新高考數(shù)學(xué)二輪復(fù)習(xí)培優(yōu)專題35 高考新題型開(kāi)放性試題綜合問(wèn)題(解析版)_第1頁(yè)
新高考數(shù)學(xué)二輪復(fù)習(xí)培優(yōu)專題35 高考新題型開(kāi)放性試題綜合問(wèn)題(解析版)_第2頁(yè)
新高考數(shù)學(xué)二輪復(fù)習(xí)培優(yōu)專題35 高考新題型開(kāi)放性試題綜合問(wèn)題(解析版)_第3頁(yè)
新高考數(shù)學(xué)二輪復(fù)習(xí)培優(yōu)專題35 高考新題型開(kāi)放性試題綜合問(wèn)題(解析版)_第4頁(yè)
新高考數(shù)學(xué)二輪復(fù)習(xí)培優(yōu)專題35 高考新題型開(kāi)放性試題綜合問(wèn)題(解析版)_第5頁(yè)
已閱讀5頁(yè),還剩13頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

試卷第=page11頁(yè),共=sectionpages33頁(yè)專題35高考新題型開(kāi)放性試題綜合問(wèn)題1.(2022秋·廣東揭陽(yáng)·高三??茧A段練習(xí))寫(xiě)出一個(gè)導(dǎo)函數(shù)恒大于等于2的函數(shù)SKIPIF1<0____________.【答案】SKIPIF1<0(答案不唯一)【分析】保證SKIPIF1<0即可.【詳解】可設(shè)SKIPIF1<0,則SKIPIF1<0.故答案為:SKIPIF1<0(答案不唯一)2.(2023·江蘇泰州·統(tǒng)考一模)寫(xiě)出一個(gè)同時(shí)滿足下列條件①②的等比數(shù)列{SKIPIF1<0}的通項(xiàng)公式SKIPIF1<0=___.①SKIPIF1<0;②SKIPIF1<0【答案】SKIPIF1<0(答案不唯一)【分析】根據(jù)題目所給條件以及等比數(shù)列的知識(shí)求得正確答案.【詳解】依題意,SKIPIF1<0是等比數(shù)列,設(shè)其公比為SKIPIF1<0,由于①SKIPIF1<0,所以SKIPIF1<0,由于②SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0符合題意.故答案為:SKIPIF1<0(答案不唯一)3.(2023·重慶沙坪壩·重慶南開(kāi)中學(xué)校考模擬預(yù)測(cè))已知向量SKIPIF1<0滿足SKIPIF1<0,請(qǐng)寫(xiě)出一個(gè)符合題意的向量SKIPIF1<0的坐標(biāo)______.【答案】SKIPIF1<0(答案不唯一)【分析】根據(jù)題意,由數(shù)量積的計(jì)算公式可得SKIPIF1<0,分析SKIPIF1<0、SKIPIF1<0的關(guān)系,利用特殊值法可得答案.【詳解】根據(jù)題意,向量SKIPIF1<0,且SKIPIF1<0,則有SKIPIF1<0,即SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,則SKIPIF1<0.故答案為:SKIPIF1<0(答案不唯一)4.(2023·安徽宿州·統(tǒng)考一模)若拋物線C:SKIPIF1<0存在以點(diǎn)SKIPIF1<0為中點(diǎn)的弦,請(qǐng)寫(xiě)出一個(gè)滿足條件的拋物線方程為_(kāi)______.【答案】SKIPIF1<0(答案不唯一)【分析】拋物線存在以點(diǎn)SKIPIF1<0為中點(diǎn)的弦,則該點(diǎn)在拋物線開(kāi)口內(nèi),列式求解即可.【詳解】拋物線存在以點(diǎn)SKIPIF1<0為中點(diǎn)的弦,則該點(diǎn)在拋物線開(kāi)口內(nèi),即當(dāng)SKIPIF1<0時(shí),SKIPIF1<0.可取SKIPIF1<0,則滿足條件的拋物線方程為SKIPIF1<0.故答案為:SKIPIF1<0(答案不唯一)5.(2023·浙江·校聯(lián)考三模)寫(xiě)出一個(gè)滿足下列條件的正弦型函數(shù),SKIPIF1<0____________.①最小正周期為SKIPIF1<0;

②SKIPIF1<0在SKIPIF1<0上單調(diào)遞增;

③SKIPIF1<0成立.【答案】SKIPIF1<0(答案不唯一)【分析】設(shè)SKIPIF1<0,SKIPIF1<0,根據(jù)SKIPIF1<0,則可設(shè)SKIPIF1<0,根據(jù)最小正周期為SKIPIF1<0,可得SKIPIF1<0,通過(guò)整體換元法則可得到SKIPIF1<0,取SKIPIF1<0即可.【詳解】設(shè)SKIPIF1<0,SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0所以SKIPIF1<0,不妨設(shè)SKIPIF1<0因?yàn)镾KIPIF1<0最小正周期為SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0因?yàn)镾KIPIF1<0在SKIPIF1<0上單調(diào)遞增,所以SKIPIF1<0所以SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,不妨設(shè)SKIPIF1<0所以滿足條件之一的SKIPIF1<0.故答案為:SKIPIF1<0.6.(2022秋·廣東廣州·高三??计谥校┖瘮?shù)SKIPIF1<0的最大值為2,則常數(shù)SKIPIF1<0的一個(gè)取值可為_(kāi)_____.【答案】SKIPIF1<0(答案不唯一)【分析】由三角函數(shù)的有界性得到SKIPIF1<0同時(shí)成立,不妨令SKIPIF1<0,求出SKIPIF1<0.【詳解】因?yàn)镾KIPIF1<0,要想SKIPIF1<0的最大值為2,需要SKIPIF1<0同時(shí)成立,由SKIPIF1<0得到SKIPIF1<0,SKIPIF1<0,不妨取SKIPIF1<0,則SKIPIF1<0,解得:SKIPIF1<0,故答案為:SKIPIF1<0(答案不唯一)7.(2022秋·江蘇·高三校聯(lián)考階段練習(xí))寫(xiě)出一個(gè)同時(shí)滿足下列性質(zhì)①②的函數(shù)SKIPIF1<0_____________.①SKIPIF1<0;②SKIPIF1<0在定義域上單調(diào)遞增.【答案】SKIPIF1<0(滿足SKIPIF1<0均可)【分析】由基本初等函數(shù)性質(zhì)篩選判斷即可【詳解】SKIPIF1<0,且SKIPIF1<0單調(diào)遞增.故答案為:SKIPIF1<0(滿足SKIPIF1<0均可)8.(2022秋·福建·高三校聯(lián)考階段練習(xí))已知奇函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,且SKIPIF1<0,則函數(shù)SKIPIF1<0的解析式可以為SKIPIF1<0=______.(寫(xiě)出一個(gè)符合題意的函數(shù)即可)【答案】SKIPIF1<0(答案不唯一)【分析】根據(jù)正弦函數(shù)的周期和單調(diào)性的性質(zhì),直接寫(xiě)出符合題意的解析式即可.【詳解】因?yàn)镾KIPIF1<0,所以奇函數(shù)SKIPIF1<0的周期為4,所以可得SKIPIF1<0,SKIPIF1<0時(shí),SKIPIF1<0,可知此時(shí)SKIPIF1<0在SKIPIF1<0上單調(diào)遞減.故答案為:SKIPIF1<09.(2023春·浙江紹興·高三統(tǒng)考開(kāi)學(xué)考試)已知函數(shù)SKIPIF1<0滿足:SKIPIF1<0,且當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,請(qǐng)你寫(xiě)出符合上述條件的一個(gè)函數(shù)SKIPIF1<0__________.【答案】SKIPIF1<0(答案不唯一)【分析】由SKIPIF1<0,可得對(duì)數(shù)函數(shù)具有此性質(zhì),從而可得函數(shù).【詳解】對(duì)于函數(shù)SKIPIF1<0,SKIPIF1<0,且當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,所以函數(shù)SKIPIF1<0滿足條件,故答案為:SKIPIF1<0(答案不唯一).10.(2023·黑龍江大慶·統(tǒng)考一模)已知直線SKIPIF1<0與圓SKIPIF1<0相離,則整數(shù)SKIPIF1<0的一個(gè)取值可以是______.【答案】SKIPIF1<0或SKIPIF1<0或SKIPIF1<0(注意:只需從SKIPIF1<0中寫(xiě)一個(gè)作答即可)【分析】利用直線與圓的位置關(guān)系列出不等式組,解出整數(shù)SKIPIF1<0的范圍.【詳解】因?yàn)閳ASKIPIF1<0的圓心為SKIPIF1<0,所以圓心到直線SKIPIF1<0的距離SKIPIF1<0,因?yàn)閳ASKIPIF1<0的方程可化簡(jiǎn)為SKIPIF1<0,即半徑為SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,故整數(shù)SKIPIF1<0的取值可能是SKIPIF1<0.故答案為:SKIPIF1<0或SKIPIF1<0或SKIPIF1<0(注意:只需從SKIPIF1<0中寫(xiě)一個(gè)作答即可)11.(2023春·遼寧本溪·高三??茧A段練習(xí))請(qǐng)寫(xiě)出與曲線SKIPIF1<0在SKIPIF1<0處具有相同切線的另一個(gè)函數(shù):______.【答案】SKIPIF1<0(答案不唯一)【分析】利用導(dǎo)數(shù)的幾何意義可求得在SKIPIF1<0處的切線斜率,由此可得切線方程;若兩曲線在原點(diǎn)處具有相同切線,只需滿足過(guò)點(diǎn)SKIPIF1<0且在SKIPIF1<0處的導(dǎo)數(shù)值SKIPIF1<0即可,由此可得曲線方程.【詳解】SKIPIF1<0的導(dǎo)函數(shù)為SKIPIF1<0,又SKIPIF1<0過(guò)原點(diǎn),SKIPIF1<0在原點(diǎn)SKIPIF1<0處的切線斜率SKIPIF1<0,SKIPIF1<0在原點(diǎn)SKIPIF1<0處的切線方程為SKIPIF1<0;所求曲線只需滿足過(guò)點(diǎn)SKIPIF1<0且在SKIPIF1<0處的導(dǎo)數(shù)值SKIPIF1<0即可,如SKIPIF1<0,SKIPIF1<0,又SKIPIF1<0過(guò)原點(diǎn),SKIPIF1<0在原點(diǎn)處的切線斜率SKIPIF1<0,SKIPIF1<0在原點(diǎn)SKIPIF1<0處的切線方程為SKIPIF1<0.故答案為:SKIPIF1<0(答案不唯一).12.(2023春·廣東揭陽(yáng)·高三??茧A段練習(xí))在某數(shù)學(xué)活動(dòng)課上,數(shù)學(xué)教師把一塊三邊長(zhǎng)分別為6,8,10的三角板SKIPIF1<0放在直角坐標(biāo)系中,則SKIPIF1<0外接圓的方程可以為_(kāi)____________.(寫(xiě)出其中一個(gè)符合條件的即可)【答案】SKIPIF1<0(答案不唯一)【分析】由題意邊長(zhǎng)分別為6,8,10的SKIPIF1<0為直角三角形,且外接圓的半徑為SKIPIF1<0,可以將斜邊的中點(diǎn)與坐標(biāo)原點(diǎn)重合時(shí),即可得解.【詳解】邊長(zhǎng)分別為6,8,10的SKIPIF1<0為直角三角形,且外接圓的半徑為SKIPIF1<0,若將斜邊的中點(diǎn)與坐標(biāo)原點(diǎn)重合時(shí),則圓心為SKIPIF1<0,所以其外接圓方程可以為SKIPIF1<0,若將直角頂點(diǎn)與坐標(biāo)原點(diǎn)重合,邊長(zhǎng)為SKIPIF1<0的直角邊落在SKIPIF1<0軸的正半軸時(shí),則圓心為SKIPIF1<0,所以其外接圓方程可以為SKIPIF1<0,若將直角頂點(diǎn)與坐標(biāo)原點(diǎn)重合,邊長(zhǎng)為SKIPIF1<0的直角邊落在SKIPIF1<0軸的負(fù)半軸時(shí),則圓心為SKIPIF1<0,所以其外接圓方程可以為SKIPIF1<0,若將直角頂點(diǎn)與坐標(biāo)原點(diǎn)重合,邊長(zhǎng)為SKIPIF1<0的直角邊落在SKIPIF1<0軸的正半軸時(shí),則圓心為SKIPIF1<0,所以其外接圓方程可以為SKIPIF1<0,若將直角頂點(diǎn)與坐標(biāo)原點(diǎn)重合,邊長(zhǎng)為SKIPIF1<0的直角邊落在SKIPIF1<0軸的負(fù)半軸時(shí),則圓心為SKIPIF1<0,所以其外接圓方程可以為SKIPIF1<0.故答案為:SKIPIF1<0.(答案不唯一)13.(2023·福建莆田·統(tǒng)考二模)直線l經(jīng)過(guò)點(diǎn)SKIPIF1<0,且與曲線SKIPIF1<0相切,寫(xiě)出l的一個(gè)方程_______.【答案】SKIPIF1<0(答案不唯一)【分析】先對(duì)SKIPIF1<0求導(dǎo),再假設(shè)直線l與SKIPIF1<0的切點(diǎn)為SKIPIF1<0,斜率為SKIPIF1<0,從而得到關(guān)于SKIPIF1<0的方程組,解之即可求得直線l的方程.【詳解】因?yàn)镾KIPIF1<0,所以SKIPIF1<0,不妨設(shè)直線l與SKIPIF1<0的切點(diǎn)為SKIPIF1<0,斜率為SKIPIF1<0,則SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0或SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),直線l為SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),直線l為SKIPIF1<0,即SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),直線l為SKIPIF1<0,即SKIPIF1<0;綜上:直線l的方程為SKIPIF1<0或SKIPIF1<0或SKIPIF1<0.故答案為:SKIPIF1<0(答案不唯一).14.(2023春·重慶沙坪壩·高三重慶八中??茧A段練習(xí))已知圓SKIPIF1<0關(guān)于直線SKIPIF1<0對(duì)稱,圓SKIPIF1<0,請(qǐng)寫(xiě)出一條與圓SKIPIF1<0都相切的直線方程:_____________.(寫(xiě)一條即可)【答案】SKIPIF1<0(或SKIPIF1<0或SKIPIF1<0,答案不唯一,寫(xiě)一條即可)【分析】根據(jù)圓與直線對(duì)稱求得SKIPIF1<0,進(jìn)而判斷兩圓外切,從而確定公切線有三條.根據(jù)直線與圓相切的幾何條件建立方程從而可解.【詳解】因?yàn)閳ASKIPIF1<0關(guān)于直線SKIPIF1<0對(duì)稱,故圓心SKIPIF1<0在直線SKIPIF1<0上,得SKIPIF1<0,解得SKIPIF1<0,故圓SKIPIF1<0,圓心SKIPIF1<0半徑SKIPIF1<0而圓SKIPIF1<0的圓心SKIPIF1<0,半徑SKIPIF1<0所以兩圓的圓心距為SKIPIF1<0所以兩圓外切,公切線有三條.顯然公切線的斜率存在,設(shè)方程為SKIPIF1<0,于是有:SKIPIF1<0兩式相除得:SKIPIF1<0或SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),得SKIPIF1<0,代入SKIPIF1<0可解得SKIPIF1<0或SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,代入SKIPIF1<0可解得SKIPIF1<0,所以三條公切線方程分別為:SKIPIF1<0,SKIPIF1<0.故答案為:SKIPIF1<0(或SKIPIF1<0或SKIPIF1<0,答案不唯一,寫(xiě)一條即可)15.(2023春·廣東·高三校聯(lián)考階段練習(xí))已知SKIPIF1<0、SKIPIF1<0,直線SKIPIF1<0上有且只有一個(gè)點(diǎn)SKIPIF1<0滿足SKIPIF1<0,寫(xiě)出滿足條件的其中一條直線SKIPIF1<0的方程__________.【答案】SKIPIF1<0(答案不唯一,只需滿足直線SKIPIF1<0與圓SKIPIF1<0相切即可)【分析】設(shè)點(diǎn)SKIPIF1<0,由SKIPIF1<0,求出點(diǎn)SKIPIF1<0的軌跡方程,可知點(diǎn)SKIPIF1<0的軌跡為圓,且圓心為SKIPIF1<0,半徑SKIPIF1<0,分析可知直線SKIPIF1<0與圓SKIPIF1<0相切即可.【詳解】設(shè)點(diǎn)SKIPIF1<0,由SKIPIF1<0可得SKIPIF1<0,整理可得SKIPIF1<0,即點(diǎn)SKIPIF1<0的軌跡為圓,且圓心為SKIPIF1<0,半徑SKIPIF1<0,直線SKIPIF1<0上有且只有一個(gè)點(diǎn)SKIPIF1<0滿足SKIPIF1<0,所以,直線SKIPIF1<0與圓SKIPIF1<0相切,所以,直線SKIPIF1<0的方程可為SKIPIF1<0.故答案為:SKIPIF1<0(答案不唯一,只需滿足直線SKIPIF1<0與圓SKIPIF1<0相切即可).16.(2023·吉林白山·統(tǒng)考三模)寫(xiě)出一條與圓SKIPIF1<0和曲線SKIPIF1<0都相切的直線的方程:___________.【答案】SKIPIF1<0(答案不唯一)【分析】設(shè)切線SKIPIF1<0與圓SKIPIF1<0相切于點(diǎn)SKIPIF1<0,得到切線SKIPIF1<0的方程,與SKIPIF1<0聯(lián)立,由判別式為零求解.【詳解】解:設(shè)切線SKIPIF1<0與圓SKIPIF1<0相切于點(diǎn)SKIPIF1<0,則SKIPIF1<0,切線SKIPIF1<0的方程為SKIPIF1<0,即SKIPIF1<0,將SKIPIF1<0與SKIPIF1<0聯(lián)立,可得SKIPIF1<0,令SKIPIF1<0,聯(lián)立解得SKIPIF1<0或SKIPIF1<0或SKIPIF1<0或SKIPIF1<0所以切線SKIPIF1<0的方程為SKIPIF1<0或SKIPIF1<0或SKIPIF1<0或SKIPIF1<0.故答案為:SKIPIF1<0(答案不唯一)17.(2023春·湖南長(zhǎng)沙·高三雅禮中學(xué)校考階段練習(xí))已知SKIPIF1<0,寫(xiě)出滿足條件①②的一個(gè)SKIPIF1<0的值__________.①SKIPIF1<0;②SKIPIF1<0.【答案】SKIPIF1<0或11.(答案不唯一)【分析】令SKIPIF1<0,得到SKIPIF1<0,再由SKIPIF1<0求解.【詳解】解:令SKIPIF1<0,得SKIPIF1<0,SKIPIF1<0,由條件②知SKIPIF1<0.又SKIPIF1<0的值可以為SKIPIF1<0或11.(答案不唯一)故答案為:SKIPIF1<0或11.(答案不唯一)18.(2022秋·遼寧撫順·高三校聯(lián)考階段練習(xí))寫(xiě)出一個(gè)同時(shí)滿足下列三個(gè)性質(zhì)的函數(shù):SKIPIF1<0__________.①SKIPIF1<0為奇函數(shù);②SKIPIF1<0為偶函數(shù);③SKIPIF1<0在SKIPIF1<0上的值域?yàn)镾KIPIF1<0.【答案】SKIPIF1<0(答案不唯一)【分析】根據(jù)①②可知SKIPIF1<0是周期為4的周期函數(shù),可根據(jù)三角函數(shù)的周期關(guān)系寫(xiě)出符合題意的函數(shù)形式.【詳解】由②可知SKIPIF1<0,由此可知SKIPIF1<0,SKIPIF1<0,故SKIPIF1<0是周期為4的奇函數(shù),SKIPIF1<0是周期為4的偶函數(shù),因此不妨假設(shè)SKIPIF1<0,則SKIPIF1<0,由③可知SKIPIF1<0或SKIPIF1<0均可.故答案為:SKIPIF1<0(答案不唯一)19.(2022秋·山東濰坊·高三統(tǒng)考階段練習(xí))已知函數(shù)SKIPIF1<0,試舉出一個(gè)SKIPIF1<0的值,使得SKIPIF1<0成立,則SKIPIF1<0可以為_(kāi)_________.(寫(xiě)出一個(gè)即可)【答案】-1或7【分析】根據(jù)給出的分段函數(shù)自變量的范圍,分情況討論計(jì)算即可.【詳解】因?yàn)楹瘮?shù)SKIPIF1<0,可得當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0當(dāng)SKIPIF1<0且SKIPIF1<0時(shí),SKIPIF1<0與SKIPIF1<0矛盾,不合題意;當(dāng)SKIPIF1<0且SKIPIF1<0時(shí),SKIPIF1<0,則SKIPIF1<0當(dāng)SKIPIF1<0時(shí),則SKIPIF1<0,則SKIPIF1<0,則SKIPIF1<0.故答案為:-1或7.20.(2022秋·江蘇徐州·高三期末)寫(xiě)出一個(gè)同時(shí)具有下列性質(zhì)①②③的函數(shù)解析式為SKIPIF1<0__________.①不是常數(shù)函數(shù);②SKIPIF1<0;③SKIPIF1<0.【答案】SKIPIF1<0(答案不唯一)【分析】首先理解條件中的性質(zhì),再寫(xiě)出滿足條件的函數(shù).【詳解】因?yàn)镾KIPIF1<0,即SKIPIF1<0,所以函數(shù)是偶函數(shù),因?yàn)镾KIPIF1<0,所以函數(shù)關(guān)于SKIPIF1<0對(duì)稱,且函數(shù)不是常函數(shù),所以滿足條件的函數(shù)SKIPIF1<0.故答案為:SKIPIF1<0(答案不唯一)21.(2023秋·遼寧沈陽(yáng)·高三沈陽(yáng)二中??计谀?xiě)出與圓SKIPIF1<0和圓SKIPIF1<0都相切的一條直線的方程______.【答案】SKIPIF1<0(答案不唯一,寫(xiě)其它三條均可)【分析】先判斷兩圓的位置關(guān)系,可設(shè)公切線方程為SKIPIF1<0,根據(jù)圓心到直線的距離等于半徑列出方程組,解之即可得出答案.【詳解】解:圓SKIPIF1<0的圓心為SKIPIF1<0,半徑為SKIPIF1<0,圓SKIPIF1<0的圓心為SKIPIF1<0,半徑為SKIPIF1<0,則SKIPIF1<0,所以兩圓外離,由兩圓的圓心都在SKIPIF1<0軸上,則公切線的斜率一定存在,設(shè)公切線方程為SKIPIF1<0,即SKIPIF1<0,則有SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0或SKIPIF1<0或SKIPIF1<0所以公切線方程為SKIPIF1<0或SKIPIF1<0或SKIPIF1<0或SKIPIF1<0,即SKIPIF1<0或SKIPIF1<0或SKIPIF1<0或SKIPIF1<0.故答案為:SKIPIF1<0.(答案不唯一,寫(xiě)其它三條均可)22.(2022秋·福建·高三校聯(lián)考階段練習(xí))已知函數(shù)SKIPIF1<0的部分圖象如圖所示,則滿足圖象的一個(gè)解析式為_(kāi)_____.【答案】SKIPIF1<0(答案不唯一)【分析】設(shè)函數(shù)解析式為SKIPIF1<0,根據(jù)函數(shù)得最值可求得SKIPIF1<0,再根據(jù)函數(shù)的對(duì)稱性結(jié)合圖象可得函數(shù)的最小正周期,從而可求得SKIPIF1<0,再利用待定系數(shù)法求得SKIPIF1<0即可.【詳解】解:設(shè)函數(shù)解析式為SKIPIF1<0,由圖可知SKIPIF1<0,解得SKIPIF1<0,SKIPIF1<0,故SKIPIF1<0,所以SKIPIF1<0,則SKIPIF1<0,由SKIPIF1<0,得SKIPIF1<0,所以SKIPIF1<0,可取SKIPIF1<0,所以滿足圖象的一個(gè)解析式可以為SKIPIF1<0.故答案為:SKIPIF1<0.(答案不唯一)23.(2023秋·廣東清遠(yuǎn)·高三統(tǒng)考期末)已知P為雙曲線C:SKIPIF1<0上異于頂點(diǎn)SKIPIF1<0,SKIPIF1<0的任意一點(diǎn),直線SKIPIF1<0,SKIPIF1<0的斜率分別為SKIPIF1<0,SKIPIF1<0,寫(xiě)出滿足C的焦距小于8且SKIPIF1<0的C的一個(gè)標(biāo)準(zhǔn)方程:_________.【答案】SKIPIF1<0(答案不唯一)【分析】首先設(shè)點(diǎn)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,根據(jù)條件轉(zhuǎn)化為關(guān)于SKIPIF1<0的不等式組,再寫(xiě)出滿足條件的一個(gè)標(biāo)準(zhǔn)方程.【詳解】設(shè)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,取SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,所以滿足條件的雙曲線的標(biāo)準(zhǔn)方程是SKIPIF1<0.故答案為:SKIPIF1<0(答案不唯一)24.(2023秋·山東濰坊·高三統(tǒng)考期末)寫(xiě)出一個(gè)同時(shí)滿足下列三個(gè)性質(zhì)的函數(shù)SKIPIF1<0______.①SKIPIF1<0是奇函數(shù);②SKIPIF1<0在SKIPIF1<0單調(diào)遞增;③SKIPIF1<0有且僅有3個(gè)零點(diǎn).【答案】SKIPIF1<0(答案不唯一)【分析】根據(jù)奇函數(shù)圖像關(guān)于原點(diǎn)對(duì)稱,若函數(shù)有且僅有3個(gè)零點(diǎn)則原點(diǎn)兩側(cè)各有一個(gè),再保證SKIPIF1<0單調(diào)遞增即可寫(xiě)出解析式.【詳解】由SKIPIF1<0是奇函數(shù),不妨取SKIPIF1<0,且函數(shù)圖象關(guān)于原點(diǎn)對(duì)稱;又SKIPIF1<0有且僅有3個(gè)零點(diǎn),所以原點(diǎn)兩側(cè)各有一個(gè)零點(diǎn),且關(guān)于原點(diǎn)對(duì)稱,若保證SKIPIF1<0在SKIPIF1<0單調(diào)遞增,顯然SKIPIF1<0滿足.故答案為:SKIPIF1<0(答案不唯一)25.(2022秋·江蘇常州·高三??计谥校┮阎瘮?shù)SKIPIF1<0SKIPIF1<0的最小值為0,且SKIPIF1<0,則SKIPIF1<0圖象的一個(gè)對(duì)稱中心的坐標(biāo)為_(kāi)_______.【答案】SKIPIF1<0(答案不唯一)【分析】由二倍角公式化簡(jiǎn),根據(jù)三角函數(shù)性質(zhì)結(jié)合條件列式得SKIPIF1<0,再求對(duì)稱中心坐標(biāo).【詳解】由題意得SKIPIF1<0,所以SKIPIF1<0最小值為SKIPIF1<0,則SKIPIF1<0,故SKIPIF1<0,而SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0,故SKIPIF1<0,SKIPIF1<0,由SKIPIF1<0,得SKIPIF1<0,SKIPIF1<0,故SKIPIF1<0圖象的對(duì)稱中心為SKIPIF1<0SKIPIF1<0.故答案為:SKIPIF1<0(答案不唯一)26.(2023秋·江蘇南通·高三統(tǒng)考期末)經(jīng)過(guò)坐標(biāo)原點(diǎn)的圓SKIPIF1<0與圓SKIPIF1<0相外切,則圓SKIPIF1<0的標(biāo)準(zhǔn)方程可以是__________SKIPIF1<0寫(xiě)出一個(gè)滿足題意的方程即可SKIPIF1<0【答案】SKIPIF1<0.(答案不唯一)【分析】根據(jù)題意易知圓SKIPIF1<0過(guò)坐標(biāo)原點(diǎn),圓SKIPIF1<0與圓SKIPIF1<0的切點(diǎn)即為坐標(biāo)原點(diǎn),則圓SKIPIF1<0的圓心在直線SKIPIF1<0上,且其圓心在第一象限,可設(shè)圓SKIPIF1<0的圓心坐標(biāo)為SKIPIF1<0,則可求得圓SKIPIF1<0的半徑,再根據(jù)圓的標(biāo)準(zhǔn)方程,即可求得結(jié)果.【詳解】設(shè)經(jīng)過(guò)坐標(biāo)原點(diǎn)的圓SKIPIF1<0圓心為SKIPIF1<0,半徑為SKIPIF1<0,則圓SKIPIF1<0方程:SKIPIF1<0,圓SKIPIF1<0經(jīng)過(guò)原點(diǎn),則SKIPIF1<0,即SKIPIF1<0,圓SKIPIF1<0:SKIPIF1<0可化為SKIPIF1<0,則圓SKIPIF1<0圓心為SKIPIF1<0,半徑SKIPIF1<0,顯然圓SKIPIF1<0經(jīng)過(guò)坐標(biāo)原點(diǎn),由題意,圓SKIPIF1<0與圓SKIPIF1<0相外切,則圓SKIPIF1<0與圓SKIPIF1<0的切點(diǎn)即為坐標(biāo)原點(diǎn),則圓SKIPIF1<0的圓心在直線SKIPIF1<0上,且圓心在第一象限,所以SKIPIF1<0,可令SKIPIF1<0,則圓SKIPIF1<0的圓心為SKIPIF1<0,則點(diǎn)SKIPIF1<0到圓SKIPIF1<0圓心SKIPIF1<0的距離SKIPIF1<0,即SKIPIF1<0,則SKIPIF1<0,則圓SKIPIF1<0方程:SKIPIF1<0,故答案為:SKIPIF1<027.(2023·山西·統(tǒng)考一模)寫(xiě)出一個(gè)同時(shí)滿足下列三個(gè)條件的函數(shù)SKIPIF1<0的解析式______.①SKIPIF1<0;②SKIPIF1<0;③SKIPIF1<0在SKIPIF1<0上單調(diào)遞增.【答案】SKIPIF1<0(答案不唯一,滿足條件即可)【分析】根據(jù)題意得SKIPIF1<0圖像關(guān)于直線SKIPIF1<0對(duì)稱,點(diǎn)SKIPIF1<0對(duì)稱,進(jìn)而結(jié)合三角函數(shù)性質(zhì)和條件③求解即可.【詳解】解:由①SKIPIF1<0可知,函數(shù)SKIPIF1<0圖像關(guān)于直線SKIPIF1<0對(duì)稱;由②SKIPIF1<0可知函數(shù)SKIPIF1<0圖像關(guān)于點(diǎn)SKIPIF1<0對(duì)稱;所以,SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,即函數(shù)SKIPIF1<0的周期為SKIPIF1<0,故考慮余弦型函數(shù),不妨令SKIPIF1<0,所以,SKIPIF1<0,即SKIPIF1<0,滿足性質(zhì)①②,由③SKIPIF1<0在SKIPIF1<0上單調(diào)遞增可得SKIPIF1<0,故不妨取SKIPIF1<0,即SKIPIF1<0,此時(shí)滿足已知三個(gè)條件.故答案為:SKIPIF1<028.(2023春·重慶萬(wàn)州·高三重慶市萬(wàn)州第二高級(jí)中學(xué)??茧A段練習(xí))寫(xiě)出一個(gè)同時(shí)滿足下列條件①②的等比數(shù)列SKIPIF1<0的通項(xiàng)公式SKIPIF1<0__________.①SKIPIF1<0;②SKIPIF1<0【答案】SKIPIF1<0(答案不唯一)【分析】可構(gòu)造等比數(shù)列,設(shè)公比為SKIPIF1<0,由條件,可知公比SKIPIF1<0為負(fù)數(shù)且SKIPIF1<0,再取符合的值即可得解.【詳解】可構(gòu)造等比數(shù)列,設(shè)公比為SKIPIF1<0,由SKIPIF1<0,可知公比SKIPIF1<0為負(fù)數(shù),因?yàn)镾KIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0可取SKIPIF1<0設(shè)SKIPIF1<0,則SKIPIF1<0.

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論