




版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
鞏固練習(xí)09導(dǎo)數(shù)解答題之恒成立與能成立問(wèn)題【秒殺總結(jié)】1、利用導(dǎo)數(shù)研究不等式恒成立問(wèn)題的求解策略:(1)通常要構(gòu)造新函數(shù),利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,求出最值,從而求出參數(shù)的取值范圍;(2)利用可分離變量,構(gòu)造新函數(shù),直接把問(wèn)題轉(zhuǎn)化為函數(shù)的最值問(wèn)題;(3)根據(jù)恒成立或有解求解參數(shù)的取值時(shí),一般涉及分離參數(shù)法,但壓軸試題中很少碰到分離參數(shù)后構(gòu)造的新函數(shù)能直接求出最值點(diǎn)的情況,進(jìn)行求解,若參變分離不易求解問(wèn)題,就要考慮利用分類討論法和放縮法,注意恒成立與存在性問(wèn)題的區(qū)別.2、利用參變量分離法求解函數(shù)不等式恒(能)成立,可根據(jù)以下原則進(jìn)行求解:(1)SKIPIF1<0,SKIPIF1<0;(2)SKIPIF1<0,SKIPIF1<0;(3)SKIPIF1<0,SKIPIF1<0;(4)SKIPIF1<0,SKIPIF1<0.3、不等式的恒成立與有解問(wèn)題,可按如下規(guī)則轉(zhuǎn)化:一般地,已知函數(shù)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.(1)若SKIPIF1<0,SKIPIF1<0,有SKIPIF1<0成立,則SKIPIF1<0;(2)若SKIPIF1<0,SKIPIF1<0,有SKIPIF1<0成立,則SKIPIF1<0;(3)若SKIPIF1<0,SKIPIF1<0,有SKIPIF1<0成立,則SKIPIF1<0;(4)若SKIPIF1<0,SKIPIF1<0,有SKIPIF1<0成立,則SKIPIF1<0的值域是SKIPIF1<0的值域的子集.【典型例題】例1.(2023春·浙江·高三開(kāi)學(xué)考試)已知函數(shù)SKIPIF1<0(1)當(dāng)SKIPIF1<0時(shí),求曲線SKIPIF1<0在點(diǎn)SKIPIF1<0處的切線方程;(2)若SKIPIF1<0恒成立,求實(shí)數(shù)SKIPIF1<0的取值范圍.【解析】(1)當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,所以SKIPIF1<0.所以SKIPIF1<0,SKIPIF1<0,所以曲線SKIPIF1<0在點(diǎn)SKIPIF1<0處的切線的斜率為SKIPIF1<0,所以曲線SKIPIF1<0在點(diǎn)SKIPIF1<0處的切線方程為SKIPIF1<0,即SKIPIF1<0.(2)由題易得SKIPIF1<0,由SKIPIF1<0,得:SKIPIF1<0SKIPIF1<0SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,SKIPIF1<0式等價(jià)于SKIPIF1<0,即SKIPIF1<0.所以SKIPIF1<0,SKIPIF1<0,令SKIPIF1<0,則有SKIPIF1<0,令SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0;所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增,所以SKIPIF1<0;所以只需SKIPIF1<0,即SKIPIF1<0.綜上,實(shí)數(shù)m的取值范圍是SKIPIF1<0.例2.(2023春·河北石家莊·高三校聯(lián)考開(kāi)學(xué)考試)已知函數(shù)SKIPIF1<0(1)若SKIPIF1<0,求f(x)在(SKIPIF1<0,0)上的極值;(2)若SKIPIF1<0在SKIPIF1<0上恒成立,求實(shí)數(shù)a的取值范圍【解析】(1)若SKIPIF1<0x,則SKIPIF1<0,令SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,令SKIPIF1<0則SKIPIF1<0SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上恒成立,SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,所以SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上恒成立,即g(x)在SKIPIF1<0上單調(diào)遞減,所以f'(x)在SKIPIF1<0上單調(diào)遞減,又SKIPIF1<0所以f(x)在(SKIPIF1<0,SKIPIF1<0)上單調(diào)遞增,在(SKIPIF1<0,0)上單調(diào)遞減.又SKIPIF1<0,所以f(x)的極大值是SKIPIF1<0(2)由(1)可知函數(shù)SKIPIF1<0,在SKIPIF1<0上單調(diào)遞減,即SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,易知SKIPIF1<0為偶函數(shù).所以f'(x)在SKIPIF1<0上單調(diào)遞增,又SKIPIF1<0當(dāng)SKIPIF1<0,即SKIPIF1<0時(shí),SKIPIF1<0,所以f(x)在SKIPIF1<0上單調(diào)遞增,所以SKIPIF1<0,符合題意;當(dāng)SKIPIF1<0,即SKIPIF1<0時(shí),SKIPIF1<0,又SKIPIF1<0,存在SKIPIF1<0,使得SKIPIF1<0,所以存在SKIPIF1<0,使得SKIPIF1<0,所以f(x)在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0單調(diào)遞增,故SKIPIF1<0,不合題意.綜上,實(shí)數(shù)a的取值范圍是SKIPIF1<0.例3.(2023春·河南·高三商丘市回民中學(xué)校聯(lián)考開(kāi)學(xué)考試)已知函數(shù)SKIPIF1<0.(1)若SKIPIF1<0的導(dǎo)函數(shù)為SKIPIF1<0,討論SKIPIF1<0的單調(diào)性;(2)若SKIPIF1<0恒成立,求實(shí)數(shù)SKIPIF1<0的取值范圍.【解析】(1)因?yàn)镾KIPIF1<0,SKIPIF1<0,所以SKIPIF1<0.當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上為減函數(shù),當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上為減函數(shù),在SKIPIF1<0上為增函數(shù).(2)SKIPIF1<0恒成立,即SKIPIF1<0恒成立.令SKIPIF1<0,則SKIPIF1<0.當(dāng)SKIPIF1<0時(shí),SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,因?yàn)镾KIPIF1<0,所以SKIPIF1<0不滿足條件.當(dāng)SKIPIF1<0時(shí),SKIPIF1<0恒成立,SKIPIF1<0滿足條件.當(dāng)SKIPIF1<0時(shí),令SKIPIF1<0,存在SKIPIF1<0,使得SKIPIF1<0,因?yàn)镾KIPIF1<0在SKIPIF1<0上單調(diào)遞增,所以當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增,所以SKIPIF1<0,SKIPIF1<0解得SKIPIF1<0.綜上,實(shí)數(shù)SKIPIF1<0的取值范圍為SKIPIF1<0.例4.(2023·全國(guó)·唐山市第十一中學(xué)??寄M預(yù)測(cè))已知SKIPIF1<0為正整數(shù),SKIPIF1<0,SKIPIF1<0.(1)求SKIPIF1<0的最大值;(2)若SKIPIF1<0恒成立,求正整數(shù)SKIPIF1<0的取值的集合.(參考數(shù)據(jù):SKIPIF1<0)【解析】(1)SKIPIF1<0令SKIPIF1<0可得:SKIPIF1<0;令SKIPIF1<0可得:SKIPIF1<0.所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,在SKIPIF1<0上單調(diào)遞減.故SKIPIF1<0的最大值為SKIPIF1<0.(2)因?yàn)镾KIPIF1<0恒成立,所以SKIPIF1<0,即SKIPIF1<0恒成立,所以SKIPIF1<0.SKIPIF1<0,當(dāng)SKIPIF1<0或SKIPIF1<0時(shí),因?yàn)镾KIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞增.因?yàn)镾KIPIF1<0,此時(shí)滿足SKIPIF1<0,故SKIPIF1<0或SKIPIF1<0滿足條件.當(dāng)SKIPIF1<0時(shí),令SKIPIF1<0可得SKIPIF1<0;令SKIPIF1<0時(shí),SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增.所以SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,令SKIPIF1<0,令SKIPIF1<0,SKIPIF1<0,因?yàn)镾KIPIF1<0在SKIPIF1<0上單調(diào)遞增,SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上存在唯一的零點(diǎn)SKIPIF1<0.令SKIPIF1<0可得:SKIPIF1<0;令SKIPIF1<0可得:SKIPIF1<0.所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增.因?yàn)镾KIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0.因?yàn)镾KIPIF1<0,所以SKIPIF1<0.綜上,正整數(shù)SKIPIF1<0的取值的集合為SKIPIF1<0例5.(2023·全國(guó)·高三專題練習(xí))設(shè)函數(shù)SKIPIF1<0.(1)討論函數(shù)SKIPIF1<0的單調(diào)性;(2)當(dāng)SKIPIF1<0時(shí),記SKIPIF1<0,是否存在整數(shù)t,使得關(guān)于x的不等式SKIPIF1<0有解?若存在,請(qǐng)求出t的最小值;若不存在,請(qǐng)說(shuō)明理由.【解析】(1)由題意得函數(shù)的定義域?yàn)镾KIPIF1<0,SKIPIF1<0
,①當(dāng)SKIPIF1<0時(shí),SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0在SKIPIF1<0單調(diào)遞增,SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0在SKIPIF1<0單調(diào)遞減;②當(dāng)SKIPIF1<0時(shí),SKIPIF1<0恒成立,SKIPIF1<0在SKIPIF1<0上單調(diào)遞增;③當(dāng)SKIPIF1<0時(shí),SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0在SKIPIF1<0單調(diào)遞增,SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0在SKIPIF1<0單調(diào)遞減;綜上,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0在SKIPIF1<0單調(diào)遞增,在SKIPIF1<0單調(diào)遞減;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0恒成立,SKIPIF1<0在SKIPIF1<0上單調(diào)遞增;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0在SKIPIF1<0單調(diào)遞增,在SKIPIF1<0單調(diào)遞減.(2)當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0單調(diào)遞增,又SKIPIF1<0,SKIPIF1<0,所以存在唯一的SKIPIF1<0,使得SKIPIF1<0,且當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0單調(diào)遞減;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0單調(diào)遞增;所以SKIPIF1<0,設(shè)SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,所以SKIPIF1<0,即SKIPIF1<0,若關(guān)于x的不等式SKIPIF1<0有解,則SKIPIF1<0,又t為整數(shù),所以SKIPIF1<0,所以存在整數(shù)t滿足題意,且t的最小值為0.例6.(2023·全國(guó)·高三專題練習(xí))已知函數(shù)SKIPIF1<0設(shè)SKIPIF1<0.(1)若SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,求實(shí)數(shù)SKIPIF1<0的取值范圍;(2)求證:SKIPIF1<0;對(duì)SKIPIF1<0,使得SKIPIF1<0總成立.【解析】(1)解:由題可知SKIPIF1<0因?yàn)镾KIPIF1<0在SKIPIF1<0上單調(diào)遞增,所以SKIPIF1<0在SKIPIF1<0上恒成立,因?yàn)镾KIPIF1<0時(shí),SKIPIF1<0,故只要SKIPIF1<0在SKIPIF1<0上恒成立,令SKIPIF1<0,SKIPIF1<0,因?yàn)镾KIPIF1<0,SKIPIF1<0,令SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0,故SKIPIF1<0在SKIPIF1<0上單增,在SKIPIF1<0上單減,所以SKIPIF1<0,即實(shí)數(shù)SKIPIF1<0的取值范圍為SKIPIF1<0;(2)由題意,因?yàn)镾KIPIF1<0,所以只要找出SKIPIF1<0,使得SKIPIF1<0時(shí),SKIPIF1<0;SKIPIF1<0時(shí),SKIPIF1<0即可,當(dāng)SKIPIF1<0時(shí),顯然成立;現(xiàn)證SKIPIF1<0,滿足題意,即證當(dāng)SKIPIF1<0時(shí),若SKIPIF1<0時(shí),SKIPIF1<0成立,若SKIPIF1<0時(shí),SKIPIF1<0也成立,當(dāng)SKIPIF1<0時(shí),若SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0,因?yàn)镾KIPIF1<0,故SKIPIF1<0,即SKIPIF1<0恒成立,所以SKIPIF1<0在SKIPIF1<0上單增,故SKIPIF1<0,即SKIPIF1<0時(shí),SKIPIF1<0成立;當(dāng)SKIPIF1<0時(shí),若SKIPIF1<0,SKIPIF1<0,由(1)知當(dāng)SKIPIF1<0時(shí),SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,因?yàn)镾KIPIF1<0等價(jià)于SKIPIF1<0,即等價(jià)于SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,故當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,因?yàn)楫?dāng)SKIPIF1<0時(shí),SKIPIF1<0,且SKIPIF1<0,因?yàn)镾KIPIF1<0等價(jià)于SKIPIF1<0,所以SKIPIF1<0,即當(dāng)SKIPIF1<0時(shí),也有SKIPIF1<0.綜上,SKIPIF1<0,對(duì)SKIPIF1<0,SKIPIF1<0,使得SKIPIF1<0總成立.例7.(2023·全國(guó)·高三專題練習(xí))已知函數(shù)SKIPIF1<0.(1)討論函數(shù)SKIPIF1<0的單調(diào)性;(2)設(shè)SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),對(duì)任意SKIPIF1<0,存在SKIPIF1<0,使SKIPIF1<0,求實(shí)數(shù)m的取值范圍.【解析】(1)SKIPIF1<0定義域?yàn)镾KIPIF1<0,SKIPIF1<0,令SKIPIF1<0,得SKIPIF1<0或SKIPIF1<0.當(dāng)SKIPIF1<0即SKIPIF1<0時(shí):SKIPIF1<0,SKIPIF1<0,函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞減;SKIPIF1<0,SKIPIF1<0,函數(shù)SKIPIF1<0在SKIPIF1<0單調(diào)遞增;當(dāng)SKIPIF1<0,即SKIPIF1<0時(shí):SKIPIF1<0,SKIPIF1<0,函數(shù)SKIPIF1<0在SKIPIF1<0單調(diào)遞增;SKIPIF1<0,SKIPIF1<0,函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞減;SKIPIF1<0,SKIPIF1<0,函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增;當(dāng)SKIPIF1<0即SKIPIF1<0時(shí):SKIPIF1<0,SKIPIF1<0,函數(shù)SKIPIF1<0在SKIPIF1<0單調(diào)遞增;當(dāng)SKIPIF1<0即SKIPIF1<0時(shí):SKIPIF1<0,SKIPIF1<0,函數(shù)SKIPIF1<0在SKIPIF1<0單調(diào)遞增;SKIPIF1<0,SKIPIF1<0,函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞減;SKIPIF1<0,SKIPIF1<0,函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增;綜上:當(dāng)SKIPIF1<0時(shí),單調(diào)遞減區(qū)間有SKIPIF1<0,單調(diào)遞增區(qū)間有SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),單調(diào)遞減區(qū)間有SKIPIF1<0,單調(diào)遞增區(qū)間有SKIPIF1<0,SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),單調(diào)遞增區(qū)間有SKIPIF1<0,無(wú)單調(diào)遞減區(qū)間;當(dāng)SKIPIF1<0時(shí),單調(diào)遞減區(qū)間有SKIPIF1<0,單調(diào)遞增區(qū)間有SKIPIF1<0,SKIPIF1<0.(2)當(dāng)SKIPIF1<0時(shí),由(1)得函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào)遞減,在區(qū)間SKIPIF1<0,SKIPIF1<0上單調(diào)遞增,從而函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上的最小值為SKIPIF1<0.即存在SKIPIF1<0,使SKIPIF1<0,即存在SKIPIF1<0,使得SKIPIF1<0,即SKIPIF1<0,令SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,由SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,函數(shù)SKIPIF1<0單調(diào)遞增;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,函數(shù)SKIPIF1<0單調(diào)遞減,所以SKIPIF1<0,所以SKIPIF1<0.例8.(2023·全國(guó)·高三專題練習(xí))函數(shù)SKIPIF1<0,SKIPIF1<0.(1)求SKIPIF1<0的單調(diào)遞增區(qū)間;(2)對(duì)SKIPIF1<0,SKIPIF1<0,使SKIPIF1<0成立,求實(shí)數(shù)SKIPIF1<0的取值范圍.【解析】(1)因?yàn)镾KIPIF1<0,所以SKIPIF1<0,當(dāng)SKIPIF1<0,即SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0單調(diào)遞增,等號(hào)僅在SKIPIF1<0時(shí)取得,綜上,SKIPIF1<0的單調(diào)遞增區(qū)間是SKIPIF1<0.(2)SKIPIF1<0,即SKIPIF1<0,設(shè)SKIPIF1<0,則問(wèn)題等價(jià)于SKIPIF1<0,SKIPIF1<0,由(1)可知,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,故SKIPIF1<0在SKIPIF1<0遞增,∴SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,∵SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0,故當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0在SKIPIF1<0遞增,SKIPIF1<0,故SKIPIF1<0,即SKIPIF1<0,即實(shí)數(shù)SKIPIF1<0的取值范圍是SKIPIF1<0;【過(guò)關(guān)測(cè)試】1.(2023秋·河北唐山·高三開(kāi)灤第二中學(xué)??计谀┮阎瘮?shù)SKIPIF1<0.(1)若SKIPIF1<0在SKIPIF1<0處的切線與SKIPIF1<0軸垂直,求SKIPIF1<0的極值;(2)若SKIPIF1<0有兩個(gè)不同的極值點(diǎn)SKIPIF1<0,且SKIPIF1<0恒成立,求SKIPIF1<0的取值范圍.【解析】(1)SKIPIF1<0,SKIPIF1<0的定義域?yàn)镾KIPIF1<0,SKIPIF1<0,若SKIPIF1<0在SKIPIF1<0處的切線與SKIPIF1<0軸垂直,則SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0在區(qū)間SKIPIF1<0遞增;在區(qū)間SKIPIF1<0遞減.所以SKIPIF1<0的極大值為SKIPIF1<0,極小值為SKIPIF1<0.(2)若SKIPIF1<0有兩個(gè)不同的極值點(diǎn)SKIPIF1<0,則SKIPIF1<0有兩個(gè)不同的正根SKIPIF1<0,即SKIPIF1<0有兩個(gè)不同的正根SKIPIF1<0,所以SKIPIF1<0,解得SKIPIF1<0.SKIPIF1<0,SKIPIF1<0,依題意,SKIPIF1<0恒成立,SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0恒成立,SKIPIF1<0恒成立,即SKIPIF1<0恒成立,所以SKIPIF1<0,解得SKIPIF1<0.故SKIPIF1<0的取值范圍為SKIPIF1<02.(2023·全國(guó)·高三專題練習(xí))已知函數(shù)SKIPIF1<0,其中SKIPIF1<0.(1)求函數(shù)SKIPIF1<0的單調(diào)區(qū)間;(2)證明:存在SKIPIF1<0,使得SKIPIF1<0恒成立,且方程SKIPIF1<0有唯一的實(shí)根.【解析】(1)由題意,SKIPIF1<0的定義域?yàn)镾KIPIF1<0,SKIPIF1<0SKIPIF1<0,設(shè)SKIPIF1<0,則SKIPIF1<0,令SKIPIF1<0,得SKIPIF1<0,令SKIPIF1<0,得SKIPIF1<0,故SKIPIF1<0的單調(diào)遞增區(qū)間為SKIPIF1<0,單調(diào)遞減區(qū)間為SKIPIF1<0.(2)由SKIPIF1<0,解得SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,所以存在SKIPIF1<0,使得SKIPIF1<0,令SKIPIF1<0SKIPIF1<0,其中SKIPIF1<0,由SKIPIF1<0,可得函數(shù)SKIPIF1<0在SKIPIF1<0上為增函數(shù),所以SKIPIF1<0,即SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),有SKIPIF1<0,SKIPIF1<0,再由(1)可知,SKIPIF1<0在SKIPIF1<0上為增函數(shù),當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上為減函數(shù),所以SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上為增函數(shù),所以SKIPIF1<0,又當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,故當(dāng)SKIPIF1<0時(shí),SKIPIF1<0恒成立.綜上所述:存在SKIPIF1<0,使得SKIPIF1<0恒成立,且方程SKIPIF1<0有唯一的實(shí)根.3.(2023秋·湖北·高三統(tǒng)考期末)設(shè)函數(shù)SKIPIF1<0.(1)當(dāng)SKIPIF1<0時(shí),求SKIPIF1<0在SKIPIF1<0上的最值;(2)對(duì)SKIPIF1<0,不等式SKIPIF1<0恒成立,求實(shí)數(shù)a的取值范圍.【解析】(1)當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0,設(shè)SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,所以SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0.(2)由SKIPIF1<0,即SKIPIF1<0,即SKIPIF1<0,對(duì)于SKIPIF1<0恒成立,設(shè)SKIPIF1<0,SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,由(1)知SKIPIF1<0時(shí),SKIPIF1<0,所以SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0.當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0時(shí),SKIPIF1<0,不符合題意.當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,即SKIPIF1<0,設(shè)SKIPIF1<0,則SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,即SKIPIF1<0在SKIPIF1<0單調(diào)遞增,又SKIPIF1<0,SKIPIF1<0,所以存在SKIPIF1<0使得SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0單調(diào)遞減,此時(shí)SKIPIF1<0,不合題意綜上所述,a的取值范圍為SKIPIF1<0.4.(2023·全國(guó)·模擬預(yù)測(cè))已知函數(shù)SKIPIF1<0,SKIPIF1<0.(1)求函數(shù)SKIPIF1<0的最值;(2)若關(guān)于x的不等式SKIPIF1<0恒成立,求實(shí)數(shù)k的取值范圍.【解析】(1)因?yàn)镾KIPIF1<0,所以SKIPIF1<0,令SKIPIF1<0解得SKIPIF1<0,令SKIPIF1<0解得SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0單調(diào)遞減,在SKIPIF1<0單調(diào)遞增,所以當(dāng)SKIPIF1<0時(shí),SKIPIF1<0有最小值為SKIPIF1<0,無(wú)最大值.(2)由SKIPIF1<0的定義域可得SKIPIF1<0,SKIPIF1<0即SKIPIF1<0,等價(jià)于SKIPIF1<0恒成立,令SKIPIF1<0,所以SKIPIF1<0,令SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0恒成立,所以SKIPIF1<0單調(diào)遞增,SKIPIF1<0,所以存在唯一SKIPIF1<0,使得SKIPIF1<0,即SKIPIF1<0,所以當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0單調(diào)遞減,SKIPIF1<0時(shí),SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0單調(diào)遞增,所以SKIPIF1<0由SKIPIF1<0得SKIPIF1<0,也即SKIPIF1<0,即SKIPIF1<0,由(1)知SKIPIF1<0在SKIPIF1<0單調(diào)遞增,所以SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0.5.(2023·浙江·統(tǒng)考一模)設(shè)函數(shù)SKIPIF1<0,SKIPIF1<0.(1)當(dāng)SKIPIF1<0時(shí),證明:SKIPIF1<0;(2)若SKIPIF1<0,求a的取值范圍.【解析】(1)解:由題知SKIPIF1<0,故SKIPIF1<0SKIPIF1<0,記SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0單調(diào)遞增,SKIPIF1<0上,SKIPIF1<0,SKIPIF1<0單調(diào)遞減,所以SKIPIF1<0,即SKIPIF1<0,故SKIPIF1<0,得證;(2)由題,不妨記SKIPIF1<0,因?yàn)镾KIPIF1<0,故SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0SKIPIF1<0,令SKIPIF1<0,取SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0SKIPIF1<0故SKIPIF1<0,SKIPIF1<0SKIPIF1<0,故SKIPIF1<0有小于零的函數(shù)值,因?yàn)镾KIPIF1<0,所以存在SKIPIF1<0使得SKIPIF1<0,故不符合題意舍,下證SKIPIF1<0符合題意:①若SKIPIF1<0,SKIPIF1<0;②若SKIPIF1<0,令SKIPIF1<0,所以SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,所以SKIPIF1<0單調(diào)遞增,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,所以SKIPIF1<0單調(diào)遞減,故SKIPIF1<0,即SKIPIF1<0,將SKIPIF1<0替換SKIPIF1<0代入上不等式可有:SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0,記SKIPIF1<0,SKIPIF1<0,故SKIPIF1<0單調(diào)遞增,則SKIPIF1<0時(shí),SKIPIF1<0,又有SKIPIF1<0,故SKIPIF1<0成立,當(dāng)SKIPIF1<0時(shí),因?yàn)镾KIPIF1<0,所以SKIPIF1<0SKIPIF1<0,記SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0單調(diào)遞增,則SKIPIF1<0,因?yàn)镾KIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,故SKIPIF1<0,即SKIPIF1<0,綜上所述:SKIPIF1<0.6.(2023·四川涼山·統(tǒng)考一模)已知函數(shù)SKIPIF1<0.(1)求SKIPIF1<0的最小值;(2)已知SKIPIF1<0,證明:SKIPIF1<0;(3)若SKIPIF1<0恒成立,求SKIPIF1<0的取值范圍.【解析】(1)因SKIPIF1<0,則SKIPIF1<0,令SKIPIF1<0,得SKIPIF1<0,又SKIPIF1<0時(shí),SKIPIF1<0,函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞減;SKIPIF1<0時(shí)SKIPIF1<0,,函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增;即函數(shù)SKIPIF1<0在SKIPIF1<0處取最小值,即SKIPIF1<0所以SKIPIF1<0的最小值為0.(2)由(1)小題結(jié)論可知SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時(shí)等號(hào)成立,則SKIPIF1<0時(shí)SKIPIF1<0,即SKIPIF1<0所以SKIPIF1<0所以不等式成立.(3)由題可知SKIPIF1<0,SKIPIF1<0恒成立等價(jià)于不等式SKIPIF1<0恒成立,令SKIPIF1<0,則命題等價(jià)于SKIPIF1<0,SKIPIF1<0由(1)知,SKIPIF1<0,即有SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時(shí)等號(hào)成立,所以SKIPIF1<0當(dāng)SKIPIF1<0,即SKIPIF1<0時(shí)能取等號(hào),所以SKIPIF1<0,即SKIPIF1<0SKIPIF1<0的取值范圍為SKIPIF1<0.7.(2023秋·山東煙臺(tái)·高三統(tǒng)考期末)已知SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0為SKIPIF1<0的導(dǎo)函數(shù).(1)討論函數(shù)SKIPIF1<0的單調(diào)性;(2)若存在SKIPIF1<0使得SKIPIF1<0對(duì)任意SKIPIF1<0恒成立,求實(shí)數(shù)SKIPIF1<0的取值范圍.【解析】(1)SKIPIF1<0,則SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),方程SKIPIF1<0的根為SKIPIF1<0,當(dāng)SKIPIF1<0,即SKIPIF1<0時(shí),當(dāng)SKIPIF1<0和SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0單調(diào)遞增,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0單調(diào)遞減,當(dāng)SKIPIF1<0,即SKIPIF1<0,當(dāng)SKIPIF1<0和SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0單調(diào)遞增,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0單調(diào)遞減,當(dāng)SKIPIF1<0,即SKIPIF1<0時(shí),SKIPIF1<0恒成立,函數(shù)在SKIPIF1<0上單調(diào)遞增,綜上所述,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0在SKIPIF1<0,SKIPIF1<0上單調(diào)遞增,在SKIPIF1<0上單調(diào)遞減;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0在SKIPIF1<0,SKIPIF1<0上單調(diào)遞增,在SKIPIF1<0上單調(diào)遞減;(2)存在實(shí)數(shù)SKIPIF1<0使得SKIPIF1<0對(duì)任意SKIPIF1<0恒成立,即SKIPIF1<0恒成立,令SKIPIF1<0,則SKIPIF1<0,因?yàn)镾KIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0恒成立;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,且SKIPIF1<0,SKIPIF1<0,所以,存在SKIPIF1<0,使得SKIPIF1<0,且SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增,所以SKIPIF1<0,于是,原命題可轉(zhuǎn)化為存在SKIPIF1<0使得SKIPIF1<0在SKIPIF1<0上成立,又因?yàn)镾KIPIF1<0,所以SKIPIF1<0,所以存在SKIPIF1<0,使得SKIPIF1<0成立,令SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,所以當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0單調(diào)遞增,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0單調(diào)遞減,所以SKIPIF1<0,所以SKIPIF1<0.8.(2023·廣東廣州·統(tǒng)考二模)已知定義在SKIPIF1<0上的函數(shù)SKIPIF1<0.(1)若SKIPIF1<0,討論SKIPIF1<0的單調(diào)性;(2)若SKIPIF1<0,且當(dāng)SKIPIF1<0時(shí),不等式SKIPIF1<0恒成立,求實(shí)數(shù)SKIPIF1<0的取值范圍.【解析】(1)函數(shù)SKIPIF1<0,SKIPIF1<0,求導(dǎo)得:SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,當(dāng)SKIPIF1<0時(shí),由SKIPIF1<0得SKIPIF1<0,由SKIPIF1<0得SKIPIF1<0,則SKIPIF1<0在SKIPIF1<0上遞增,在SKIPIF1<0上遞減,所以當(dāng)SKIPIF1<0時(shí),函數(shù)SKIPIF1<0的遞增區(qū)間是SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),函數(shù)SKIPIF1<0的遞增區(qū)間是SKIPIF1<0,遞減區(qū)間是SKIPIF1<0.(2)因?yàn)镾KIPIF1<0,且當(dāng)SKIPIF1<0時(shí),不等式SKIPIF1<0恒成立,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0恒成立,因此SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0SKIPIF1<0,令SKIPIF1<0,原不等式等價(jià)于SKIPIF1<0恒成立,而SKIPIF1<0,即函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,因此SKIPIF1<0,即SKIPIF1<0,令SKIPIF1<0,SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,在SKIPIF1<0上單調(diào)遞減,SKIPIF1<0,因此SKIPIF1<0,綜上得SKIPIF1<0,所以實(shí)數(shù)SKIPIF1<0的取值范圍是SKIPIF1<0.9.(2023秋·江西·高三校聯(lián)考期末)已知函數(shù)SKIPIF1<0.(1)討論SKIPIF1<0的單調(diào)性;(2)若SKIPIF1<0,證明:對(duì)于任意SKIPIF1<0,SKIP
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 四川幼兒師范高等??茖W(xué)?!洞蟮販y(cè)量學(xué)實(shí)驗(yàn)》2023-2024學(xué)年第二學(xué)期期末試卷
- 晉中師范高等專科學(xué)?!毒W(wǎng)絡(luò)及其計(jì)算》2023-2024學(xué)年第二學(xué)期期末試卷
- 福建對(duì)外經(jīng)濟(jì)貿(mào)易職業(yè)技術(shù)學(xué)院《大學(xué)生勞動(dòng)教育》2023-2024學(xué)年第二學(xué)期期末試卷
- 天津藝術(shù)職業(yè)學(xué)院《文獻(xiàn)目錄與信息檢索》2023-2024學(xué)年第二學(xué)期期末試卷
- 2025海南省安全員A證考試題庫(kù)及答案
- 貴州中醫(yī)藥大學(xué)時(shí)珍學(xué)院《安全經(jīng)濟(jì)學(xué)》2023-2024學(xué)年第二學(xué)期期末試卷
- 2024-2025學(xué)年遼寧省七校協(xié)作體高一上學(xué)期12月月考?xì)v史試卷
- 2025江西省建筑安全員-A證考試題庫(kù)及答案
- 漯河醫(yī)學(xué)高等專科學(xué)?!秺W林匹克文化》2023-2024學(xué)年第二學(xué)期期末試卷
- 遼寧輕工職業(yè)學(xué)院《阿拉伯文學(xué)選讀》2023-2024學(xué)年第二學(xué)期期末試卷
- 2024年消防初級(jí)考試模擬試題和答案
- 小學(xué)五年級(jí)奧數(shù)競(jìng)賽試題(含答案)
- Unit-3-Reading-and-thinking課文詳解課件-高中英語(yǔ)人教版必修第二冊(cè)
- 品牌服裝設(shè)計(jì)課件
- 小學(xué)六年級(jí)美術(shù)期末試卷及答案課件
- DB11T 381-2023既有居住建筑節(jié)能改造技術(shù)規(guī)程
- NB-T 47013.7-2012(JB-T 4730.7) 4730.7 承壓設(shè)備無(wú)損檢測(cè) 第7部分:目視檢測(cè)
- 統(tǒng)編版高中語(yǔ)文必修下冊(cè) 第一單元單元學(xué)習(xí)任務(wù) 課件
- 新版出口報(bào)關(guān)單模板
- 幼兒園衛(wèi)生保健十三種表格
- 大灰狼兒童睡前故事大全
評(píng)論
0/150
提交評(píng)論