) (注冊安工再培訓(xùn))課件
- 色粉-MSDS物質(zhì)安全技術(shù)資料
- 骨科學(xué)研究生復(fù)試真題匯總版
- 石油化工鋼結(jié)構(gòu)工程施工及驗收規(guī)范
- 遼海版六年級音樂上冊第8單元《3. 演唱 姐妹們上場院》教學(xué)設(shè)計
- 形勢任務(wù)教育宣講材料第一講——講上情
- 物業(yè)安全員考核實施細(xì)則
- 中國地質(zhì)大學(xué)(武漢)教育發(fā)展基金會籌備成立情況報告
評論
0/150
提交評論