版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
上海市楊浦區(qū)市級名校2025屆高三下學(xué)期第二次周練數(shù)學(xué)試題試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.集合的真子集的個數(shù)為()A.7 B.8 C.31 D.322.已知集合,集合,則()A. B. C. D.3.下列結(jié)論中正確的個數(shù)是()①已知函數(shù)是一次函數(shù),若數(shù)列通項公式為,則該數(shù)列是等差數(shù)列;②若直線上有兩個不同的點到平面的距離相等,則;③在中,“”是“”的必要不充分條件;④若,則的最大值為2.A.1 B.2 C.3 D.04.若函數(shù)為自然對數(shù)的底數(shù))在區(qū)間上不是單調(diào)函數(shù),則實數(shù)的取值范圍是()A. B. C. D.5.已知,則()A. B. C. D.6.已知,是雙曲線的兩個焦點,過點且垂直于軸的直線與相交于,兩點,若,則△的內(nèi)切圓的半徑為()A. B. C. D.7.三棱錐的各個頂點都在求的表面上,且是等邊三角形,底面,,,若點在線段上,且,則過點的平面截球所得截面的最小面積為()A. B. C. D.8.已知底面為邊長為的正方形,側(cè)棱長為的直四棱柱中,是上底面上的動點.給出以下四個結(jié)論中,正確的個數(shù)是()①與點距離為的點形成一條曲線,則該曲線的長度是;②若面,則與面所成角的正切值取值范圍是;③若,則在該四棱柱六個面上的正投影長度之和的最大值為.A. B. C. D.9.已知數(shù)列滿足,且成等比數(shù)列.若的前n項和為,則的最小值為()A. B. C. D.10.已知函數(shù)為奇函數(shù),且,則()A.2 B.5 C.1 D.311.已知函數(shù),且),則“在上是單調(diào)函數(shù)”是“”的()A.充分不必要條件 B.必要不充分條件 C.充分必要條件 D.既不充分也不必要條件12.要得到函數(shù)的圖象,只需將函數(shù)的圖象A.向左平移個單位長度B.向右平移個單位長度C.向左平移個單位長度D.向右平移個單位長度二、填空題:本題共4小題,每小題5分,共20分。13.已知集合,,則_____________.14.在各項均為正數(shù)的等比數(shù)列中,,且,成等差數(shù)列,則___________.15.某部隊在訓(xùn)練之余,由同一場地訓(xùn)練的甲?乙?丙三隊各出三人,組成小方陣開展游戲,則來自同一隊的戰(zhàn)士既不在同一行,也不在同一列的概率為______.16.某次足球比賽中,,,,四支球隊進入了半決賽.半決賽中,對陣,對陣,獲勝的兩隊進入決賽爭奪冠軍,失利的兩隊爭奪季軍.已知他們之間相互獲勝的概率如下表所示.獲勝概率—0.40.30.8獲勝概率0.6—0.70.5獲勝概率0.70.3—0.3獲勝概率0.20.50.7—則隊獲得冠軍的概率為______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知等比數(shù)列是遞增數(shù)列,且.(1)求數(shù)列的通項公式;(2)若,求數(shù)列的前項和.18.(12分)在平面直角坐標系中,直線的參數(shù)方程為(為參數(shù)),以坐標原點為極點,軸正半軸為極軸建立極坐標系,曲線的極坐標方程為.(1)若,求曲線與的交點坐標;(2)過曲線上任意一點作與夾角為45°的直線,交于點,且的最大值為,求的值.19.(12分)已知函數(shù).(1)討論的單調(diào)性;(2)若,設(shè),證明:,,使.20.(12分)如圖,在四棱錐中,底面是直角梯形且∥,側(cè)面為等邊三角形,且平面平面.(1)求平面與平面所成的銳二面角的大?。唬?)若,且直線與平面所成角為,求的值.21.(12分)已知函數(shù)(1)當(dāng)時,求不等式的解集;(2)的圖象與兩坐標軸的交點分別為,若三角形的面積大于,求參數(shù)的取值范圍.22.(10分)如圖,四棱錐中,四邊形是矩形,,,為正三角形,且平面平面,、分別為、的中點.(1)證明:平面;(2)求幾何體的體積.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.A【解析】
計算,再計算真子集個數(shù)得到答案.【詳解】,故真子集個數(shù)為:.故選:.本題考查了集合的真子集個數(shù),意在考查學(xué)生的計算能力.2.D【解析】
可求出集合,,然后進行并集的運算即可.【詳解】解:,;.故選.考查描述法、區(qū)間的定義,對數(shù)函數(shù)的單調(diào)性,以及并集的運算.3.B【解析】
根據(jù)等差數(shù)列的定義,線面關(guān)系,余弦函數(shù)以及基本不等式一一判斷即可;【詳解】解:①已知函數(shù)是一次函數(shù),若數(shù)列的通項公式為,可得為一次項系數(shù)),則該數(shù)列是等差數(shù)列,故①正確;②若直線上有兩個不同的點到平面的距離相等,則與可以相交或平行,故②錯誤;③在中,,而余弦函數(shù)在區(qū)間上單調(diào)遞減,故“”可得“”,由“”可得“”,故“”是“”的充要條件,故③錯誤;④若,則,所以,當(dāng)且僅當(dāng)時取等號,故④正確;綜上可得正確的有①④共2個;故選:B本題考查命題的真假判斷,主要是正弦定理的運用和等比數(shù)列的求和公式、等差數(shù)列的定義和不等式的性質(zhì),考查運算能力和推理能力,屬于中檔題.4.B【解析】
求得的導(dǎo)函數(shù),由此構(gòu)造函數(shù),根據(jù)題意可知在上有變號零點.由此令,利用分離常數(shù)法結(jié)合換元法,求得的取值范圍.【詳解】,設(shè),要使在區(qū)間上不是單調(diào)函數(shù),即在上有變號零點,令,則,令,則問題即在上有零點,由于在上遞增,所以的取值范圍是.故選:B本小題主要考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,考查方程零點問題的求解策略,考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,屬于中檔題.5.D【解析】
根據(jù)指數(shù)函數(shù)的單調(diào)性,即當(dāng)?shù)讛?shù)大于1時單調(diào)遞增,當(dāng)?shù)讛?shù)大于零小于1時單調(diào)遞減,對選項逐一驗證即可得到正確答案.【詳解】因為,所以,所以是減函數(shù),又因為,所以,,所以,,所以A,B兩項均錯;又,所以,所以C錯;對于D,,所以,故選D.這個題目考查的是應(yīng)用不等式的性質(zhì)和指對函數(shù)的單調(diào)性比較大小,兩個式子比較大小的常用方法有:做差和0比,作商和1比,或者直接利用不等式的性質(zhì)得到大小關(guān)系,有時可以代入一些特殊的數(shù)據(jù)得到具體值,進而得到大小關(guān)系.6.B【解析】
設(shè)左焦點的坐標,由AB的弦長可得a的值,進而可得雙曲線的方程,及左右焦點的坐標,進而求出三角形ABF2的面積,再由三角形被內(nèi)切圓的圓心分割3個三角形的面積之和可得內(nèi)切圓的半徑.【詳解】由雙曲線的方程可設(shè)左焦點,由題意可得,由,可得,所以雙曲線的方程為:所以,所以三角形ABF2的周長為設(shè)內(nèi)切圓的半徑為r,所以三角形的面積,所以,解得,故選:B本題考查求雙曲線的方程和雙曲線的性質(zhì)及三角形的面積的求法,內(nèi)切圓的半徑與三角形長周長的一半之積等于三角形的面積可得半徑的應(yīng)用,屬于中檔題.7.A【解析】
由題意畫出圖形,求出三棱錐S-ABC的外接球的半徑,再求出外接球球心到D的距離,利用勾股定理求得過點D的平面截球O所得截面圓的最小半徑,則答案可求.【詳解】如圖,設(shè)三角形ABC外接圓的圓心為G,則外接圓半徑AG=,設(shè)三棱錐S-ABC的外接球的球心為O,則外接球的半徑R=取SA中點E,由SA=4,AD=3SD,得DE=1,所以O(shè)D=.則過點D的平面截球O所得截面圓的最小半徑為所以過點D的平面截球O所得截面的最小面積為故選:A本題考查三棱錐的外接球問題,還考查了求截面的最小面積,屬于較難題.8.C【解析】
①與點距離為的點形成以為圓心,半徑為的圓弧,利用弧長公式,可得結(jié)論;②當(dāng)在(或時,與面所成角(或的正切值為最小,當(dāng)在時,與面所成角的正切值為最大,可得正切值取值范圍是;③設(shè),,,則,即,可得在前后、左右、上下面上的正投影長,即可求出六個面上的正投影長度之和.【詳解】如圖:①錯誤,因為,與點距離為的點形成以為圓心,半徑為的圓弧,長度為;②正確,因為面面,所以點必須在面對角線上運動,當(dāng)在(或)時,與面所成角(或)的正切值為最?。橄碌酌婷鎸蔷€的交點),當(dāng)在時,與面所成角的正切值為最大,所以正切值取值范圍是;③正確,設(shè),則,即,在前后、左右、上下面上的正投影長分別為,,,所以六個面上的正投影長度之,當(dāng)且僅當(dāng)在時取等號.故選:.本題以命題的真假判斷為載體,考查了軌跡問題、線面角、正投影等知識點,綜合性強,屬于難題.9.D【解析】
利用等比中項性質(zhì)可得等差數(shù)列的首項,進而求得,再利用二次函數(shù)的性質(zhì),可得當(dāng)或時,取到最小值.【詳解】根據(jù)題意,可知為等差數(shù)列,公差,由成等比數(shù)列,可得,∴,解得.∴.根據(jù)單調(diào)性,可知當(dāng)或時,取到最小值,最小值為.故選:D.本題考查等差數(shù)列通項公式、等比中項性質(zhì)、等差數(shù)列前項和的最值,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查邏輯推理能力和運算求解能力,求解時注意當(dāng)或時同時取到最值.10.B【解析】
由函數(shù)為奇函數(shù),則有,代入已知即可求得.【詳解】.故選:.本題考查奇偶性在抽象函數(shù)中的應(yīng)用,考查學(xué)生分析問題的能力,難度較易.11.C【解析】
先求出復(fù)合函數(shù)在上是單調(diào)函數(shù)的充要條件,再看其和的包含關(guān)系,利用集合間包含關(guān)系與充要條件之間的關(guān)系,判斷正確答案.【詳解】,且),由得或,即的定義域為或,(且)令,其在單調(diào)遞減,單調(diào)遞增,在上是單調(diào)函數(shù),其充要條件為即.故選:C.本題考查了復(fù)合函數(shù)的單調(diào)性的判斷問題,充要條件的判斷,屬于基礎(chǔ)題.12.D【解析】
先將化為,根據(jù)函數(shù)圖像的平移原則,即可得出結(jié)果.【詳解】因為,所以只需將的圖象向右平移個單位.本題主要考查三角函數(shù)的平移,熟記函數(shù)平移原則即可,屬于基礎(chǔ)題型.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
由集合和集合求出交集即可.【詳解】解:集合,,.故答案為:.本題考查了交集及其運算,屬于基礎(chǔ)題.14.【解析】
利用等差中項的性質(zhì)和等比數(shù)列通項公式得到關(guān)于的方程,解方程求出代入等比數(shù)列通項公式即可.【詳解】因為,成等差數(shù)列,所以,由等比數(shù)列通項公式得,,所以,解得或,因為,所以,所以等比數(shù)列的通項公式為.故答案為:本題考查等差中項的性質(zhì)和等比數(shù)列通項公式;考查運算求解能力和知識綜合運用能力;熟練掌握等差中項和等比數(shù)列通項公式是求解本題的關(guān)鍵;屬于中檔題.15.【解析】
分兩步進行:首先,先排第一行,再排第二行,最后排第三行;其次,對每一行選人;最后,利用計算出概率即可.【詳解】首先,第一行隊伍的排法有種;第二行隊伍的排法有2種;第三行隊伍的排法有1種;然后,第一行的每個位置的人員安排有種;第二行的每個位置的人員安排有種;第三行的每個位置的人員安排有種.所以來自同一隊的戰(zhàn)士既不在同一行,也不在同一列的概率.故答案為:.本題考查了分步計數(shù)原理,排列與組合知識,考查了轉(zhuǎn)化能力,屬于中檔題.16.0.18【解析】
根據(jù)表中信息,可得勝C的概率;分類討論B或D進入決賽,再計算A勝B或A勝C的概率即可求解.【詳解】由表中信息可知,勝C的概率為;若B進入決賽,B勝D的概率為,則A勝B的概率為;若D進入決賽,D勝B的概率為,則A勝D的概率為;由相應(yīng)的概率公式知,則A獲得冠軍的概率為.故答案為:0.18本題考查了獨立事件的概率應(yīng)用,互斥事件的概率求法,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1)(2)【解析】
(1)先利用等比數(shù)列的性質(zhì),可分別求出的值,從而可求出數(shù)列的通項公式;(2)利用錯位相減求和法可求出數(shù)列的前項和.【詳解】解:(1)由是遞增等比數(shù)列,,聯(lián)立,解得或,因為數(shù)列是遞增數(shù)列,所以只有符合題意,則,結(jié)合可得,∴數(shù)列的通項公式:;(2)由,∴;∴;那么,①則,②將②﹣①得:.本題考查了等比數(shù)列的性質(zhì),考查了等比數(shù)列的通項公式,考查了利用錯位相減法求數(shù)列的前項和.18.(1),;(2)或【解析】
(1)將曲線的極坐標方程和直線的參數(shù)方程化為直角坐標方程,聯(lián)立方程,即可求得曲線與的交點坐標;(2)由直線的普通方程為,故上任意一點,根據(jù)點到直線距離公式求得到直線的距離,根據(jù)三角函數(shù)的有界性,即可求得答案.【詳解】(1),.由,得,曲線的直角坐標方程為.當(dāng)時,直線的普通方程為由解得或.從而與的交點坐標為,.(2)由題意知直線的普通方程為,的參數(shù)方程為(為參數(shù))故上任意一點到的距離為則.當(dāng)時,的最大值為所以;當(dāng)時,的最大值為,所以.綜上所述,或解題關(guān)鍵是掌握極坐標和參數(shù)方程化為直角坐標方程的方法,和點到直線距離公式,考查了分析能力和計算能力,屬于中檔題.19.(1)見解析;(2)證明見解析.【解析】
(1),分,,,四種情況討論即可;(2)問題轉(zhuǎn)化為,利用導(dǎo)數(shù)找到與即可證明.【詳解】(1).①當(dāng)時,恒成立,當(dāng)時,;當(dāng)時,,所以,在上是減函數(shù),在上是增函數(shù).②當(dāng)時,,.當(dāng)時,;當(dāng)時,;當(dāng)時,,所以,在上是減函數(shù),在上是增函數(shù),在上是減函數(shù).③當(dāng)時,,則在上是減函數(shù).④當(dāng)時,,當(dāng)時,;當(dāng)時,;當(dāng)時,,所以,在上是減函數(shù),在上是增函數(shù),在上是減函數(shù).(2)由題意,得.由(1)知,當(dāng),時,,.令,,故在上是減函數(shù),有,所以,從而.,,則,令,顯然在上是增函數(shù),且,,所以存在使,且在上是減函數(shù),在上是增函數(shù),,所以,所以,命題成立.本題考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性以及證明不等式的問題,考查學(xué)生邏輯推理能力,是一道較難的題.20.(1);(2).【解析】
(1)分別取的中點為,易得兩兩垂直,以所在直線為軸建立空間直角坐標系,易得為平面的法向量,只需求出平面的法向量為,再利用計算即可;(2)求出,利用計算即可.【詳解】(1)分別取的中點為,連結(jié).因為∥,所以∥.因為,所以.因為側(cè)面為等邊三角形,所以又因為平面平面,平面平面,平面,所以平面,所以兩兩垂直.以為空間坐標系的原點,分別以所在直線為軸建立如圖所示的空間直角坐標系,因為,則,,.設(shè)平面的法向量為,則,即.取,則,所以.又為平面的法向量,設(shè)平面與平面所成的銳二面角的大小為,則,所以平面與平面所成的銳二面角的大小為.(2)由(1)得,平面的法向量為,所以成.又直
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 無人機精準農(nóng)業(yè)-洞察分析
- 虛擬現(xiàn)實技術(shù)在言語康復(fù)中的應(yīng)用研究-洞察分析
- 舞臺視覺特效-第3篇-洞察分析
- 網(wǎng)絡(luò)化維修服務(wù)模式-洞察分析
- 網(wǎng)絡(luò)文學(xué)與傳統(tǒng)文學(xué)的敘事比較-洞察分析
- 異常安全風(fēng)險評估-洞察分析
- 向廠長提出調(diào)換工作崗位的申請書范文(7篇)
- 藝術(shù)空間激活社區(qū)活力-洞察分析
- 微納光學(xué)器件在量子計算中的應(yīng)用-洞察分析
- 水熱處理對茶葉品質(zhì)影響-洞察分析
- 2025屆高三英語一輪復(fù)習(xí)讀后續(xù)寫微技能之無靈主語
- 9.刷牙洗臉(課件)-一年級勞動教育“小農(nóng)莊”(校本課程)
- 部編版語文四年級下冊第二單元大單元教學(xué)設(shè)計核心素養(yǎng)目標
- 草本霧化行業(yè)分析
- 精品解析:河北省衡水市衡水中學(xué)2023-2024學(xué)年高一上學(xué)期期末數(shù)學(xué)試題(解析版)
- 2023年《鐵道概論》考試復(fù)習(xí)題庫附答案(含各題型)
- (電焊工)勞務(wù)分包合同
- 港口協(xié)會工作總結(jié)及計劃
- 質(zhì)量管理中的流程改進與優(yōu)化
- 兒童健康管理服務(wù)總結(jié)分析報告
- 網(wǎng)絡(luò)公德報告
評論
0/150
提交評論