2021-2022學年重慶市第一中學中考聯(lián)考數(shù)學試題含解析_第1頁
2021-2022學年重慶市第一中學中考聯(lián)考數(shù)學試題含解析_第2頁
2021-2022學年重慶市第一中學中考聯(lián)考數(shù)學試題含解析_第3頁
2021-2022學年重慶市第一中學中考聯(lián)考數(shù)學試題含解析_第4頁
2021-2022學年重慶市第一中學中考聯(lián)考數(shù)學試題含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2021-2022學年重慶市第一中學中考聯(lián)考數(shù)學試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.在Rt△ABC中,∠C=90°,BC=a,AC=b,AB=c,下列各式中正確的是()A.a(chǎn)=b?cosA B.c=a?sinA C.a(chǎn)?cotA=b D.a(chǎn)?tanA=b2.如圖,已知函數(shù)y=﹣與函數(shù)y=ax2+bx的交點P的縱坐標為1,則不等式ax2+bx+>0的解集是()A.x<﹣3 B.﹣3<x<0 C.x<﹣3或x>0 D.x>03.下列計算正確的是()A. B. C. D.4.如圖,在矩形ABCD中,AD=AB,∠BAD的平分線交BC于點E,DH⊥AE于點H,連接BH并延長交CD于點F,連接DE交BF于點O,下列結論:①∠AED=∠CED;②OE=OD;③BH=HF;④BC﹣CF=2HE;⑤AB=HF,其中正確的有()A.2個 B.3個 C.4個 D.5個5.如圖,甲從A點出發(fā)向北偏東70°方向走到點B,乙從點A出發(fā)向南偏西15°方向走到點C,則∠BAC的度數(shù)是()A.85° B.105° C.125° D.160°6.下列各組數(shù)中,互為相反數(shù)的是()A.﹣1與(﹣1)2 B.(﹣1)2與1 C.2與 D.2與|﹣2|7.關于的分式方程解為,則常數(shù)的值為()A. B. C. D.8.對于非零的兩個實數(shù)、,規(guī)定,若,則的值為()A. B. C. D.9.如圖,在△ABC中,CD⊥AB于點D,E,F(xiàn)分別為AC,BC的中點,AB=10,BC=8,DE=4.5,則△DEF的周長是()A.9.5 B.13.5 C.14.5 D.1710.一個不透明的布袋里裝有5個紅球,2個白球,3個黃球,它們除顏色外其余都相同,從袋中任意摸出1個球,是黃球的概率為()A. B. C. D.二、填空題(共7小題,每小題3分,滿分21分)11.因式分解:4ax2﹣4ay2=_____.12.如果拋物線y=(m﹣1)x2的開口向上,那么m的取值范圍是__.13.如圖,□ABCD中,E是BA的中點,連接DE,將△DAE沿DE折疊,使點A落在□ABCD內(nèi)部的點F處.若∠CBF=25°,則∠FDA的度數(shù)為_________.14.有5張背面看上去無差別的撲克牌,正面分別寫著5,6,7,8,9,洗勻后正面向下放在桌子上,從中隨機抽取2張,抽出的卡片上的數(shù)字恰好是兩個連續(xù)整數(shù)的概率是__.15.圖,A,B是反比例函數(shù)y=圖象上的兩點,過點A作AC⊥y軸,垂足為C,AC交OB于點D.若D為OB的中點,△AOD的面積為3,則k的值為________.16.兩個反比例函數(shù)y=kx和y=1x在第一象限內(nèi)的圖象如圖所示,點P在y=kx的圖象上,PC⊥x軸于點C,交17.若a2+3=2b,則a3﹣2ab+3a=_____.三、解答題(共7小題,滿分69分)18.(10分)先化簡,再求值:,其中a=+1.19.(5分)如圖,拋物線y=x1﹣1x﹣3與x軸交于A、B兩點(點A在點B的左側),直線l與拋物線交于A,C兩點,其中點C的橫坐標為1.(1)求A,B兩點的坐標及直線AC的函數(shù)表達式;(1)P是線段AC上的一個動點(P與A,C不重合),過P點作y軸的平行線交拋物線于點E,求△ACE面積的最大值;(3)若直線PE為拋物線的對稱軸,拋物線與y軸交于點D,直線AC與y軸交于點Q,點M為直線PE上一動點,則在x軸上是否存在一點N,使四邊形DMNQ的周長最???若存在,求出這個最小值及點M,N的坐標;若不存在,請說明理由.(4)點H是拋物線上的動點,在x軸上是否存在點F,使A、C、F、H四個點為頂點的四邊形是平行四邊形?如果存在,請直接寫出所有滿足條件的F點坐標;如果不存在,請說明理由.20.(8分)如圖,已知直線AB與軸交于點C,與雙曲線交于A(3,)、B(-5,)兩點.AD⊥軸于點D,BE∥軸且與軸交于點E.求點B的坐標及直線AB的解析式;判斷四邊形CBED的形狀,并說明理由.21.(10分)如圖,四邊形ABCD,AD∥BC,DC⊥BC于C點,AE⊥BD于E,且DB=DA.求證:AE=CD.22.(10分)如圖,可以自由轉動的轉盤被它的兩條直徑分成了四個分別標有數(shù)字的扇形區(qū)域,其中標有數(shù)字“1”的扇形圓心角為120°.轉動轉盤,待轉盤自動停止后,指針指向一個扇形的內(nèi)部,則該扇形內(nèi)的數(shù)字即為轉出的數(shù)字,此時,稱為轉動轉盤一次(若指針指向兩個扇形的交線,則不計轉動的次數(shù),重新轉動轉盤,直到指針指向一個扇形的內(nèi)部為止)(1)轉動轉盤一次,求轉出的數(shù)字是-2的概率;(2)轉動轉盤兩次,用樹狀圖或列表法求這兩次分別轉出的數(shù)字之積為正數(shù)的概率.23.(12分)某樓盤2018年2月份準備以每平方米7500元的均價對外銷售,由于國家有關房地產(chǎn)的新政策出臺后,購房者持幣觀望,為了加快資金周轉,房地產(chǎn)開發(fā)商對價格連續(xù)兩個月進行下調,4月份下調到每平方米6075元的均價開盤銷售.(1)求3、4兩月平均每月下調的百分率;(2)小穎家現(xiàn)在準備以每平方米6075元的開盤均價,購買一套100平方米的房子,因為她家一次性付清購房款,開發(fā)商還給予以下兩種優(yōu)惠方案以供選擇:①打9.8折銷售;②不打折,送兩年物業(yè)管理費,物業(yè)管理費是每平方米每月1.5元,小穎家選擇哪種方案更優(yōu)惠?(3)如果房價繼續(xù)回落,按此平均下調的百分率,請你預測到6月份該樓盤商品房成交均價是否會跌破4800元/平方米,請說明理由.24.(14分)觀察下列算式:①1×3-22="3"-4=-1②2×4-32="8"-9=-1③3×5-42="15"-16=-1④……(1)請你按以上規(guī)律寫出第4個算式;(2)把這個規(guī)律用含字母的式子表示出來;(3)你認為(2)中所寫出的式子一定成立嗎?并說明理由.

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、C【解析】∵∠C=90°,∴cosA=,sinA=,tanA=,cotA=,∴c·cosA=b,c·sinA=a,b·tanA=a,a·cotA=b,∴只有選項C正確,故選C.【點睛】本題考查了三角函數(shù)的定義,熟練掌握三角函數(shù)的定義并且靈活運用是解題的關鍵.2、C【解析】

首先求出P點坐標,進而利用函數(shù)圖象得出不等式ax2+bx+>1的解集.【詳解】∵函數(shù)y=﹣與函數(shù)y=ax2+bx的交點P的縱坐標為1,∴1=﹣,解得:x=﹣3,∴P(﹣3,1),故不等式ax2+bx+>1的解集是:x<﹣3或x>1.故選C.【點睛】本題考查了反比例函數(shù)圖象上點的坐標特征,解題的關鍵是正確得出P點坐標.3、A【解析】

原式各項計算得到結果,即可做出判斷.【詳解】A、原式=,正確;

B、原式不能合并,錯誤;

C、原式=,錯誤;

D、原式=2,錯誤.

故選A.【點睛】此題考查了實數(shù)的運算,熟練掌握運算法則是解本題的關鍵.4、C【解析】

試題分析:∵在矩形ABCD中,AE平分∠BAD,∴∠BAE=∠DAE=45°,∴△ABE是等腰直角三角形,∴AE=AB,∵AD=AB,∴AE=AD,又∠ABE=∠AHD=90°∴△ABE≌△AHD(AAS),∴BE=DH,∴AB=BE=AH=HD,∴∠ADE=∠AED=(180°﹣45°)=67.5°,∴∠CED=180°﹣45°﹣67.5°=67.5°,∴∠AED=∠CED,故①正確;∵∠AHB=(180°﹣45°)=67.5°,∠OHE=∠AHB(對頂角相等),∴∠OHE=∠AED,∴OE=OH,∵∠OHD=90°﹣67.5°=22.5°,∠ODH=67.5°﹣45°=22.5°,∴∠OHD=∠ODH,∴OH=OD,∴OE=OD=OH,故②正確;∵∠EBH=90°﹣67.5°=22.5°,∴∠EBH=∠OHD,又BE=DH,∠AEB=∠HDF=45°∴△BEH≌△HDF(ASA),∴BH=HF,HE=DF,故③正確;由上述①、②、③可得CD=BE、DF=EH=CE,CF=CD-DF,∴BC-CF=(CD+HE)-(CD-HE)=2HE,所以④正確;∵AB=AH,∠BAE=45°,∴△ABH不是等邊三角形,∴AB≠BH,∴即AB≠HF,故⑤錯誤;綜上所述,結論正確的是①②③④共4個.故選C.【點睛】考點:1、矩形的性質;2、全等三角形的判定與性質;3、角平分線的性質;4、等腰三角形的判定與性質5、C【解析】

首先求得AB與正東方向的夾角的度數(shù),即可求解.【詳解】根據(jù)題意得:∠BAC=(90°﹣70°)+15°+90°=125°,故選:C.【點睛】本題考查了方向角,正確理解方向角的定義是關鍵.6、A【解析】

根據(jù)相反數(shù)的定義,對每個選項進行判斷即可.【詳解】解:A、(﹣1)2=1,1與﹣1互為相反數(shù),正確;B、(﹣1)2=1,故錯誤;C、2與互為倒數(shù),故錯誤;D、2=|﹣2|,故錯誤;故選:A.【點睛】本題考查了相反數(shù)的定義,解題的關鍵是掌握相反數(shù)的定義.7、D【解析】

根據(jù)分式方程的解的定義把x=4代入原分式方程得到關于a的一次方程,解得a的值即可.【詳解】解:把x=4代入方程,得,解得a=1.經(jīng)檢驗,a=1是原方程的解故選D.點睛:此題考查了分式方程的解,分式方程注意分母不能為2.8、D【解析】試題分析:因為規(guī)定,所以,所以x=,經(jīng)檢驗x=是分式方程的解,故選D.考點:1.新運算;2.分式方程.9、B【解析】

由三角形中位線定理和直角三角形斜邊上的中線等于斜邊的一半解答.【詳解】∵在△ABC中,CD⊥AB于點D,E,F(xiàn)分別為AC,BC的中點,∴DE=AC=4.1,DF=BC=4,EF=AB=1,∴△DEF的周長=(AB+BC+AC)=×(10+8+9)=13.1.故選B.【點睛】考查了三角形中位線定理和直角三角形斜邊上的中線,三角形的中位線平行于第三邊,且等于第三邊的一半.10、A【解析】

讓黃球的個數(shù)除以球的總個數(shù)即為所求的概率.【詳解】解:因為一共10個球,其中3個黃球,所以從袋中任意摸出1個球是黃球的概率是.

故選:A.【點睛】本題考查概率的基本計算,用到的知識點為:概率等于所求情況數(shù)與總情況數(shù)之比.二、填空題(共7小題,每小題3分,滿分21分)11、4a(x﹣y)(x+y)【解析】

首先提取公因式4a,再利用平方差公式分解因式即可.【詳解】4ax2-4ay2=4a(x2-y2)=4a(x-y)(x+y).故答案為4a(x-y)(x+y).【點睛】此題主要考查了提取公因式法以及公式法分解因式,正確運用公式是解題關鍵.12、m>2【解析】試題分析:根據(jù)二次函數(shù)的性質可知,當拋物線開口向上時,二次項系數(shù)m﹣2>2.解:因為拋物線y=(m﹣2)x2的開口向上,所以m﹣2>2,即m>2,故m的取值范圍是m>2.考點:二次函數(shù)的性質.13、50°【解析】

延長BF交CD于G,根據(jù)折疊的性質和平行四邊形的性質,證明△BCG≌△DAE,從而∠7=∠6=25°,進而可求∠FDA得度數(shù).【詳解】延長BF交CD于G由折疊知,BE=CF,∠1=∠2,∠7=∠8,∴∠3=∠4.∵∠1+∠2=∠3+∠4,∴∠1=∠2=∠3=∠4,∵CD∥AB,∴∠3=∠5,∴∠1=∠5,在△BCG和△DAE中∵∠1=∠5,∠C=∠A,BC=AD,∴△BCG≌△DAE,∴∠7=∠6=25°,∴∠8=∠7=25°,∴FDA=50°.故答案為50°.【點睛】本題考查了折疊的性質,平行四邊形的性質,全等三角形的判定與性質.證明△BCG≌△DAE是解答本題的關鍵.14、【解析】

列表得出所有等可能的情況數(shù),找出恰好是兩個連續(xù)整數(shù)的情況數(shù),即可求出所求概率.【詳解】解:列表如下:567895﹣﹣﹣(6、5)(7、5)(8、5)(9、5)6(5、6)﹣﹣﹣(7、6)(8、6)(9、6)7(5、7)(6、7)﹣﹣﹣(8、7)(9、7)8(5、8)(6、8)(7、8)﹣﹣﹣(9、8)9(5、9)(6、9)(7、9)(8、9)﹣﹣﹣所有等可能的情況有20種,其中恰好是兩個連續(xù)整數(shù)的情況有8種,則P(恰好是兩個連續(xù)整數(shù))=故答案為.【點睛】此題考查了列表法與樹狀圖法,概率=所求情況數(shù)與總情況數(shù)之比.15、1.【解析】先設點D坐標為(a,b),得出點B的坐標為(2a,2b),A的坐標為(4a,b),再根據(jù)△AOD的面積為3,列出關系式求得k的值.解:設點D坐標為(a,b),∵點D為OB的中點,∴點B的坐標為(2a,2b),∴k=4ab,又∵AC⊥y軸,A在反比例函數(shù)圖象上,∴A的坐標為(4a,b),∴AD=4a﹣a=3a,∵△AOD的面積為3,∴×3a×b=3,∴ab=2,∴k=4ab=4×2=1.故答案為1“點睛”本題主要考查了反比例函數(shù)系數(shù)k的幾何意義,以及運用待定系數(shù)法求反比例函數(shù)解析式,根據(jù)△AOD的面積為1列出關系式是解題的關鍵.16、①②④.【解析】①△ODB與△OCA的面積相等;正確,由于A、B在同一反比例函數(shù)圖象上,則兩三角形面積相等,都為12②四邊形PAOB的面積不會發(fā)生變化;正確,由于矩形OCPD、三角形ODB、三角形OCA為定值,則四邊形PAOB的面積不會發(fā)生變化.③PA與PB始終相等;錯誤,不一定,只有當四邊形OCPD為正方形時滿足PA=PB.④當點A是PC的中點時,點B一定是PD的中點.正確,當點A是PC的中點時,k=2,則此時點B也一定是PD的中點.故一定正確的是①②④17、1【解析】

利用提公因式法將多項式分解為a(a2+3)-2ab,將a2+3=2b代入可求出其值.【詳解】解:∵a2+3=2b,∴a3-2ab+3a=a(a2+3)-2ab=2ab-2ab=1,故答案為1.【點睛】本題考查了因式分解的應用,利用提公因式法將多項式分解是本題的關鍵.三、解答題(共7小題,滿分69分)18、【解析】

原式括號中兩項通分并利用同分母分式的減法法則計算,同時利用除法法則變形,約分得到最簡結果,把a的值代入計算即可求出值.【詳解】原式==,當a=+1時,原式=.【點睛】本題考查了分式的化簡求值,熟練掌握分式混合運算的運算順序以及運算法則是解題的關鍵.19、(1)y=﹣x﹣1;(1)△ACE的面積最大值為;(3)M(1,﹣1),N(,0);(4)滿足條件的F點坐標為F1(1,0),F(xiàn)1(﹣3,0),F(xiàn)3(4+,0),F(xiàn)4(4﹣,0).【解析】

(1)令拋物線y=x1-1x-3=0,求出x的值,即可求A,B兩點的坐標,根據(jù)兩點式求出直線AC的函數(shù)表達式;

(1)設P點的橫坐標為x(-1≤x≤1),求出P、E的坐標,用x表示出線段PE的長,求出PE的最大值,進而求出△ACE的面積最大值;

(3)根據(jù)D點關于PE的對稱點為點C(1,-3),點Q(0,-1)點關于x軸的對稱點為M(0,1),則四邊形DMNQ的周長最小,求出直線CM的解析式為y=-1x+1,進而求出最小值和點M,N的坐標;

(4)結合圖形,分兩類進行討論,①CF平行x軸,如圖1,此時可以求出F點兩個坐標;②CF不平行x軸,如題中的圖1,此時可以求出F點的兩個坐標.【詳解】解:(1)令y=0,解得或x1=3,∴A(﹣1,0),B(3,0);將C點的橫坐標x=1代入y=x1﹣1x﹣3得∴C(1,-3),∴直線AC的函數(shù)解析式是(1)設P點的橫坐標為x(﹣1≤x≤1),則P、E的坐標分別為:P(x,﹣x﹣1),E(x,x1﹣1x﹣3),∵P點在E點的上方,∴當時,PE的最大值△ACE的面積最大值(3)D點關于PE的對稱點為點C(1,﹣3),點Q(0,﹣1)點關于x軸的對稱點為K(0,1),連接CK交直線PE于M點,交x軸于N點,可求直線CK的解析式為,此時四邊形DMNQ的周長最小,最小值求得M(1,﹣1),(4)存在如圖1,若AF∥CH,此時的D和H點重合,CD=1,則AF=1,于是可得F1(1,0),F(xiàn)1(﹣3,0),如圖1,根據(jù)點A和F的坐標中點和點C和點H的坐標中點相同,再根據(jù)|HA|=|CF|,求出綜上所述,滿足條件的F點坐標為F1(1,0),F(xiàn)1(﹣3,0),,.【點睛】屬于二次函數(shù)綜合題,考查二次函數(shù)與軸的交點坐標,待定系數(shù)法求一次函數(shù)解析式,二次函數(shù)的最值以及平行四邊形的性質等,綜合性比較強,難度較大.20、(1)點B的坐標是(-5,-4);直線AB的解析式為:(2)四邊形CBED是菱形.理由見解析【解析】

(1)根據(jù)反比例函數(shù)圖象上點的坐標特征,將點A代入雙曲線方程求得k值,即利用待定系數(shù)法求得雙曲線方程;然后將B點代入其中,從而求得a值;設直線AB的解析式為y=mx+n,將A、B兩點的坐標代入,利用待定系數(shù)法解答;(2)由點C、D的坐標、已知條件“BE∥x軸”及兩點間的距離公式求得,CD=5,BE=5,且BE∥CD,從而可以證明四邊形CBED是平行四邊形;然后在Rt△OED中根據(jù)勾股定理求得ED=5,所以ED=CD,從而證明四邊形CBED是菱形.【詳解】解:(1)∵雙曲線過A(3,),∴.把B(-5,)代入,得.∴點B的坐標是(-5,-4)設直線AB的解析式為,將A(3,)、B(-5,-4)代入得,,解得:.∴直線AB的解析式為:(2)四邊形CBED是菱形.理由如下:點D的坐標是(3,0),點C的坐標是(-2,0).∵BE∥軸,∴點E的坐標是(0,-4).而CD=5,BE=5,且BE∥CD.∴四邊形CBED是平行四邊形在Rt△OED中,ED2=OE2+OD2,∴ED==5,∴ED=CD.∴□CBED是菱形21、證明見解析.【解析】

由AD∥BC得∠ADB=∠DBC,根據(jù)已知證明△AED≌△DCB(AAS),即可解題.【詳解】解:∵AD∥BC∴∠ADB=∠DBC∵DC⊥BC于點C,AE⊥BD于點E∴∠C=∠AED=90°又∵DB=DA∴△AED≌△DCB(AAS)∴AE=CD【點睛】本題考查了三角形全等的判定和性質,屬于簡單題,證明三角形全等是解題關鍵.22、(1);(2).【解析】【分析】(1)根據(jù)題意可求得2個“-2”所占的扇形圓心角的度數(shù),再利用概率公式進行計算即可得;(2)由題意可得轉出“1”、“3”、“-2”的概率相同,然后列表得到所有可能的情況,再找出符合條件的可能性,根據(jù)概率公式進行計算即可得.【詳解】(1)由題意可知:“1”和“3”所占的扇形圓心角為120°,所以2個“-2”所占的扇形圓心角為360°-2×120°=120°,∴轉動

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論