新高考數(shù)學(xué)一輪復(fù)習(xí)講與練第08講 一元函數(shù)的導(dǎo)數(shù)及其應(yīng)用(二)(講)(解析版)_第1頁
新高考數(shù)學(xué)一輪復(fù)習(xí)講與練第08講 一元函數(shù)的導(dǎo)數(shù)及其應(yīng)用(二)(講)(解析版)_第2頁
新高考數(shù)學(xué)一輪復(fù)習(xí)講與練第08講 一元函數(shù)的導(dǎo)數(shù)及其應(yīng)用(二)(講)(解析版)_第3頁
新高考數(shù)學(xué)一輪復(fù)習(xí)講與練第08講 一元函數(shù)的導(dǎo)數(shù)及其應(yīng)用(二)(講)(解析版)_第4頁
新高考數(shù)學(xué)一輪復(fù)習(xí)講與練第08講 一元函數(shù)的導(dǎo)數(shù)及其應(yīng)用(二)(講)(解析版)_第5頁
已閱讀5頁,還剩7頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

第2講一元函數(shù)的導(dǎo)數(shù)及其應(yīng)用(二)本講為重要知識(shí)點(diǎn),也是導(dǎo)數(shù)中的難點(diǎn)。主要以切線的題型進(jìn)行總結(jié),也包含了一些隱零點(diǎn)的思想和極值點(diǎn)偏移的思想解決相關(guān)的切線的問題。還是要注意函數(shù)的思想和導(dǎo)數(shù)的幾何意義來理解這類題的核心思想??键c(diǎn)一由導(dǎo)數(shù)的幾何意義求基礎(chǔ)切線問題導(dǎo)數(shù)的幾何意義函數(shù)f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)的幾何意義是在曲線y=f(x)上點(diǎn)P(x0,f(x0))處的切線的斜率.相應(yīng)地,切線方程為y-f(x0)=f′(x0)(x-x0).給切點(diǎn)求切線以曲線上的點(diǎn)(x0,f(x0))(已知x0為具體值)為切點(diǎn)的切線方程的求解步驟:①求出函數(shù)f(x)的導(dǎo)數(shù)f′(x);②求切線的斜率f′(x0);③寫出切線方程y-f(x0)=f′(x0)(x-x0),并化簡.有切線無切點(diǎn)求切點(diǎn)以曲線上的點(diǎn)(x0,f(x0))(x0為未知值,可以設(shè)出來)為切點(diǎn)的切線方程的求解步驟:①求出函數(shù)f(x)的導(dǎo)數(shù)f′(x);②求切線的斜率f′(x0);③寫出切線方程y-f(x0)=f′(x0)(x-x0),并化簡.無切點(diǎn)求參規(guī)律同上,注意待定系數(shù)法的應(yīng)用。無切點(diǎn)多參思維同上,依舊是設(shè)切點(diǎn),待定系數(shù)求解方程(組)??键c(diǎn)二復(fù)雜切線問題“過點(diǎn)”型切線SKIPIF1<0以上是“在點(diǎn)”與“過點(diǎn)”的區(qū)別,判斷切線條數(shù)1.設(shè)點(diǎn)列方程過程同前(求切線過程)2.切線條數(shù)判斷,實(shí)質(zhì)是切點(diǎn)橫坐標(biāo)為變量的函數(shù)(方程)零點(diǎn)個(gè)數(shù)判斷多函數(shù)(多曲線)的公切線1.兩個(gè)曲線有公切線,且切點(diǎn)是同一點(diǎn)2.兩個(gè)曲線有公切線,但是切點(diǎn)不是同一點(diǎn)??键c(diǎn)三切線的應(yīng)用切線的應(yīng)用:距離最值主要思維:利用平移直線,直到與該函數(shù)切線重合。切線的應(yīng)用:距離公式轉(zhuǎn)化型1.距離公式形式:平方和2.以此還可以類比斜率公式形式切線的應(yīng)用:恒成立求參等應(yīng)用利用切線作為“臨界線”放縮。這類思維,有時(shí)也應(yīng)用于大題的不等式證明,稱之為“切線放縮”。切線的應(yīng)用:零點(diǎn)等對于函數(shù)與直線交點(diǎn)個(gè)數(shù),可以借助于切線(臨界線)來求解,但是一定要注意函數(shù)一般情況下,是比較簡單的凸凹函數(shù)。如下圖(示意圖),可以講清楚這里邊的“非充要”性高頻考點(diǎn)一由導(dǎo)數(shù)的幾何意義求基礎(chǔ)切線問題例1、已知函數(shù)SKIPIF1<0,則曲線SKIPIF1<0在點(diǎn)SKIPIF1<0處的切線的方程為__________.【答案】SKIPIF1<0【解析】因?yàn)镾KIPIF1<0,所以SKIPIF1<0,則所求切線的方程為SKIPIF1<0.故答案為:SKIPIF1<0.【變式訓(xùn)練】1、曲線SKIPIF1<0在點(diǎn)SKIPIF1<0處的切線方程為______.【答案】SKIPIF1<0【解析】解:由SKIPIF1<0,得SKIPIF1<0,所以在點(diǎn)SKIPIF1<0處的切線的斜率為SKIPIF1<0,所以所求的切線方程為SKIPIF1<0,即SKIPIF1<0,故答案為:SKIPIF1<0,例2、曲線SKIPIF1<0在SKIPIF1<0處的切線平行于直線SKIPIF1<0,則SKIPIF1<0點(diǎn)的坐標(biāo)為()A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0和SKIPIF1<0D.SKIPIF1<0和SKIPIF1<0【答案】C【詳解】令SKIPIF1<0,解得SKIPIF1<0,SKIPIF1<0,故SKIPIF1<0點(diǎn)的坐標(biāo)為SKIPIF1<0,故選C.【變式訓(xùn)練】2、已知函數(shù)SKIPIF1<0為偶函數(shù),若曲線SKIPIF1<0的一條切線與直線SKIPIF1<0垂直,則切點(diǎn)的橫坐標(biāo)為()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【詳解】SKIPIF1<0為偶函數(shù),則SKIPIF1<0SKIPIF1<0,SKIPIF1<0,SKIPIF1<0設(shè)切點(diǎn)得橫坐標(biāo)為SKIPIF1<0,則SKIPIF1<0解得SKIPIF1<0,(負(fù)值舍去)所以SKIPIF1<0.故選:D例3、已知曲線SKIPIF1<0在點(diǎn)SKIPIF1<0處的切線與直線SKIPIF1<0垂直,則SKIPIF1<0的取值是()A.-1 B.SKIPIF1<0 C.1 D.SKIPIF1<0【答案】B【詳解】SKIPIF1<0,SKIPIF1<0,直線SKIPIF1<0,SKIPIF1<0,故SKIPIF1<0,解得SKIPIF1<0.故選:SKIPIF1<0.【變式訓(xùn)練】3、若曲線SKIPIF1<0的一條切線是直線SKIPIF1<0,則實(shí)數(shù)b的值為___________【答案】SKIPIF1<0【解析】設(shè)切點(diǎn)為SKIPIF1<0,對函數(shù)SKIPIF1<0求導(dǎo),得到SKIPIF1<0,又曲線SKIPIF1<0的一條切線是直線SKIPIF1<0,所以切線斜率為SKIPIF1<0,∴SKIPIF1<0,因此SKIPIF1<0,即切點(diǎn)為SKIPIF1<0,代入切線SKIPIF1<0,可得SKIPIF1<0.故答案為:SKIPIF1<0.例4、若直線SKIPIF1<0是曲線SKIPIF1<0的切線,且SKIPIF1<0,則實(shí)數(shù)b的最小值是______.【答案】SKIPIF1<0【解析】SKIPIF1<0的導(dǎo)數(shù)為SKIPIF1<0,由于直線SKIPIF1<0是曲線SKIPIF1<0的切線,設(shè)切點(diǎn)為SKIPIF1<0,則SKIPIF1<0,∴SKIPIF1<0,又SKIPIF1<0,∴SKIPIF1<0(SKIPIF1<0),SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,函數(shù)b遞增,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,函數(shù)b遞減,∴SKIPIF1<0為極小值點(diǎn),也為最小值點(diǎn),∴b的最小值為SKIPIF1<0.故答案為:SKIPIF1<0.【變式訓(xùn)練】4、已知函數(shù)f(x)=axlnx﹣bx(a,b∈R)在點(diǎn)(e,f(e))處的切線方程為y=3x﹣e,則a+b=_____.【答案】0【詳解】∵在點(diǎn)SKIPIF1<0處的切線方程為SKIPIF1<0,SKIPIF1<0,代入SKIPIF1<0得SKIPIF1<0①.又SKIPIF1<0②.聯(lián)立①②解得:SKIPIF1<0.SKIPIF1<0.故答案為:0.高頻考點(diǎn)二復(fù)雜切線問題例1、過原點(diǎn)作曲線SKIPIF1<0的切線,則切點(diǎn)的坐標(biāo)為___________,切線的斜率為__________.【答案】SKIPIF1<0SKIPIF1<0解:設(shè)切點(diǎn)坐標(biāo)為SKIPIF1<0;SKIPIF1<0;故由題意得,SKIPIF1<0;解得,SKIPIF1<0;故切點(diǎn)坐標(biāo)為SKIPIF1<0;切線的斜率為SKIPIF1<0;故切線方程為SKIPIF1<0,整理得SKIPIF1<0.故答案為:SKIPIF1<0;SKIPIF1<0.【變式訓(xùn)練】1、過點(diǎn)SKIPIF1<0與曲線SKIPIF1<0相切的直線方程為______________.【答案】SKIPIF1<0.【詳解】設(shè)切點(diǎn)坐標(biāo)為SKIPIF1<0,由SKIPIF1<0得SKIPIF1<0,SKIPIF1<0切線方程為SKIPIF1<0,SKIPIF1<0切線過點(diǎn)SKIPIF1<0,SKIPIF1<0SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0SKIPIF1<0,即所求切線方程為SKIPIF1<0.故答案為:SKIPIF1<0.例2、已知曲線SKIPIF1<0,則過點(diǎn)SKIPIF1<0可向SKIPIF1<0引切線,其切線條數(shù)為()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【解析】設(shè)在曲線SKIPIF1<0上的切點(diǎn)為SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,所以,曲線SKIPIF1<0在點(diǎn)SKIPIF1<0處的切線方程為SKIPIF1<0,將點(diǎn)SKIPIF1<0的坐標(biāo)代入切線方程得SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.因此,過點(diǎn)SKIPIF1<0可向SKIPIF1<0引切線,有三條.故選:C.【變式訓(xùn)練】2、已知過點(diǎn)A(a,0)作曲線C:y=x?ex的切線有且僅有兩條,則實(shí)數(shù)a的取值范圍是()A.(﹣∞,﹣4)∪(0,+∞) B.(0,+∞)C.(﹣∞,﹣1)∪(1,+∞) D.(﹣∞,﹣1)【答案】A【詳解】設(shè)切點(diǎn)為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則切線方程為:SKIPIF1<0,切線過點(diǎn)SKIPIF1<0代入得:SKIPIF1<0SKIPIF1<0,即方程SKIPIF1<0有兩個(gè)解,則有SKIPIF1<0或SKIPIF1<0.故答案為:A.例3、直線SKIPIF1<0與曲線SKIPIF1<0相切也與曲線SKIPIF1<0相切,則稱直線SKIPIF1<0為曲線SKIPIF1<0和曲線SKIPIF1<0的公切線,已知函數(shù)SKIPIF1<0,其中SKIPIF1<0,若曲線SKIPIF1<0和曲線SKIPIF1<0的公切線有兩條,則SKIPIF1<0的取值范圍為()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【解析】【分析】設(shè)切點(diǎn)求出兩個(gè)函數(shù)的切線方程,根據(jù)這個(gè)兩個(gè)方程表示同一直線,可得方程組,化簡方程組,可以得到變量SKIPIF1<0關(guān)于其中一個(gè)切點(diǎn)橫坐標(biāo)的函數(shù)形式,求導(dǎo),求出函數(shù)的單調(diào)性,結(jié)合該函數(shù)的正負(fù)性,畫出圖象圖形,最后利用數(shù)形結(jié)合求出SKIPIF1<0的取值范圍.【詳解】設(shè)曲線SKIPIF1<0的切點(diǎn)為:SKIPIF1<0,SKIPIF1<0,所以過該切點(diǎn)的切線斜率為SKIPIF1<0,因此過該切點(diǎn)的切線方程為:SKIPIF1<0;設(shè)曲線SKIPIF1<0的切點(diǎn)為:SKIPIF1<0,SKIPIF1<0,所以過該切點(diǎn)的切線斜率為SKIPIF1<0,因此過該切點(diǎn)的切線方程為:SKIPIF1<0,則兩曲線的公切線應(yīng)該滿足:SKIPIF1<0,構(gòu)造函數(shù)SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0單調(diào)遞減,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0單調(diào)遞增,所以函數(shù)有最大值為:SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)SKIPIF1<0,SKIPIF1<0,函數(shù)的圖象大致如下圖所示:要想有若曲線SKIPIF1<0和曲線SKIPIF1<0的公切線有兩條,則SKIPIF1<0的取值范圍為SKIPIF1<0.故選:C【變式訓(xùn)練】3、函數(shù)SKIPIF1<0與SKIPIF1<0有公切線SKIPIF1<0,則實(shí)數(shù)SKIPIF1<0的值為()A.4 B.2 C.1 D.SKIPIF1<0【答案】A【解析】設(shè)公切線SKIPIF1<0與兩個(gè)函數(shù)SKIPIF1<0與SKIPIF1<0圖象的切點(diǎn)分別為ASKIPIF1<0和BSKIPIF1<0,由SKIPIF1<0,SKIPIF1<0,可得SKIPIF1<0解得SKIPIF1<0,所以有SKIPIF1<0化簡得SKIPIF1<0,令SKIPIF1<0SKIPIF1<0,則SKIPIF1<0恒成立,即得函數(shù)SKIPIF1<0SKIPIF1<0在定義域上為增函數(shù),又因SKIPIF1<0,則可解得方程SKIPIF1<0,SKIPIF1<0,則由SKIPIF1<0解得SKIPIF1<0.故選:A.高頻考點(diǎn)三切線的應(yīng)用例1、點(diǎn)SKIPIF1<0在函數(shù)SKIPIF1<0的圖像上,若滿足到直線SKIPIF1<0的距離為1的點(diǎn)SKIPIF1<0有且僅有1個(gè),則SKIPIF1<0()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【詳解】函數(shù)SKIPIF1<0的導(dǎo)函數(shù)為SKIPIF1<0,設(shè)直線SKIPIF1<0與SKIPIF1<0相切于點(diǎn)SKIPIF1<0,則SKIPIF1<0,解得切點(diǎn)為SKIPIF1<0,由題可知SKIPIF1<0到直線SKIPIF1<0的距離為1,所以SKIPIF1<0,解得SKIPIF1<0,結(jié)合圖象可知,SKIPIF1<0.故選:B.【變式訓(xùn)練】1、點(diǎn)A在直線y=x上,點(diǎn)B在曲線SKIPIF1<0上,則SKIPIF1<0的最小值為()A.SKIPIF1<0 B.1 C.SKIPIF1<0 D.2【答案】A【分析】設(shè)平行于直線y=x的直線y=x+b與曲線SKIPIF1<0相切,將題意轉(zhuǎn)化為兩平行線間的距離,由導(dǎo)數(shù)的幾何意義可得SKIPIF1<0的值,進(jìn)而可得結(jié)果.【詳解】設(shè)平行于直線y=x的直線y=x+b與曲線SKIPIF1<0相切,則兩平行線間的距離即為SKIPIF1<0的最小值.設(shè)直線y=x+b與曲線SKIPIF1<0的切點(diǎn)為SKIPIF1<0,則由切點(diǎn)還在直線y=x+b上可得SKIPIF1<0,由切線斜率等于切點(diǎn)的導(dǎo)數(shù)值可得SKIPIF1<0,聯(lián)立解得m=1,b=-1,由平行線間的距離公式可得SKIPIF1<0的最小值為SKIPIF1<0,故選:A.例2、若SKIPIF1<0,則SKIPIF1<0的最小值是A.1 B.2 C.3 D.4【答案】B【詳解】由題意可轉(zhuǎn)化為點(diǎn)SKIPIF1<0與點(diǎn)SKIPIF1<0間的距離最小值的平方,點(diǎn)A在函數(shù)SKIPIF1<0上,點(diǎn)B在函數(shù)SKIPIF1<0上,這兩個(gè)函數(shù)關(guān)于SKIPIF1<0對稱,所以轉(zhuǎn)化為函數(shù)SKIPIF1<0與SKIPIF1<0的距離的最小值2倍的平方,此時(shí)SKIPIF1<0,∴SKIPIF1<0斜率為1的切線方程為SKIPIF1<0,它與SKIPIF1<0的距離為SKIPIF1<0.故原式的最小值為2.故選:B.【變式訓(xùn)練】2、若SKIPIF1<0,則SKIPIF1<0的最小值是A.1 B.2 C.3 D.4【答案】B【分析】原題等價(jià)于函數(shù)SKIPIF1<0上的點(diǎn)SKIPIF1<0與函數(shù)SKIPIF1<0上的點(diǎn)SKIPIF1<0間的距離最小值的平方,結(jié)合兩個(gè)函數(shù)關(guān)于SKIPIF1<0對稱,將其轉(zhuǎn)化為函數(shù)SKIPIF1<0與SKIPIF1<0的距離的最小值2倍的平方,利用導(dǎo)數(shù)求切線方程最后轉(zhuǎn)化求兩平行線間的距離平方即可.【詳解】由題意可轉(zhuǎn)化為點(diǎn)SKIPIF1<0與點(diǎn)SKIPIF1<0間的距離最小值的平方,點(diǎn)A在函數(shù)SKIPIF1<0上,點(diǎn)B在函數(shù)SKIPIF1<0上,這兩個(gè)函數(shù)關(guān)于SKIPIF1<0對稱,所以轉(zhuǎn)化為函數(shù)SKIPIF1<0與SKIPIF1<0的距離的最小值2倍的平方,此時(shí)SKIPIF1<0,∴SKIPIF1<0斜率為1的切線方程為SKIPIF1<0,它與SKIPIF1<0的距離為SKIPIF1<0.故原式的最小值為2.故選:B.例3、已知SKIPIF1<0為實(shí)數(shù),則“SKIPIF1<0對任意的實(shí)數(shù)SKIPIF1<0恒成立”是“SKIPIF1<0”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件【答案】B【分析】先根據(jù)導(dǎo)數(shù)的幾何意義求出直線SKIPIF1<0與曲線SKIPIF1<0相切時(shí)SKIPIF1<0的值,再數(shù)形結(jié)合將SKIPIF1<0對任意的實(shí)數(shù)SKIPIF1<0恒成立轉(zhuǎn)化為SKIPIF1<0,最后判斷充要關(guān)系即可得解.【詳解】設(shè)直線SKIPIF1<0與曲線SKIPIF1<0相切,且切點(diǎn)為SKIPIF1<0,則SKIPIF1<0,解得SKIPIF1<0,所以切點(diǎn)為SKIPIF1<0,SKIPIF1<0,所以切線方程為SKIPIF1<0.數(shù)形結(jié)合可知,SKIPIF1<0對任意的實(shí)數(shù)SKIPIF1<0恒成立等價(jià)于SKIPIF1<0.而由SKIPIF1<0不能得到SKIPIF1<0,故充分性不成立;反之,由SKIPIF1<0可得到SKIPIF1<0,故必要性成立.故選:B.【變式訓(xùn)練】3、

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論