版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
上海大學(xué)附屬中學(xué)2025屆校高三年級(jí)四月考試數(shù)學(xué)試題考生請(qǐng)注意:1.答題前請(qǐng)將考場(chǎng)、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.過(guò)點(diǎn)的直線與曲線交于兩點(diǎn),若,則直線的斜率為()A. B.C.或 D.或2.從裝有除顏色外完全相同的3個(gè)白球和個(gè)黑球的布袋中隨機(jī)摸取一球,有放回的摸取5次,設(shè)摸得白球數(shù)為,已知,則A. B. C. D.3.某市氣象部門根據(jù)2018年各月的每天最高氣溫平均數(shù)據(jù),繪制如下折線圖,那么,下列敘述錯(cuò)誤的是()A.各月最高氣溫平均值與最低氣溫平均值總體呈正相關(guān)B.全年中,2月份的最高氣溫平均值與最低氣溫平均值的差值最大C.全年中各月最低氣溫平均值不高于10°C的月份有5個(gè)D.從2018年7月至12月該市每天最高氣溫平均值與最低氣溫平均值呈下降趨勢(shì)4.我國(guó)古代數(shù)學(xué)家秦九韶在《數(shù)書九章》中記述了“三斜求積術(shù)”,用現(xiàn)代式子表示即為:在中,角所對(duì)的邊分別為,則的面積.根據(jù)此公式,若,且,則的面積為()A. B. C. D.5.函數(shù)在上為增函數(shù),則的值可以是()A.0 B. C. D.6.定義在R上的函數(shù)y=fx滿足fx≤2x-1A. B. C. D.7.設(shè)全集U=R,集合,則()A. B. C. D.8.設(shè)全集,集合,.則集合等于()A. B. C. D.9.已知角的終邊與單位圓交于點(diǎn),則等于()A. B. C. D.10.如圖,在直角梯形ABCD中,AB∥DC,AD⊥DC,AD=DC=2AB,E為AD的中點(diǎn),若,則λ+μ的值為()A. B. C. D.11.已知復(fù)數(shù)(為虛數(shù)單位)在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)的坐標(biāo)是()A. B. C. D.12.已知定義在上的奇函數(shù)滿足,且當(dāng)時(shí),,則()A.1 B.-1 C.2 D.-2二、填空題:本題共4小題,每小題5分,共20分。13.在數(shù)列中,已知,則數(shù)列的的前項(xiàng)和為_(kāi)_________.14.若存在直線l與函數(shù)及的圖象都相切,則實(shí)數(shù)的最小值為_(kāi)__________.15.已知,則滿足的的取值范圍為_(kāi)______.16.執(zhí)行右邊的程序框圖,輸出的的值為.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知函數(shù),設(shè)的最小值為m.(1)求m的值;(2)是否存在實(shí)數(shù)a,b,使得,?并說(shuō)明理由.18.(12分)已知函數(shù),其中.(1)當(dāng)時(shí),求在的切線方程;(2)求證:的極大值恒大于0.19.(12分)已知曲線的參數(shù)方程為(為參數(shù)).以直角坐標(biāo)系的原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立坐標(biāo)系,曲線的極坐標(biāo)方程為.(1)求的普通方程和的直角坐標(biāo)方程;(2)若過(guò)點(diǎn)的直線與交于,兩點(diǎn),與交于,兩點(diǎn),求的取值范圍.20.(12分)數(shù)列的前項(xiàng)和為,且.數(shù)列滿足,其前項(xiàng)和為.(1)求數(shù)列與的通項(xiàng)公式;(2)設(shè),求數(shù)列的前項(xiàng)和.21.(12分)如圖,在四棱錐中,底面,底面是直角梯形,為側(cè)棱上一點(diǎn),已知.(Ⅰ)證明:平面平面;(Ⅱ)求二面角的余弦值.22.(10分)如圖,四棱錐中,底面是矩形,面底面,且是邊長(zhǎng)為的等邊三角形,在上,且面.(1)求證:是的中點(diǎn);(2)在上是否存在點(diǎn),使二面角為直角?若存在,求出的值;若不存在,說(shuō)明理由.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.A【解析】
利用切割線定理求得,利用勾股定理求得圓心到弦的距離,從而求得,結(jié)合,求得直線的傾斜角為,進(jìn)而求得的斜率.【詳解】曲線為圓的上半部分,圓心為,半徑為.設(shè)與曲線相切于點(diǎn),則所以到弦的距離為,,所以,由于,所以直線的傾斜角為,斜率為.故選:A本小題主要考查直線和圓的位置關(guān)系,考查數(shù)形結(jié)合的數(shù)學(xué)思想方法,屬于中檔題.2.B【解析】
由題意知,,由,知,由此能求出.【詳解】由題意知,,,解得,,.故選:B.本題考查離散型隨機(jī)變量的方差的求法,解題時(shí)要認(rèn)真審題,仔細(xì)解答,注意二項(xiàng)分布的靈活運(yùn)用.3.D【解析】
根據(jù)折線圖依次判斷每個(gè)選項(xiàng)得到答案.【詳解】由繪制出的折線圖知:在A中,各月最高氣溫平均值與最低氣溫平均值為正相關(guān),故A正確;在B中,全年中,2月的最高氣溫平均值與最低氣溫平均值的差值最大,故B正確;在C中,全年中各月最低氣溫平均值不高于10℃的月份有1月,2月,3月,11月,12月,共5個(gè),故C正確;在D中,從2018年7月至12月該市每天最高氣溫平均值與最低氣溫平均值,先上升后下降,故D錯(cuò)誤.故選:D.本題考查了折線圖,意在考查學(xué)生的理解能力.4.A【解析】
根據(jù),利用正弦定理邊化為角得,整理為,根據(jù),得,再由余弦定理得,又,代入公式求解.【詳解】由得,即,即,因?yàn)?,所以,由余弦定理,所以,由的面積公式得故選:A本題主要考查正弦定理和余弦定理以及類比推理,還考查了運(yùn)算求解的能力,屬于中檔題.5.D【解析】
依次將選項(xiàng)中的代入,結(jié)合正弦、余弦函數(shù)的圖象即可得到答案.【詳解】當(dāng)時(shí),在上不單調(diào),故A不正確;當(dāng)時(shí),在上單調(diào)遞減,故B不正確;當(dāng)時(shí),在上不單調(diào),故C不正確;當(dāng)時(shí),在上單調(diào)遞增,故D正確.故選:D本題考查正弦、余弦函數(shù)的單調(diào)性,涉及到誘導(dǎo)公式的應(yīng)用,是一道容易題.6.D【解析】
根據(jù)y=fx+1為奇函數(shù),得到函數(shù)關(guān)于1,0中心對(duì)稱,排除AB,計(jì)算f1.5≤【詳解】y=fx+1為奇函數(shù),即fx+1=-f-x+1,函數(shù)關(guān)于f1.5≤2故選:D.本題考查了函數(shù)圖像的識(shí)別,確定函數(shù)關(guān)于1,0中心對(duì)稱是解題的關(guān)鍵.7.A【解析】
求出集合M和集合N,,利用集合交集補(bǔ)集的定義進(jìn)行計(jì)算即可.【詳解】,,則,故選:A.本題考查集合的交集和補(bǔ)集的運(yùn)算,考查指數(shù)不等式和二次不等式的解法,屬于基礎(chǔ)題.8.A【解析】
先算出集合,再與集合B求交集即可.【詳解】因?yàn)榛?所以,又因?yàn)?所以.故選:A.本題考查集合間的基本運(yùn)算,涉及到解一元二次不等式、指數(shù)不等式,是一道容易題.9.B【解析】
先由三角函數(shù)的定義求出,再由二倍角公式可求.【詳解】解:角的終邊與單位圓交于點(diǎn),,故選:B考查三角函數(shù)的定義和二倍角公式,是基礎(chǔ)題.10.B【解析】
建立平面直角坐標(biāo)系,用坐標(biāo)表示,利用,列出方程組求解即可.【詳解】建立如圖所示的平面直角坐標(biāo)系,則D(0,0).不妨設(shè)AB=1,則CD=AD=2,所以C(2,0),A(0,2),B(1,2),E(0,1),∴(-2,2)=λ(-2,1)+μ(1,2),解得則.故選:B本題主要考查了由平面向量線性運(yùn)算的結(jié)果求參數(shù),屬于中檔題.11.A【解析】
直接利用復(fù)數(shù)代數(shù)形式的乘除運(yùn)算化簡(jiǎn),求得的坐標(biāo)得出答案.【詳解】解:,在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)的坐標(biāo)是.故選:A.本題考查復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查復(fù)數(shù)的代數(shù)表示法及其幾何意義,屬于基礎(chǔ)題.12.B【解析】
根據(jù)f(x)是R上的奇函數(shù),并且f(x+1)=f(1-x),便可推出f(x+4)=f(x),即f(x)的周期為4,而由x∈[0,1]時(shí),f(x)=2x-m及f(x)是奇函數(shù),即可得出f(0)=1-m=0,從而求得m=1,這樣便可得出f(2019)=f(-1)=-f(1)=-1.【詳解】∵是定義在R上的奇函數(shù),且;∴;∴;∴的周期為4;∵時(shí),;∴由奇函數(shù)性質(zhì)可得;∴;∴時(shí),;∴.故選:B.本題考查利用函數(shù)的奇偶性和周期性求值,此類問(wèn)題一般根據(jù)條件先推導(dǎo)出周期,利用函數(shù)的周期變換來(lái)求解,考查理解能力和計(jì)算能力,屬于中等題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
由已知數(shù)列遞推式可得數(shù)列的所有奇數(shù)項(xiàng)與偶數(shù)項(xiàng)分別構(gòu)成以2為公比的等比數(shù)列,求其通項(xiàng)公式,得到,再由求解.【詳解】解:由,得,,則數(shù)列的所有奇數(shù)項(xiàng)與偶數(shù)項(xiàng)分別構(gòu)成以2為公比的等比數(shù)列.,..故答案為:.本題考查數(shù)列遞推式,考查等差數(shù)列與等比數(shù)列的通項(xiàng)公式,訓(xùn)練了數(shù)列的分組求和,屬于中檔題.14.【解析】
設(shè)直線l與函數(shù)及的圖象分別相切于,,因?yàn)椋院瘮?shù)的圖象在點(diǎn)處的切線方程為,即,因?yàn)?,所以函?shù)的圖象在點(diǎn)處的切線方程為,即,因?yàn)榇嬖谥本€l與函數(shù)及的圖象都相切,所以,所以,令,設(shè),則,當(dāng)時(shí),,函數(shù)單調(diào)遞減;當(dāng)時(shí),,函數(shù)單調(diào)遞增,所以,所以實(shí)數(shù)的最小值為.15.【解析】
將f(x)寫成分段函數(shù)形式,分析得f(x)為奇函數(shù)且在R上為增函數(shù),利用奇偶性和單調(diào)性解不等式即可得到答案.【詳解】根據(jù)題意,f(x)=x|x|=,則f(x)為奇函數(shù)且在R上為增函數(shù),則f(2x﹣1)+f(x)≥0?f(2x﹣1)≥﹣f(x)?f(2x﹣1)≥f(﹣x)?2x﹣1≥﹣x,解可得x≥,即x的取值范圍為[,+∞);故答案為:[,+∞).本題考查分段函數(shù)的奇偶性與單調(diào)性的判定以及應(yīng)用,注意分析f(x)的奇偶性與單調(diào)性.16.【解析】初始條件成立方;運(yùn)行第一次:成立;運(yùn)行第二次:不成立;輸出的值:結(jié)束所以答案應(yīng)填:考點(diǎn):1、程序框圖;2、定積分.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(1)(2)不存在;詳見(jiàn)解析【解析】
(1)將函數(shù)去絕對(duì)值化為分段函數(shù)的形式,從而可求得函數(shù)的最小值,進(jìn)而可得m.(2)由,利用基本不等式即可求出.【詳解】(1);(2),若,同號(hào),,不成立;或,異號(hào),,不成立;故不存在實(shí)數(shù),,使得,.本題考查了分段函數(shù)的最值、基本不等式的應(yīng)用,屬于基礎(chǔ)題.18.(1)(2)證明見(jiàn)解析【解析】
(1)求導(dǎo),代入,求出在處的導(dǎo)數(shù)值及函數(shù)值,由此即可求得切線方程;(2)分類討論得出極大值即可判斷.【詳解】(1),當(dāng)時(shí),,,則在的切線方程為;(2)證明:令,解得或,①當(dāng)時(shí),恒成立,此時(shí)函數(shù)在上單調(diào)遞減,∴函數(shù)無(wú)極值;②當(dāng)時(shí),令,解得,令,解得或,∴函數(shù)在上單調(diào)遞增,在,上單調(diào)遞減,∴;③當(dāng)時(shí),令,解得,令,解得或,∴函數(shù)在上單調(diào)遞增,在,上單調(diào)遞減,∴,綜上,函數(shù)的極大值恒大于0.本小題主要考查利用導(dǎo)數(shù)求切線方程,考查利用導(dǎo)數(shù)研究函數(shù)的極值,考查分類討論的數(shù)學(xué)思想方法,屬于中檔題.19.(1)見(jiàn)解析;(2).【解析】試題分析:(1)利用平方法消去參數(shù),即可得到的普通方程,兩邊同乘以利用即可得的直角坐標(biāo)方程;(2)設(shè)直線的參數(shù)方程為(為參數(shù)),代入,利用韋達(dá)定理、直線參數(shù)方程的幾何意義以及三角函數(shù)的有界性可得結(jié)果.試題解析:(1)曲線的普通方程為,曲線的直角坐標(biāo)方程為;(2)設(shè)直線的參數(shù)方程為(為參數(shù))又直線與曲線:存在兩個(gè)交點(diǎn),因此.聯(lián)立直線與曲線:可得則聯(lián)立直線與曲線:可得,則即20.(1),;(2).【解析】
(1)令可求得的值,令,由得出,兩式相減可推導(dǎo)出數(shù)列為等比數(shù)列,確定該數(shù)列的公比,利用等比數(shù)列的通項(xiàng)公式可求得數(shù)列的通項(xiàng)公式,再利用對(duì)數(shù)的運(yùn)算性質(zhì)可得出數(shù)列的通項(xiàng)公式;(2)運(yùn)用等差數(shù)列的求和公式,運(yùn)用數(shù)列的分組求和和裂項(xiàng)相消求和,化簡(jiǎn)可得.【詳解】(1)當(dāng)時(shí),,所以;當(dāng)時(shí),,得,即,所以,數(shù)列是首項(xiàng)為,公比為的等比數(shù)列,.;(2)由(1)知數(shù)列是首項(xiàng)為,公差為的等差數(shù)列,.,.所以.本題考查數(shù)列的遞推式的運(yùn)用,注意結(jié)合等比數(shù)列的定義和通項(xiàng)公式,考查數(shù)列的求和方法:分組求和法和裂項(xiàng)相消求和,考查運(yùn)算能力,屬于中檔題.21.(Ⅰ)證明見(jiàn)解析;(Ⅱ).【解析】
(Ⅰ)先證明
,再證明平面,利用面面垂直的判定定理,即可求證所求證;(Ⅱ)根據(jù)題意以為軸、軸、軸建立空間直角坐標(biāo)系,求出平面和平面的向量,利用公式即可求解.【詳解】(Ⅰ)證:由已知得又平面,平面,,而故,平面平面,平面平面(Ⅱ)由(Ⅰ)知,推理知梯形中,,,有,又,故所以相似,故有,即所以,以為軸、軸、軸建立如圖所示的空間直角坐標(biāo)系,則,,,設(shè)平面的法向量為,則令,則,是平面的一個(gè)法向量設(shè)平面的一個(gè)法向量為令,則是平面的一個(gè)法向量=又二面角為鈍二面角,其余弦值為.本題考查線面、面面垂直的判定定理與性質(zhì)定理,考查向量法求二面角的余弦值,考查直觀想象能力與運(yùn)算求解能力,屬于中檔題.22.(1)見(jiàn)解析;
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 必刷題八下數(shù)學(xué)試卷
- 二零二五年度保安人員工作安全防護(hù)合同范本
- 成都中考化學(xué)數(shù)學(xué)試卷
- 2024年版專項(xiàng)服務(wù)協(xié)議范本版B版
- 2024版單位職工食堂供餐及安全管理協(xié)議3篇
- 二零二五年度可再生能源發(fā)電接入電網(wǎng)供電合同范本3篇
- 2024版合同范本之養(yǎng)老院勞務(wù)合同
- 2024版房屋抵押延期合同的規(guī)定
- 2025房屋內(nèi)裝修合同書
- 成州中學(xué)數(shù)學(xué)試卷
- 國(guó)家職業(yè)技術(shù)技能標(biāo)準(zhǔn) 6-31-01-09 工程機(jī)械維修工(堆場(chǎng)作業(yè)機(jī)械維修工)人社廳發(fā)202226號(hào)
- DB11∕T 1077-2020 建筑垃圾運(yùn)輸車輛標(biāo)識(shí)、監(jiān)控和密閉技術(shù)要求
- GB/T 19963.2-2024風(fēng)電場(chǎng)接入電力系統(tǒng)技術(shù)規(guī)定第2部分:海上風(fēng)電
- 期末測(cè)試卷(二)(試題)-2023-2024學(xué)年二年級(jí)上冊(cè)數(shù)學(xué)蘇教版
- 人教版(2024新版)七年級(jí)上冊(cè)數(shù)學(xué)第六章《幾何圖形初步》測(cè)試卷(含答案)
- 新能源發(fā)電技術(shù) 課件 第4章 太陽(yáng)能發(fā)電
- 小學(xué)生防性侵安全教育主題班會(huì)課件
- DBT29-305-2024 天津市裝配式建筑評(píng)價(jià)標(biāo)準(zhǔn)
- 2021-2022學(xué)年廣東省廣州市海珠區(qū)六年級(jí)(上)期末英語(yǔ)試卷
- 【年產(chǎn)2000噸色氨酸發(fā)酵工廠的計(jì)算與設(shè)計(jì)(附布置圖流程圖)15000字(論文)】
- 《社交禮儀(慕課版)》-課程標(biāo)準(zhǔn)
評(píng)論
0/150
提交評(píng)論