2021-2022學年江蘇省鹽城市龍岡共同體中考數(shù)學全真模擬試卷含解析_第1頁
2021-2022學年江蘇省鹽城市龍岡共同體中考數(shù)學全真模擬試卷含解析_第2頁
2021-2022學年江蘇省鹽城市龍岡共同體中考數(shù)學全真模擬試卷含解析_第3頁
2021-2022學年江蘇省鹽城市龍岡共同體中考數(shù)學全真模擬試卷含解析_第4頁
2021-2022學年江蘇省鹽城市龍岡共同體中考數(shù)學全真模擬試卷含解析_第5頁
已閱讀5頁,還剩17頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2021-2022學年江蘇省鹽城市龍岡共同體中考數(shù)學全真模擬試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.已知拋物線y=x2+(2a+1)x+a2﹣a,則拋物線的頂點不可能在()A.第一象限 B.第二象限 C.第三象限 D.第四象限2.把直線l:y=kx+b繞著原點旋轉180°,再向左平移1個單位長度后,經過點A(-2,0)和點B(0,4),則直線l的表達式是()A.y=2x+2 B.y=2x-2 C.y=-2x+2 D.y=-2x-23.兩個有理數(shù)的和為零,則這兩個數(shù)一定是()A.都是零 B.至少有一個是零C.一個是正數(shù),一個是負數(shù) D.互為相反數(shù)4.甲、乙兩名同學進行跳高測試,每人10次跳高的平均成績恰好都是1.6米,方差分別是S甲2=A.甲 B.乙 C.甲乙同樣穩(wěn)定 D.無法確定5.根據(jù)下表中的二次函數(shù)的自變量與函數(shù)的對應值,可判斷該二次函數(shù)的圖象與軸().

…A.只有一個交點 B.有兩個交點,且它們分別在軸兩側C.有兩個交點,且它們均在軸同側 D.無交點6.(2011?黑河)已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,現(xiàn)有下列結論:①b2﹣4ac>0②a>0③b>0④c>0⑤9a+3b+c<0,則其中結論正確的個數(shù)是() A、2個 B、3個 C、4個 D、5個7.如圖,△ABC中,AB=2,AC=3,1<BC<5,分別以AB、BC、AC為邊向外作正方形ABIH、BCDE和正方形ACFG,則圖中陰影部分的最大面積為()A.6 B.9 C.11 D.無法計算8.如圖,l1∥l2,AF:FB=3:5,BC:CD=3:2,則AE:EC=()A.5:2 B.4:3 C.2:1 D.3:29.若x=-2是關于x的一元二次方程x2+ax-a2=0的一個根,則a的值為()A.-1或4 B.-1或-4C.1或-4 D.1或410.如圖,平行四邊形ABCD的對角線AC、BD相交于點O,AE平分∠BAD,分別交BC、BD于點E、P,連接OE,∠ADC=60°,AB=BC=1,則下列結論:①∠CAD=30°②BD=③S平行四邊形ABCD=AB?AC④OE=AD⑤S△APO=,正確的個數(shù)是()A.2 B.3 C.4 D.5二、填空題(共7小題,每小題3分,滿分21分)11.某花店有單位為10元、18元、25元三種價格的花卉,如圖是該花店某月三種花卉銷售量情況的扇形統(tǒng)計圖,根據(jù)該統(tǒng)計圖可算得該花店銷售花卉的平均單價為_____元.12.如圖,直線經過正方形的頂點分別過此正方形的頂點、作于點、于點.若,則的長為________.13.從﹣2,﹣1,1,2四個數(shù)中,隨機抽取兩個數(shù)相乘,積為大于﹣4小于2的概率是__.14.已知:如圖,在△AOB中,∠AOB=90°,AO=3cm,BO=4cm.將△AOB繞頂點O,按順時針方向旋轉到△A1OB1處,此時線段OB1與AB的交點D恰好為AB的中點,則線段B1D=__________cm.15.若分式的值為正,則實數(shù)的取值范圍是__________________.16.如圖,在每個小正方形的邊長為1的網(wǎng)格中,點A,B,C均在格點上.(Ⅰ)AC的長等于_____;(Ⅱ)在線段AC上有一點D,滿足AB2=AD?AC,請在如圖所示的網(wǎng)格中,用無刻度的直尺,畫出點D,并簡要說明點D的位置是如何找到的(不要求證明)_____.17.在平面直角坐標系中,點P到軸的距離為1,到軸的距離為2.寫出一個符合條件的點P的坐標________________.三、解答題(共7小題,滿分69分)18.(10分)如圖,在△ABC中,∠C=90°,AD平分∠CAB,交CB于點D,過點D作DE⊥AB,于點E求證:△ACD≌△AED;若∠B=30°,CD=1,求BD的長.19.(5分)如圖,直線與軸交于點,與軸交于點,且與雙曲線的一個交點為,將直線在軸下方的部分沿軸翻折,得到一個“”形折線的新函數(shù).若點是線段上一動點(不包括端點),過點作軸的平行線,與新函數(shù)交于另一點,與雙曲線交于點.(1)若點的橫坐標為,求的面積;(用含的式子表示)(2)探索:在點的運動過程中,四邊形能否為平行四邊形?若能,求出此時點的坐標;若不能,請說明理由.20.(8分)如圖1,一枚質地均勻的正六面體骰子的六個面分別標有數(shù)字1,2,3,4,5,6,如圖2,正方形ABCD的頂點處各有一個圈,跳圈游戲的規(guī)則為:游戲者每擲一次骰子,骰子朝上的那面上的數(shù)字是幾,就沿正方形的邊按順時針方向連續(xù)跳幾個邊長。如:若從圈A起跳,第一次擲得3,就順時針連續(xù)跳3個邊長,落在圈D;若第二次擲得2,就從圈D開始順時針連續(xù)跳2個邊長,落得圈B;…設游戲者從圈A起跳.小賢隨機擲一次骰子,求落回到圈A的概率P1.小南隨機擲兩次骰子,用列表法求最后落回到圈A的概率P2,并指出他與小賢落回到圈A的可能性一樣嗎?21.(10分)如今很多初中生購買飲品飲用,既影響身體健康又給家庭增加不必要的開銷,為此數(shù)學興趣小組對本班同學一天飲用飲品的情況進行了調查,大致可分為四種:A:自帶白開水;B:瓶裝礦泉水;C:碳酸飲料;D:非碳酸飲料.根據(jù)統(tǒng)計結果繪制如下兩個統(tǒng)計圖(如圖),根據(jù)統(tǒng)計圖提供的信息,解答下列問題:請你補全條形統(tǒng)計圖;在扇形統(tǒng)計圖中,求“碳酸飲料”所在的扇形的圓心角的度數(shù);為了養(yǎng)成良好的生活習慣,班主任決定在自帶白開水的5名同學(男生2人,女生3人)中隨機抽取2名同學擔任生活監(jiān)督員,請用列表法或樹狀圖法求出恰好抽到一男一女的概率.22.(10分)如圖,在正方形ABCD的外部,分別以CD,AD為底作等腰Rt△CDE、等腰Rt△DAF,連接AE、CF,交點為O.(1)求證:△CDF≌△ADE;(2)若AF=1,求四邊形ABCO的周長.23.(12分)先化簡,再求值.(2x+3)(2x﹣3)﹣4x(x﹣1)+(x﹣2)2,其中x=﹣.24.(14分)在平面直角坐標系中,O為原點,點A(3,0),點B(0,4),把△ABO繞點A順時針旋轉,得△AB′O′,點B,O旋轉后的對應點為B′,O.(1)如圖1,當旋轉角為90°時,求BB′的長;(2)如圖2,當旋轉角為120°時,求點O′的坐標;(3)在(2)的條件下,邊OB上的一點P旋轉后的對應點為P′,當O′P+AP′取得最小值時,求點P′的坐標.(直接寫出結果即可)

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、D【解析】

求得頂點坐標,得出頂點的橫坐標和縱坐標的關系式,即可求得.【詳解】拋物線y=x2+(2a+1)x+a2﹣a的頂點的橫坐標為:x=﹣=﹣a﹣,縱坐標為:y==﹣2a﹣,∴拋物線的頂點橫坐標和縱坐標的關系式為:y=2x+,∴拋物線的頂點經過一二三象限,不經過第四象限,故選:D.【點睛】本題考查了二次函數(shù)的性質,得到頂點的橫縱坐標的關系式是解題的關鍵.2、B【解析】

先利用待定系數(shù)法求出直線AB的解析式,再求出將直線AB向右平移1個單位長度后得到的解析式,然后將所得解析式繞著原點旋轉180°即可得到直線l.【詳解】解:設直線AB的解析式為y=mx+n.∵A(?2,0),B(0,1),∴-2m+n=0n=4解得m=2n=4∴直線AB的解析式為y=2x+1.將直線AB向右平移1個單位長度后得到的解析式為y=2(x?1)+1,即y=2x+2,再將y=2x+2繞著原點旋轉180°后得到的解析式為?y=?2x+2,即y=2x?2,所以直線l的表達式是y=2x?2.故選:B.【點睛】本題考查了一次函數(shù)圖象平移問題,掌握解析式“左加右減”的規(guī)律以及關于原點對稱的規(guī)律是解題的關鍵.3、D【解析】解:互為相反數(shù)的兩個有理數(shù)的和為零,故選D.A、C不全面.B、不正確.4、A【解析】

根據(jù)方差的意義可作出判斷.方差是用來衡量一組數(shù)據(jù)波動大小的量,方差越小,表明這組數(shù)據(jù)分布比較集中,各數(shù)據(jù)偏離平均數(shù)越小,即波動越小,數(shù)據(jù)越穩(wěn)定.【詳解】∵S甲2=1.4,S乙2=2.5,∴S甲2<S乙2,∴甲、乙兩名同學成績更穩(wěn)定的是甲;故選A.【點睛】本題考查方差的意義.方差是用來衡量一組數(shù)據(jù)波動大小的量,方差越大,表明這組數(shù)據(jù)偏離平均數(shù)越大,即波動越大,數(shù)據(jù)越不穩(wěn)定;反之,方差越小,表明這組數(shù)據(jù)分布比較集中,各數(shù)據(jù)偏離平均數(shù)越小,即波動越小,數(shù)據(jù)越穩(wěn)定.5、B【解析】

根據(jù)表中數(shù)據(jù)可得拋物線的對稱軸為x=1,拋物線的開口方向向上,再根據(jù)拋物線的對稱性即可作出判斷.【詳解】解:由題意得拋物線的對稱軸為x=1,拋物線的開口方向向上則該二次函數(shù)的圖像與軸有兩個交點,且它們分別在軸兩側故選B.【點睛】本題考查二次函數(shù)的性質,屬于基礎應用題,只需學生熟練掌握拋物線的對稱性,即可完成.6、B【解析】分析:由拋物線的開口方向判斷a與0的關系,由拋物線與y軸的交點判斷c與0的關系,然后根據(jù)拋物線與x軸交點及x=1時二次函數(shù)的值的情況進行推理,進而對所得結論進行判斷.解答:解:①根據(jù)圖示知,二次函數(shù)與x軸有兩個交點,所以△=b2-4ac>0;故①正確;

②根據(jù)圖示知,該函數(shù)圖象的開口向上,

∴a>0;

故②正確;

③又對稱軸x=-=1,

∴<0,

∴b<0;

故本選項錯誤;

④該函數(shù)圖象交于y軸的負半軸,

∴c<0;

故本選項錯誤;

⑤根據(jù)拋物線的對稱軸方程可知:(-1,0)關于對稱軸的對稱點是(3,0);

當x=-1時,y<0,所以當x=3時,也有y<0,即9a+3b+c<0;故⑤正確.

所以①②⑤三項正確.

故選B.7、B【解析】

有旋轉的性質得到CB=BE=BH′,推出C、B、H'在一直線上,且AB為△ACH'的中線,得到S△BEI=S△ABH′=S△ABC,同理:S△CDF=S△ABC,當∠BAC=90°時,S△ABC的面積最大,S△BEI=S△CDF=S△ABC最大,推出S△GBI=S△ABC,于是得到陰影部分面積之和為S△ABC的3倍,于是得到結論.【詳解】把△IBE繞B順時針旋轉90°,使BI與AB重合,E旋轉到H'的位置,∵四邊形BCDE為正方形,∠CBE=90°,CB=BE=BH′,∴C、B、H'在一直線上,且AB為△ACH'的中線,∴S△BEI=S△ABH′=S△ABC,同理:S△CDF=S△ABC,當∠BAC=90°時,S△ABC的面積最大,S△BEI=S△CDF=S△ABC最大,∵∠ABC=∠CBG=∠ABI=90°,∴∠GBE=90°,∴S△GBI=S△ABC,所以陰影部分面積之和為S△ABC的3倍,又∵AB=2,AC=3,∴圖中陰影部分的最大面積為3××2×3=9,故選B.【點睛】本題考查了勾股定理,利用了旋轉的性質:旋轉前后圖形全等得出圖中陰影部分的最大面積是S△ABC的3倍是解題的關鍵.8、D【解析】

依據(jù)平行線分線段成比例定理,即可得到AG=3x,BD=5x,CD=BD=2x,再根據(jù)平行線分線段成比例定理,即可得出AE與EC的比值.【詳解】∵l1∥l2,∴,設AG=3x,BD=5x,∵BC:CD=3:2,∴CD=BD=2x,∵AG∥CD,∴.故選D.【點睛】本題考查了平行線分線段成比例:三條平行線截兩條直線,所得的對應線段成比例.平行于三角形的一邊,并且和其他兩邊(或兩邊的延長線)相交的直線,所截得的三角形的三邊與原三角形的三邊對應成比例.9、C【解析】試題解析:∵x=-2是關于x的一元二次方程的一個根,

∴(-2)2+a×(-2)-a2=0,即a2+3a-2=0,

整理,得(a+2)(a-1)=0,

解得a1=-2,a2=1.

即a的值是1或-2.

故選A.點睛:一元二次方程的解的定義:能使一元二次方程左右兩邊相等的未知數(shù)的值是一元二次方程的解.又因為只含有一個未知數(shù)的方程的解也叫做這個方程的根,所以,一元二次方程的解也稱為一元二次方程的根.10、D【解析】

①先根據(jù)角平分線和平行得:∠BAE=∠BEA,則AB=BE=1,由有一個角是60度的等腰三角形是等邊三角形得:△ABE是等邊三角形,由外角的性質和等腰三角形的性質得:∠ACE=30°,最后由平行線的性質可作判斷;②先根據(jù)三角形中位線定理得:OE=AB=,OE∥AB,根據(jù)勾股定理計算OC=和OD的長,可得BD的長;③因為∠BAC=90°,根據(jù)平行四邊形的面積公式可作判斷;④根據(jù)三角形中位線定理可作判斷;⑤根據(jù)同高三角形面積的比等于對應底邊的比可得:S△AOE=S△EOC=OE?OC=,,代入可得結論.【詳解】①∵AE平分∠BAD,∴∠BAE=∠DAE,∵四邊形ABCD是平行四邊形,∴AD∥BC,∠ABC=∠ADC=60°,∴∠DAE=∠BEA,∴∠BAE=∠BEA,∴AB=BE=1,∴△ABE是等邊三角形,∴AE=BE=1,∵BC=2,∴EC=1,∴AE=EC,∴∠EAC=∠ACE,∵∠AEB=∠EAC+∠ACE=60°,∴∠ACE=30°,∵AD∥BC,∴∠CAD=∠ACE=30°,故①正確;②∵BE=EC,OA=OC,∴OE=AB=,OE∥AB,∴∠EOC=∠BAC=60°+30°=90°,Rt△EOC中,OC=,∵四邊形ABCD是平行四邊形,∴∠BCD=∠BAD=120°,∴∠ACB=30°,∴∠ACD=90°,Rt△OCD中,OD=,∴BD=2OD=,故②正確;③由②知:∠BAC=90°,∴S?ABCD=AB?AC,故③正確;④由②知:OE是△ABC的中位線,又AB=BC,BC=AD,∴OE=AB=AD,故④正確;⑤∵四邊形ABCD是平行四邊形,∴OA=OC=,∴S△AOE=S△EOC=OE?OC=××,∵OE∥AB,∴,∴,∴S△AOP=S△AOE==,故⑤正確;本題正確的有:①②③④⑤,5個,故選D.【點睛】本題考查了平行四邊形的性質、等腰三角形的性質、直角三角形30度角的性質、三角形面積和平行四邊形面積的計算;熟練掌握平行四邊形的性質,證明△ABE是等邊三角形是解決問題的關鍵,并熟練掌握同高三角形面積的關系.二、填空題(共7小題,每小題3分,滿分21分)11、17【解析】

根據(jù)餅狀圖求出25元所占比重為20%,再根據(jù)加權平均數(shù)求法即可解題.【詳解】解:1-30%-50%=20%,∴.【點睛】本題考查了加權平均數(shù)的計算方法,屬于簡單題,計算25元所占權比是解題關鍵.12、13【解析】

根據(jù)正方形的性質得出AD=AB,∠BAD=90°,根據(jù)垂直得出∠DEA=∠AFB=90°,求出∠EDA=∠FAB,根據(jù)AAS推出△AED≌△BFA,根據(jù)全等三角形的性質得出AE=BF=5,AF=DE=8,即可求出答案;【詳解】∵ABCD是正方形(已知),∴AB=AD,∠ABC=∠BAD=90°;又∵∠FAB+∠FBA=∠FAB+∠EAD=90°,∴∠FBA=∠EAD(等量代換);∵BF⊥a于點F,DE⊥a于點E,∴在Rt△AFB和Rt△AED中,∵,∴△AFB≌△AED(AAS),∴AF=DE=8,BF=AE=5(全等三角形的對應邊相等),∴EF=AF+AE=DE+BF=8+5=13.故答案為13.點睛:本題考查了勾股定理,全等三角形的性質和判定,正方形的性質的應用,能求出△AED≌△BFA是解此題的關鍵.13、1【解析】

列表得出所有等可能結果,從中找到積為大于-4小于2的結果數(shù),根據(jù)概率公式計算可得.【詳解】解:列表如下:-2-112-22-2-4-12-1-21-2-122-4-22由表可知,共有12種等可能結果,其中積為大于-4小于2的有6種結果,∴積為大于-4小于2的概率為612=1故答案為:12【點睛】此題考查的是用列表法或樹狀圖法求概率.列表法可以不重復不遺漏的列出所有可能的結果,適合于兩步完成的事件;樹狀圖法適合兩步或兩步以上完成的事件;用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.14、1.1【解析】試題解析:∵在△AOB中,∠AOB=90°,AO=3cm,BO=4cm,∴AB==1cm,∵點D為AB的中點,∴OD=AB=2.1cm.∵將△AOB繞頂點O,按順時針方向旋轉到△A1OB1處,∴OB1=OB=4cm,∴B1D=OB1﹣OD=1.1cm.故答案為1.1.15、x>0【解析】【分析】分式值為正,則分子與分母同號,據(jù)此進行討論即可得.【詳解】∵分式的值為正,∴x與x2+2的符號同號,∵x2+2>0,∴x>0,故答案為x>0.【點睛】本題考查了分式值為正的情況,熟知分式值為正時,分子分母同號是解題的關鍵.16、5見解析.【解析】

(1)由勾股定理即可求解;(2)尋找格點M和N,構建與△ABC全等的△AMN,易證MN⊥AC,從而得到MN與AC的交點即為所求D點.【詳解】(1)AC=;(2)如圖,連接格點M和N,由圖可知:AB=AM=4,BC=AN=,AC=MN=,∴△ABC≌△MAN,∴∠AMN=∠BAC,∴∠MAD+∠CAB=∠MAD+∠AMN=90°,∴MN⊥AC,易解得△MAN以MN為底時的高為,∵AB2=AD?AC,∴AD=AB2÷AC=,綜上可知,MN與AC的交點即為所求D點.【點睛】本題考查了平面直角坐標系中定點的問題,理解第2問中構造全等三角形從而確定D點的思路.17、(寫出一個即可)【解析】【分析】根據(jù)點到x軸的距離即點的縱坐標的絕對值,點到y(tǒng)軸的距離即點的橫坐標的絕對值,進行求解即可.【詳解】設P(x,y),根據(jù)題意,得|x|=2,|y|=1,即x=±2,y=±1,則點P的坐標有(2,1),(2,-1),(-2,1),(2,-1),故答案為:(2,1),(2,-1),(-2,1),(2,-1)(寫出一個即可).【點睛】本題考查了點的坐標和點到坐標軸的距離之間的關系.熟知點到x軸的距離即點的縱坐標的絕對值,點到y(tǒng)軸的距離即點的橫坐標的絕對值是解題的關鍵.三、解答題(共7小題,滿分69分)18、(1)見解析(2)BD=2【解析】解:(1)證明:∵AD平分∠CAB,DE⊥AB,∠C=90°,∴CD=ED,∠DEA=∠C=90°.∵在Rt△ACD和Rt△AED中,,∴Rt△ACD≌Rt△AED(HL).(2)∵Rt△ACD≌Rt△AED,CD=1,∴DC=DE=1.∵DE⊥AB,∴∠DEB=90°.∵∠B=30°,∴BD=2DE=2.(1)根據(jù)角平分線性質求出CD=DE,根據(jù)HL定理求出另三角形全等即可.(2)求出∠DEB=90°,DE=1,根據(jù)含30度角的直角三角形性質求出即可.19、(1);(2)不能成為平行四邊形,理由見解析【解析】

(1)將點B坐標代入一次函數(shù)上可得出點B的坐標,由點B的坐標,利用待定系數(shù)法可求出反比例函數(shù)解析式,根據(jù)點的坐標為,可以判斷出,再由點P的橫坐標可得出點P的坐標是,結合PD∥x軸可得出點D的坐標,再利用三角形的面積公式即可用含的式子表示出△MPD的面積;

(2)當P為BM的中點時,利用中點坐標公式可得出點P的坐標,結合PD∥x軸可得出點D的坐標,由折疊的性質可得出直線MN的解析式,利用一次函數(shù)圖象上點的坐標特征可得出點C的坐標,由點P,C,D的坐標可得出PD≠PC,由此即可得出四邊形BDMC不能成為平行四邊形.【詳解】解:(1)∵點在直線上,∴.∵點在的圖像上,∴,∴.設,則.∵∴.記的面積為,∴.(2)當點為中點時,其坐標為,∴.∵直線在軸下方的部分沿軸翻折得表示的函數(shù)表達式是:,∴,∴,∴與不能互相平分,∴四邊形不能成為平行四邊形.【點睛】本題考查了一次函數(shù)圖象上點的坐標特征、待定系數(shù)法求反比例函數(shù)解析式、反比例函數(shù)圖象上點的坐標特征、三角形的面積、折疊的性質以及平行四邊形的判定,解題的關鍵是:(1)利用一次(反比例)函數(shù)圖象上點的坐標特征,找出點P,M,D的坐標;(2)利用平行四邊形的對角線互相平分,找出四邊形BDMC不能成為平行四邊形.20、(1)落回到圈A的概率P1【解析】

(1)由共有6種等可能的結果,落回到圈A的只有1種情況,直接利用概率公式求解即可求得答案;

(2)首先根據(jù)題意列出表格,然后由表格求得所有等可能的結果與最后落回到圈A的情況,再利用概率公式求解即可求得答案.【詳解】(1)∵擲一次骰子有6種等可能的結果,只有擲的4時,才會落回到圈A,∴落回到圈A的概率P1(2)列表得:1234561((((((2((((((3((((((4((((((5((((((6((((((∵共有36種等可能的結果,當兩次擲得的數(shù)字之和為4的倍數(shù),即(1,3)(2,2)(2,6∴p2∵P1∴可能性不一樣【點睛】本題考查了用列表法或樹狀圖法求概率.列表法可以不重復不遺漏的列出所有可能的結果,適合于兩步完成的事件;樹狀圖法適合兩步或兩步以上完成的事件;用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.21、(1)詳見解析;(2)72°;(3)3【解析】

(1)由B類型的人數(shù)及其百分比求得總人數(shù),在用總人數(shù)減去其余各組人數(shù)得出C類型人數(shù),即可補全條形圖;(2)用360°乘以C類別人數(shù)所占比例即可得;(3)用列表法或畫樹狀圖法列出所有等可能結果,從中確定恰好抽到一男一女的結果數(shù),根據(jù)概率公式求解可得.【詳解】解:(1)∵抽查的總人數(shù)為:20÷40%=50(人)∴C類人數(shù)為:50-5-20-15=10(人)補全條形統(tǒng)計圖如下:(2)“碳酸飲料”所在的扇形的圓心角度數(shù)為:10(3)設男生為A1、A2,女生為B1、B畫樹狀圖得:∴恰好抽到一男一女的情況共有12種,分別是A∴P(恰好抽到一男一女)=12【點睛】本題考查的是條形統(tǒng)計圖和扇形統(tǒng)計圖的綜合運用以及概率的求法,讀懂統(tǒng)計圖,從不同的統(tǒng)計圖中得到必要的信息是解決問題的關鍵.條形統(tǒng)計圖能清楚地表示出每個項目的數(shù)據(jù);扇形統(tǒng)計圖直接反映部分占總體的百分比大?。?2、(1)詳見解析;(2)【解析】

(1)根據(jù)正方形的性質和等腰直角三角形的性質以及全等三角形的判定得出△CDF≌△ADE;(2)連接AC,利用正方形的性質和四邊形周長解答即可.【詳解】(1)證明:∵四邊形ABCD是正方形∴CD=AD,∠ADC=90°,∵△CDE和△DAF都是等腰直角三角形,∴FD=AD,DE=CD,∠ADF=∠CDE=45°,∴∠CDF=∠ADE=135°,F(xiàn)D=

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論