![新高考數(shù)學(xué)一輪復(fù)習(xí)第6章 第04講 數(shù)列求和 精練(教師版)_第1頁](http://file4.renrendoc.com/view8/M03/24/1D/wKhkGWbGYcuAEOkAAAFF-SfkZQw667.jpg)
![新高考數(shù)學(xué)一輪復(fù)習(xí)第6章 第04講 數(shù)列求和 精練(教師版)_第2頁](http://file4.renrendoc.com/view8/M03/24/1D/wKhkGWbGYcuAEOkAAAFF-SfkZQw6672.jpg)
![新高考數(shù)學(xué)一輪復(fù)習(xí)第6章 第04講 數(shù)列求和 精練(教師版)_第3頁](http://file4.renrendoc.com/view8/M03/24/1D/wKhkGWbGYcuAEOkAAAFF-SfkZQw6673.jpg)
![新高考數(shù)學(xué)一輪復(fù)習(xí)第6章 第04講 數(shù)列求和 精練(教師版)_第4頁](http://file4.renrendoc.com/view8/M03/24/1D/wKhkGWbGYcuAEOkAAAFF-SfkZQw6674.jpg)
![新高考數(shù)學(xué)一輪復(fù)習(xí)第6章 第04講 數(shù)列求和 精練(教師版)_第5頁](http://file4.renrendoc.com/view8/M03/24/1D/wKhkGWbGYcuAEOkAAAFF-SfkZQw6675.jpg)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
第04講數(shù)列求和(精練)A夯實(shí)基礎(chǔ)一、單選題1.(2022·全國·高三專題練習(xí)(文))設(shè)SKIPIF1<0,SKIPIF1<0A.4 B.5 C.6 D.10【答案】B由于SKIPIF1<0,故原式SKIPIF1<0.2.(2022·海南華僑中學(xué)高二期中)數(shù)列SKIPIF1<0的前2022項(xiàng)和等于(
)A.SKIPIF1<0 B.2022 C.SKIPIF1<0 D.2019【答案】B解:設(shè)數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和為SKIPIF1<0,當(dāng)SKIPIF1<0為奇數(shù)時SKIPIF1<0,當(dāng)SKIPIF1<0為偶數(shù)時SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0SKIPIF1<0.故選:B3.(2022·陜西·西北工業(yè)大學(xué)附屬中學(xué)模擬預(yù)測(理))已知數(shù)列SKIPIF1<0滿足SKIPIF1<0,且SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0(
)A.2021 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B∵SKIPIF1<0,即SKIPIF1<0,則SKIPIF1<0∴數(shù)列SKIPIF1<0是以首項(xiàng)SKIPIF1<0,公差SKIPIF1<0的等差數(shù)列則SKIPIF1<0,即SKIPIF1<0∴SKIPIF1<0則SKIPIF1<0故選:B.4.(2022·江蘇常州·高二期中)已知數(shù)列滿足SKIPIF1<0SKIPIF1<0,則數(shù)列SKIPIF1<0的最小值是A.25 B.26 C.27 D.28【答案】B因?yàn)閿?shù)列SKIPIF1<0中,SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,上式相加,可得SKIPIF1<0SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0時,等式相等,故選B.5.(2022·全國·高三專題練習(xí))已知函數(shù)SKIPIF1<0滿足SKIPIF1<0,若數(shù)列SKIPIF1<0滿足SKIPIF1<0,則數(shù)列SKIPIF1<0的前20項(xiàng)和為(
)A.100 B.105 C.110 D.115【答案】D因?yàn)楹瘮?shù)SKIPIF1<0滿足SKIPIF1<0,SKIPIF1<0①,SKIPIF1<0②,由①SKIPIF1<0②可得SKIPIF1<0,SKIPIF1<0,所以數(shù)列SKIPIF1<0是首項(xiàng)為1,公差為SKIPIF1<0的等差數(shù)列,其前20項(xiàng)和為SKIPIF1<0.故選:D.6.(2022·全國·高三專題練習(xí))數(shù)列SKIPIF1<0的前10項(xiàng)和為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】CSKIPIF1<0∴其前10項(xiàng)和為:SKIPIF1<0SKIPIF1<0.故選:C.7.(2022·全國·高三專題練習(xí)(文))已知數(shù)列SKIPIF1<0的前n項(xiàng)和為SKIPIF1<0,則此數(shù)列奇數(shù)項(xiàng)的前m項(xiàng)和為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B當(dāng)SKIPIF1<0時,SKIPIF1<0,因?yàn)楫?dāng)n=1時,SKIPIF1<0不滿足,所以數(shù)列SKIPIF1<0從第二項(xiàng)開始成等比數(shù)列,又SKIPIF1<0,則數(shù)列SKIPIF1<0的奇數(shù)項(xiàng)構(gòu)成的數(shù)列的前m項(xiàng)和SKIPIF1<0SKIPIF1<0.故選:B.8.(2022·陜西·無高一階段練習(xí))已知數(shù)列SKIPIF1<0滿足SKIPIF1<0,SKIPIF1<0,用SKIPIF1<0表示不超過SKIPIF1<0的最大整數(shù),則SKIPIF1<0(
)A.1 B.2 C.3 D.4【答案】B因?yàn)镾KIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,由SKIPIF1<0,SKIPIF1<0可得SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則數(shù)列SKIPIF1<0是遞增數(shù)列,SKIPIF1<0,則SKIPIF1<0,則SKIPIF1<0.故選:B.二、多選題9.(2022·黑龍江·勃利縣高級中學(xué)高二期中)公差為d的等差數(shù)列SKIPIF1<0滿足SKIPIF1<0,SKIPIF1<0,則下面結(jié)論正確的有(
)A.d=2 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0的前n項(xiàng)和為SKIPIF1<0【答案】ABD由題意得,SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0,所以SKIPIF1<0,故A、B正確;得SKIPIF1<0,故SKIPIF1<0,故C錯誤;所以數(shù)列SKIPIF1<0的前n項(xiàng)和為SKIPIF1<0,故D正確.故選:ABD.10.(2022·廣東·執(zhí)信中學(xué)高二期中)已知數(shù)列SKIPIF1<0滿足SKIPIF1<0,對任意SKIPIF1<0且SKIPIF1<0恒有SKIPIF1<0成立,記SKIPIF1<0的前SKIPIF1<0項(xiàng)和為SKIPIF1<0,則(
)A.SKIPIF1<0為等比數(shù)列 B.SKIPIF1<0為等差數(shù)列C.SKIPIF1<0為遞減數(shù)列 D.SKIPIF1<0【答案】BCD因?yàn)镾KIPIF1<0,故可得SKIPIF1<0,則SKIPIF1<0,故數(shù)列SKIPIF1<0是首項(xiàng)為SKIPIF1<0,公差為SKIPIF1<0的等差數(shù)列,則SKIPIF1<0,SKIPIF1<0;對SKIPIF1<0:因?yàn)镾KIPIF1<0不是常數(shù),故數(shù)列SKIPIF1<0不是等差數(shù)列,故SKIPIF1<0錯誤;對SKIPIF1<0:由上述推導(dǎo)可知,數(shù)列SKIPIF1<0是等差數(shù)列,故SKIPIF1<0正確;對SKIPIF1<0:因?yàn)镾KIPIF1<0,對任意的SKIPIF1<0,都有SKIPIF1<0,即SKIPIF1<0,故數(shù)列SKIPIF1<0是遞減數(shù)列,故SKIPIF1<0正確;對SKIPIF1<0:SKIPIF1<0,故SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,故可得SKIPIF1<0,故SKIPIF1<0正確.故選:SKIPIF1<0.三、填空題11.(2022·黑龍江實(shí)驗(yàn)中學(xué)高二階段練習(xí))數(shù)列SKIPIF1<0的各項(xiàng)均為正數(shù),SKIPIF1<0為其前SKIPIF1<0項(xiàng)和,對于任意的SKIPIF1<0,總有SKIPIF1<0,SKIPIF1<0,SKIPIF1<0成等差數(shù)列,又記SKIPIF1<0,數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和SKIPIF1<0______.【答案】SKIPIF1<0由對于任意的SKIPIF1<0,總有SKIPIF1<0,SKIPIF1<0,SKIPIF1<0成等差數(shù)列可得:SKIPIF1<0,當(dāng)SKIPIF1<0時可得SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,由數(shù)列SKIPIF1<0的各項(xiàng)均為正數(shù),所以SKIPIF1<0,又SKIPIF1<0時SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.故答案為:SKIPIF1<0.12.(2022·浙江·模擬預(yù)測)在數(shù)列SKIPIF1<0中,SKIPIF1<0為SKIPIF1<0的前n項(xiàng)和,則SKIPIF1<0的值為___________.【答案】2解:因?yàn)镾KIPIF1<0,所以SKIPIF1<0SKIPIF1<0.故答案為:2.四、解答題13.(2022·安徽·北大培文蚌埠實(shí)驗(yàn)學(xué)校高三開學(xué)考試(文))已知數(shù)列SKIPIF1<0的前n項(xiàng)和為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0.(1)求數(shù)列SKIPIF1<0的通項(xiàng)公式;(2)設(shè)SKIPIF1<0,求數(shù)列SKIPIF1<0的前n項(xiàng)和SKIPIF1<0.【答案】(1)SKIPIF1<0(2)SKIPIF1<0SKIPIF1<0(1)由SKIPIF1<0得:SKIPIF1<0即SKIPIF1<0,所以數(shù)列SKIPIF1<0為等差數(shù)列,由SKIPIF1<0得SKIPIF1<0,設(shè)公差為d,SKIPIF1<0,得SKIPIF1<0,所以SKIPIF1<0,故數(shù)列SKIPIF1<0的通項(xiàng)公式為SKIPIF1<0.(2)SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0.14.(2022·四川·威遠(yuǎn)中學(xué)校高一階段練習(xí)(文))已知數(shù)列SKIPIF1<0滿足SKIPIF1<0,SKIPIF1<0,令SKIPIF1<0(1)求證:SKIPIF1<0是等比數(shù)列;(2)記數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和為SKIPIF1<0,求SKIPIF1<0.【答案】(1)證明見解析(2)SKIPIF1<0(1)證明:SKIPIF1<0,SKIPIF1<0SKIPIF1<0,①SKIPIF1<0②①-②得,SKIPIF1<0經(jīng)檢驗(yàn),當(dāng)SKIPIF1<0時上式也成立,即SKIPIF1<0.所以SKIPIF1<0即SKIPIF1<0,且SKIPIF1<0.所以SKIPIF1<0是首項(xiàng)為3,公比為3的等比數(shù)列.(2)由(1)得SKIPIF1<0,SKIPIF1<0.所以SKIPIF1<0,SKIPIF1<0兩式相減,得SKIPIF1<0SKIPIF1<0,SKIPIF1<0B能力提升1.(2022·河南·開封市東信學(xué)校模擬預(yù)測(理))已知數(shù)列SKIPIF1<0滿足SKIPIF1<0,則數(shù)列SKIPIF1<0的前2022項(xiàng)的和為___________.【答案】SKIPIF1<0由題意可知,滿足SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0,以上各式累加得,SKIPIF1<0.SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0也滿足上式,∴SKIPIF1<0,則SKIPIF1<0.∴數(shù)列SKIPIF1<0的前n項(xiàng)和為SKIPIF1<0,∴SKIPIF1<0.故答案為:SKIPIF1<0.2.(2022·黑龍江·哈九中三模(文))設(shè)函數(shù)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.則數(shù)列SKIPIF1<0的前n項(xiàng)和SKIPIF1<0______.【答案】SKIPIF1<0由題設(shè),SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0且n≥2,當(dāng)SKIPIF1<0時,SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0故答案為:SKIPIF1<0.3.(2022·安徽·合肥一六八中學(xué)模擬預(yù)測(文))設(shè)數(shù)列SKIPIF1<0的前n項(xiàng)和為SKIPIF1<0,已知SKIPIF1<0,則SKIPIF1<0_________.【答案】960由SKIPIF1<0,當(dāng)n為奇數(shù)時,有SKIPIF1<0;當(dāng)n為偶數(shù)時,SKIPIF1<0,∴數(shù)列SKIPIF1<0的偶數(shù)項(xiàng)構(gòu)成以2為首項(xiàng),以2為公差的等差數(shù)列,則SKIPIF1<0SKIPIF1<0,故答案為:960.4.(2022·全國·高二課時練習(xí))數(shù)列SKIPIF1<0滿足SKIPIF1<0,則該數(shù)列從第5項(xiàng)到第15項(xiàng)的和為______.【答案】1504設(shè)數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和為SKIPIF1<0,數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和為SKIPIF1<0,SKIPIF1<0SKIPIF1<0,故SKIPIF1<0,SKIPIF1<0,SKIPIF1<0數(shù)列SKIPIF1<0從第5項(xiàng)到第15項(xiàng)的和:SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0,故答案為:1504.5.(2022·遼寧·渤海大學(xué)附屬高級中學(xué)模擬預(yù)測)等比數(shù)列SKIPIF1<0中,首項(xiàng)SKIPIF1<0,前SKIPIF1<0項(xiàng)和為SKIPIF1<0,且滿足SKIPIF1<0.(1)求數(shù)列SKIPIF1<0的通項(xiàng)公式;(2)若SKIPIF1<0,求數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和SKIPIF1<0.【答案】(1)SKIPIF1<0(2)SKIPIF1<0(1)設(shè)數(shù)列SKIPIF1<0公比為SKIPIF1<0,由SKIPIF1<0,SKIPIF1<0,可得SKIPIF1<0,化簡得SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0.(2)由(1)得SKIPIF1<0,所以SKIPIF1<0所以SKIPIF1<0SKIPIF1<0..6.(2022·遼寧·沈陽市第八十三中學(xué)高二階段練習(xí))已知數(shù)列{an}的前n項(xiàng)和為SKIPIF1<0,SKIPIF1<0,數(shù)列{bn}滿足b1=1,點(diǎn)P(bn,bn+1)在直線x﹣y+2=0上.(1)求數(shù)列{an},{bn}的通項(xiàng)公式;(2)令SKIPIF1<0,求數(shù)列SKIPIF1<0的前n項(xiàng)和Tn;(3)若SKIPIF1<0,求對所有的正整數(shù)n都有SKIPIF1<0成立的k的取值范圍.【答案】(1)SKIPIF1<0SKIPIF1<0,bn=2n﹣1SKIPIF1<0(2)SKIPIF1<0(3)SKIPIF1<0(1)因?yàn)镾KIPIF1<0①,當(dāng)n=1時,解得SKIPIF1<0.當(dāng)n≥2時,SKIPIF1<0②,①﹣②得SKIPIF1<0,整理得SKIPIF1<0,即SKIPIF1<0SKIPIF1<0,所以數(shù)列{an}是以SKIPIF1<0為首項(xiàng),2為公比的等比數(shù)列;所以SKIPIF1<0SKIPIF1<0.?dāng)?shù)列{bn}滿足b1=1,點(diǎn)P(bn,bn+1)在直線x﹣y+2=0上.所以bn+1﹣bn=2(常數(shù)),所以數(shù)列{bn}是以1為首項(xiàng),2為公差的等差數(shù)列,所以bn=2n﹣1SKIPIF1<0.(2)由(1)得SKIPIF1<0則SKIPIF1<0①,SKIPIF1<0②,①﹣②得SKIPIF1<0,整理得SKIPIF1<0.(3)由(1)得SKIPIF1<0,所以SKIPIF1<0,所以數(shù)列SKIPIF1<0為單調(diào)遞減數(shù)列,所以SKIPIF1<0,即SKIPIF1<0的最大值為1,因?yàn)閷λ械恼麛?shù)n都有SKIPIF1<0都成立,所以SKIPIF1<0,可得SKIPIF1<0,所以SKIPIF1<0恒成立,只需滿足SKIPIF1<0即可,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0時等號成立,故k<2,則k的取值范圍為SKIPIF1<0.C綜合素養(yǎng)1.(2022·遼寧·模擬預(yù)測)如圖是美麗的“勾股樹”,將一個直角三角形分別以它的每一條邊向外作正方形而得到如圖①的第1代“勾股樹”,重復(fù)圖①的作法,得到如圖②的第2代“勾股樹”,…,以此類推,記第n代“勾股樹”中所有正方形的個數(shù)為SKIPIF1<0,數(shù)列SKIPIF1<0的前n項(xiàng)和為SKIPIF1<0,若不等式SKIPIF1<0恒成立,則n的最小值為(
)A.7 B.8 C.9 D.10【答案】C解:第1代“勾股樹”中,正方形的個數(shù)為SKIPIF1<0,第2代“勾股樹”中,正方形的個數(shù)為SKIPIF1<0,…,以此類推,第n代“勾股樹”中所有正方形的個數(shù)為SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,因?yàn)镾KIPIF1<0,所以數(shù)列SKIPIF1<0為遞增數(shù)列,又SKIPIF1<0,SKIPIF1<0,所以n的最小值為9.故選:C.2.(多選)(2022·安徽·六安一中高二期中)在1261年,我國南宋數(shù)學(xué)家楊輝所著的《詳解九章算法》中提出了如圖所示的三角形數(shù)表,這就是著名的“楊輝三角”,它是二項(xiàng)式系數(shù)在三角形中的一種幾何排列.從第1行開始,第n行從左至右的數(shù)字之和記為SKIPIF1<0,如:SKIPIF1<0的前n項(xiàng)和記為SKIPIF1<0,依次去掉每一行中所有的1構(gòu)成的新數(shù)列2,3,3,4,6,4,5,10,10,5,…,記為SKIPIF1<0,SKIPIF1<0的前n項(xiàng)和記為SKIPIF1<0,則下列說法正確的有(
)SKIPIF1<0 B.SKIPIF1<0的前n項(xiàng)和為SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】ABD從第一行開始,每一行的數(shù)依次對應(yīng)SKIPIF1<0的二項(xiàng)式系數(shù),所以SKIPIF1<0,SKIPIF1<0為等比數(shù)列,SKIPIF1<0,所以SKIPIF1<0,故A正確;SKIPIF1<0,所以SKIPIF1<0的前n項(xiàng)和為SKIPIF1<0SKIPIF1<0,故B正確;依次去掉每一行中所有的1后,每一行剩下的項(xiàng)數(shù)分別為0,1,2,3……構(gòu)成一個等差數(shù)列,項(xiàng)數(shù)之和為SKIPIF1<0,SKIPIF1<0的最大整數(shù)為10,楊輝三角中取滿了第11行,第12行首位為1,在SKIPIF1<0中去掉,SKIPIF1<0取的就是第12行的第2項(xiàng),SKIPIF1<0,故C錯誤;SKIPIF1<0,這11行中共去掉了22個1,所以SKIPIF1<0,故D正確.故選:ABD.3.(2022·四川遂寧·三模(文))德國大數(shù)學(xué)家高斯年少成名,被譽(yù)為數(shù)學(xué)屆的王子,19歲的高斯得到了一個數(shù)學(xué)史上非常重要的結(jié)論,就是《正十七邊形尺規(guī)作圖之理論與方法》,在其年幼時,對SKIPIF1<0的求和運(yùn)算中,提出了倒序相加法的原理,該原理基于所給數(shù)據(jù)前后對應(yīng)項(xiàng)的和呈現(xiàn)一定的規(guī)律生成,因此,此方法也稱之為高斯算法,現(xiàn)有函數(shù)SKIPIF1<0,設(shè)數(shù)列SKIPIF1<0滿足SKIPIF1<0,若存在SKIPIF1<0使不等式SKIPIF1<0成立,則SKIPIF1<0的取值范圍是___
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024-2025學(xué)年高中化學(xué)上學(xué)期第三周 氧化還原反應(yīng)說課稿
- 7 我們有新玩法 說課稿-2023-2024學(xué)年道德與法治二年級下冊統(tǒng)編版
- 2025二手車購買合同書
- 2025合同的履行、變更、轉(zhuǎn)讓、撤銷和終止
- 14 《窮人》說課稿-2024-2025學(xué)年六年級語文上冊統(tǒng)編版001
- 買方購車合同范本
- 公路修建合同范本
- 鋪設(shè)碎石土路面施工方案
- 輕鋼吊頂施工方案
- 路燈池施工方案
- 2023年檢驗(yàn)檢測機(jī)構(gòu)質(zhì)量手冊(依據(jù)2023年版評審準(zhǔn)則編制)
- 興??h索拉溝銅多金屬礦礦山地質(zhì)環(huán)境保護(hù)與土地復(fù)墾方案
- 三相分離器原理及操作
- 新教科版五年級下冊科學(xué)全冊每節(jié)課后練習(xí)+答案(共28份)
- 輪值安全員制度
- 葫蘆島尚楚環(huán)??萍加邢薰踞t(yī)療廢物集中處置項(xiàng)目環(huán)評報告
- 全國物業(yè)管理項(xiàng)目經(jīng)理考試試題
- 水文水利課程設(shè)計(jì)報告
- 600字A4標(biāo)準(zhǔn)作文紙
- GB/T 18015.2-2007數(shù)字通信用對絞或星絞多芯對稱電纜第2部分:水平層布線電纜分規(guī)范
- DJI 產(chǎn)品交付理論試題
評論
0/150
提交評論