版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
高中數(shù)學(xué)基礎(chǔ)知識(shí)掃描
一、集合與簡(jiǎn)易邏輯:
集
元四種命題
合
素
與
與1
集
集
原
否
逆充
逆
既
合
合
命
命
命
分
非
否
題
題
題
非
充
命
必
分
題
要
目或非又
于
條
非
件
互為逆否必
要
一、理解集合中的有關(guān)概念
(1)集合中元素的特征:確定性,互異性,無(wú)序性。
集合元素的互異性:如:A={x,xy』g(xy)},8{0,|x|,y},求4;
(2)集合與元素的關(guān)系用符號(hào)反,色表示。
(3)常用數(shù)集的符號(hào)表示:自然數(shù)集;正整數(shù)集、;整數(shù)集;有
理數(shù)集、實(shí)數(shù)集O
(4)集合的表示法:列舉法,描述法,韋恩圖。
注意:區(qū)分集合中元素的形式:如:
A={x\y=x2+2x+l};B={y\y=x2+2x+l};
C={(x,y)ly=/+2x+l};
D={x\x=x2+2x+\];E={(x,y)\y=x2+2x+l,xeZ,yGZ];
F~{(x,y')|y=x2+2x+1};G-{z\y-x2+2x+l,z=—}
x
(5)空集是指不含任何元素的集合。({0}、。和{(/)]的區(qū)別;0與三者間的關(guān)系)
空集是任何集合的子集,是任何非空集合的真子集。
注童陋生3,在討論的時(shí)候丕要遺忘了A=。的情況。
如:A={x\axl-2x-\=Q},如果Af]R+=。,求。的取值。
二、集合間的關(guān)系及其運(yùn)算
(1)符號(hào)論,任"是表示元素與集合之間關(guān)系的,立體幾何中的體現(xiàn)點(diǎn)與直線(面)的關(guān)
系_;
符號(hào)"u,Z"是表示集合與集合之間關(guān)系的立體幾何中的體現(xiàn)面與直線(面)的關(guān)系。
(2)AAB={};AUB={};
孰A={}
(3)對(duì)于任意集合A,B,則:
①AUB—BUA;AHB_BAA;ADB_AUB;
②AD8=A<=>;AU8=Ao;
C"U5=U=;CuAC\B=</>^;
③;"(AflB);
(4)①若〃為偶數(shù),貝U"=;若"為奇數(shù),貝!=;
②若〃被3除余0,則〃=;若〃被3除余1,則
n=;若〃被3除余2,貝!|〃=;
三、集合中元素的個(gè)數(shù)的計(jì)算:
(1)若集合A中有n個(gè)元素,則集合A的所有不同的子集個(gè)數(shù)為所有真子集的
個(gè)數(shù)是__________所有非空真子集的個(gè)數(shù)是.
(2)AUB中元素的個(gè)數(shù)的計(jì)算公式為:CW(AUB)=;
(3)韋恩圖的運(yùn)用:
四、4={刈k滿足條件〃},8={回了滿足條件4},
若;則p是q的充分非必要條件=AB;
若;則p是q的必要非充分條件=AB;
若;貝!Ip是"的充要條件。AB;
若;貝!Ip是q的既非充分又非必要條件o;
五、原命題與逆否命題,否命題與逆命題具有相同的;
注意:“若/nf,則pnq”在解題中的運(yùn)用,
如:"sin。。sin夕"是"cH夕"的條件。
六、反證法:當(dāng)證明”若p,則"感到困難時(shí),改證它的等價(jià)命題“若—?jiǎng)t成立,
步驟:1、假設(shè)結(jié)論反面成立;2、從這個(gè)假設(shè)出發(fā),推理論證,得出矛盾;3、由矛盾
判斷假設(shè)不成立,從而肯定結(jié)論正確。
矛盾的來(lái)源:1、與原命題的條件矛盾;2、導(dǎo)出與假設(shè)相矛盾的命題;3、導(dǎo)出一個(gè)恒
假命題。
適用與待證命題的結(jié)論涉及"不可能"、"不是"、"至少"、"至多"、"唯一"等字眼時(shí)。
正面詞語(yǔ)等于大于小于是都是至多有一個(gè)
否定
正面詞語(yǔ)至少有一個(gè)任意的所有的至多有n個(gè)任意兩個(gè)
否定
二、函數(shù)
定義圖象性質(zhì)方程
型如:型如:
ak
y—c-i---------y-x+—(k>0)
x-bx
對(duì)應(yīng)方程
不等式
反函數(shù)
函數(shù)的三要素圖象
定
解
解
單
奇
定
周
對(duì)圖象變換
圖值值
義
析
析
調(diào)
偶
義
稱
期
且
域
式
性
性
域
式
性
性
伸
平
象域域翻
縮
移
轉(zhuǎn)
變
變
變
換
換
換
一、映射與函數(shù):
(1)映射的概念:AB是兩個(gè)集合,如果按照某種對(duì)應(yīng)法則了,對(duì)于集合A中的-
個(gè)元素,在集合B中都有的元素與它對(duì)應(yīng);記作:;
(2)一一映射:A,B是兩個(gè)集合,/:AfB是集合A到集合B的映射,如果在這個(gè)映
射下,對(duì)于集合A中的;在集合B中有;而且B
中;
(3涵數(shù)的概念:如果A,B都是,那么A到B的映射f:A,B就叫做A到B
的函數(shù),記作;
如:若4={1,2,3,4},B={a,b,c};問(wèn):A到8的映射有個(gè),8到A的映射有
個(gè);A到3的函數(shù)有個(gè),若A={1,2,3},則A到B的一一映射有
個(gè)。
函數(shù)y=<p(x)的圖象與直線x=a交點(diǎn)的個(gè)數(shù)為個(gè)。
二、函數(shù)的三要素:,,?
相同國(guó)教的判斷方造:①;②(兩點(diǎn)必須同時(shí)具備)
(1)函數(shù)解析式的求法:
①定義法(拼湊):如:已知/(^+工人/+乙,求:f(x);
XX
②換元法:如:已知/'(3x+l)=4x+3,求/(x);
③待定系數(shù)法:如:已知/""(x)]}=l+2x,求一次函數(shù)/(x);
④賦值法:如:已知2f(x)-/(-)=x+l(xH0),求/(x);
X
(2)函數(shù)定義域的求法:
①y=,則________________;②y=GN*)則____________;
g(x)
③y="(x)]°,貝!I;④如:y=iog/wg(x),
則;⑤含參問(wèn)題的定義域要分類討論;
如:已知函數(shù)),=/(幻的定義域是[0』,求玄幻=/(》+。)+/。一〃)的定義
域。
⑥對(duì)于實(shí)際問(wèn)題,在求出函數(shù)解析式后;必須求出其定義域,此時(shí)的定義域要根
據(jù)實(shí)際意義來(lái)確定。如:已知扇形的周長(zhǎng)為20,半徑為r,扇形面積為S,則
S=/(r)=;定義域?yàn)閛
(3)國(guó)數(shù)值域的求法:
③配方法:轉(zhuǎn)化為二次函數(shù),利用二次函數(shù)的特征來(lái)求值;常轉(zhuǎn)化為型如:
/(x)=ax1++c,x£Qn,ri)的形式;
②逆螂<反求法):通過(guò)反解,用y來(lái)表示x,再由x的取值范圍,通過(guò)解不等式,
得出y的取值范圍;常用來(lái)解,型如:y=;
③判別式法:轉(zhuǎn)化一個(gè)關(guān)于X的一元二次方程(其中>'為參數(shù)),利用存在X使得方程
成立,找方程有解的充要條件運(yùn)用題型:y="X:+/2Y+C3找不全為0);
dx2+ex+f
有兩種情況:(1)X無(wú)具體范圍:直接套用△NO;(2)X有具體范圍:要
用實(shí)根分布來(lái)其有根的充要條件;
注意:(1)若得到的一F次方程,二欠顆數(shù)是含有y的多項(xiàng)式,此時(shí)要分類討
論。
(2)若一義域中有不連續(xù)的點(diǎn),要驗(yàn)詆,方法為:令x取丕連續(xù)點(diǎn)的值,求
支y,再由這個(gè)y求出與它對(duì)應(yīng)的了,如果還有定義域內(nèi)有定義的由與
它對(duì)應(yīng),Wby為值域中的一個(gè)值,否則,此y不在值域中.
④換元法:通過(guò)變量代換轉(zhuǎn)化為能求值域的函數(shù),化歸思想;適用題型
y=ax+y/bx+c;
窖魚(yú)有[界法:轉(zhuǎn)化為只含正弦、余弦的函數(shù),運(yùn)用三角函數(shù)有界性來(lái)求值域;
k
⑥基本不等式法:轉(zhuǎn)化成型如:y=x+—(A>0),利用平均值不等式公式來(lái)求值域;
x
⑦單眼性法:函數(shù)為單調(diào)函數(shù),可根據(jù)函數(shù)的單調(diào)性求值域。
⑧數(shù)形結(jié)合:根據(jù)函數(shù)的幾何圖形,利用數(shù)型結(jié)合的方法來(lái)求值域。
求下列函數(shù)的值域:①y=>0,b>0,a>b,x^[-1,1])(2種方法);
a-bx
*2—v-I-3丫2—x+3
②'十二xw(—8,0)(2種方法);③y;十二十£(一8,0)(2種方法);
xx-\
_—x+3/八、_-x+3/、
④y=-----(-00,0);⑤y=---------w——,x£(-00,0)(2種方法);
X+X+1JC
⑥y=-lx+3,4-x;⑦y=-2x+374—x2;⑧y=---------;
x
三、函數(shù)的性質(zhì):
(1)函數(shù)的單調(diào)性:對(duì)于給定區(qū)間上的函數(shù)/(X),如果對(duì)于定義域內(nèi)任意的;
者_(dá)_____,翅____________,則稱/(X)為增函數(shù);都有,
則稱/*)為減函數(shù);
注意:(1)函數(shù)單調(diào)性的定義是證明函數(shù)單調(diào)性的基本方法。若函數(shù)是一個(gè)關(guān)于X的
多項(xiàng)式,還可以通過(guò)求導(dǎo)證明:當(dāng)時(shí)為增函數(shù),當(dāng)時(shí)為減函
數(shù)。
(2)單調(diào)性一般用區(qū)間表示,不能用集合表示。
(2)圖數(shù)的奇偶掛:對(duì)于函數(shù)/(幻,如果定義域內(nèi)任意的再,,則
稱/(幻為奇函數(shù);JPW,則稱/(X)為偶函數(shù);
奇函數(shù)的圖象關(guān)于,偶函數(shù)的圖象關(guān)于;
注意:(1)研究國(guó)數(shù)的奇偶性,苴先要研究直數(shù)的定義域_____________;
(2)若函數(shù)y=/(x),xe。是奇函數(shù),且OeO,則;
如:判斷y=(尤+1)的奇偶性。
V1+x
關(guān)于函數(shù)的單調(diào)性和硼性的的結(jié)論:
1、若奇函數(shù)/(X)在區(qū)間[a,b]上單調(diào)遞增(減),則/(%)在區(qū)間[-b-a]上是單
調(diào)遞;
2、若偶函數(shù)/(%)在區(qū)間口,切上單調(diào)遞增(減),則/(%)在區(qū)間[-b,-a]上是單
調(diào)遞;
3、既是奇函數(shù)又是偶函數(shù)的函數(shù)的解析式為;這樣的函數(shù)有
個(gè)。
4、任意定義在R上的函數(shù)/(x)都可唯一地表示成一個(gè)奇函數(shù)與一個(gè)偶函數(shù)的和:
/(X)=g(x)+〃(幻;其中g(shù)(x)=是偶函數(shù),〃(幻=是奇函
數(shù);
(3)函數(shù)對(duì)稱性的結(jié)論二
1、設(shè)函數(shù)y=/(x)的定義域?yàn)镽,且滿足條件:f(a+x)=f(b-x),則函數(shù)
y=/(%)的圖象關(guān)于直線對(duì)稱;
如:由/(I-X)=/(I+X)成立,則/(X)關(guān)于對(duì)稱;
注意:y=/(a+X)與y=f{b-x)關(guān)于對(duì)稱;
2、定義在R上的函數(shù)y=/(x)對(duì)定義域內(nèi)任意x滿足條件/(x)=2匕—/(2a—x),
則y=/(x)關(guān)于點(diǎn)(a,。)成中心對(duì)稱,
如:/(%)=-/(-%)=>/(%)=2X0-/(2X0-X),則/(X)關(guān)于原點(diǎn)對(duì)稱;
(4)函數(shù)的周期性:對(duì)于函數(shù)/*),如果存在不為零的常數(shù)T,對(duì)于定義域內(nèi)的每一個(gè)值,
都有則函數(shù)y=/(處為周期函數(shù),叫周期;
關(guān)于鼠數(shù)周期噂的績(jī)論:
①定義在R上的函數(shù)丁=/(%)對(duì)定義域內(nèi)任意x,都滿足條件
/(x)=f(x+a)=/(X-。)成立,則y=/(x)是以T=為周期的周期函
數(shù);
②若函數(shù)v=/(%)既關(guān)于直線x=。對(duì)稱,又關(guān)于x=。/對(duì)稱,則y=/(x)-
定是周期函數(shù),且T=是它的一個(gè)周期;
③若y=/(%)既關(guān)于直線X=a成軸對(duì)稱,又關(guān)于點(diǎn)("c)成中心對(duì)稱,則.v=/(幻
一定是周期函數(shù),且7=是它的一個(gè)周期。
四、圖形變換:
(1)平移變換:
①形如:y=f(x+a):把函數(shù)y=/(x)的圖象沿方向向或平移
個(gè)單位,就得到y(tǒng)=f(x+a)的圖象。
②形如:y=f(x)+a:把函數(shù)y=/(x)的圖象沿方向向或平移
個(gè)單位,就得到y(tǒng)=/(%)+a的圖象。
(2)對(duì)稱翻轉(zhuǎn)變換:
①形如:y=/(-%):其函數(shù)圖象與函數(shù)y=/(幻的圖象關(guān)于對(duì)稱。
②形如:y=-/(%):其函數(shù)圖象與函數(shù)y=/(x)的圖象關(guān)于對(duì)稱。
③形如:y=r\x):其函數(shù)圖象與函數(shù)y=/(x)的圖象關(guān)于對(duì)稱。
④形如:y=-/(-%):其函數(shù)圖象與函數(shù)v=/(幻的圖象關(guān)于對(duì)稱。
⑤形如y=f(.\x\):這是偶函數(shù)。其圖象是關(guān)于),軸對(duì)稱的,所以只要
先________________逋_____________;就得到
了y=/(|x|)的圖象。
⑥形如:y=\f(x)\:將函數(shù)y=/(x)的圖
象;就得到函數(shù)
y=|/(x)l的圖象。
(3)伸縮變換:
①形如:y=f(axc)((o>0):將函數(shù)y=/(x)的圖象橫坐標(biāo)(縱坐標(biāo)不變)縮小(?>1)
或伸長(zhǎng)(0<。<1)到原來(lái)的-倍得到。
(O
②形如:y=Af(x)(A>0):將函數(shù)y=f(x)的圖象縱坐標(biāo)(橫坐標(biāo)不變)伸長(zhǎng)(A>1)
或壓縮(0<A<1)到原來(lái)的A倍得到。
如:y=f(x)的圖象如圖,作出下列函數(shù)圖象:
(1)y=/(-x);(2)y=-/(x);
(3)y=/(|x|);(4)y="(x)|;
(5)y=f(2x);(6)y=((x+l);
(7)y=/(x)+l;(8)y=-/(-%);
(9)y=/-'(%).
五、反函數(shù):
(1)定義:設(shè)y=/(x)表示y是自變量x的函數(shù),它的定義域?yàn)锳,值域?yàn)镃,由式子
y=/(x)解出x,得到式子x=奴y),如果對(duì)于y£C中的任何一個(gè)值,通
過(guò)式子x=e(y),.在4中都有唯一確定的值和它對(duì)應(yīng),那么式子》=0(y)
就表示X是自變量y的函數(shù),這樣的函數(shù)X=e(y),叫做y=/(x)的反函數(shù),
記為x=f-'(y),即x=<p(y)=P'(>),習(xí)慣上仍用x表示自變量,y表示
函數(shù),把它改寫(xiě)成y=/T(x)。
(2)函數(shù)存在反函數(shù)的條件:;
(3)互為反函數(shù)的定義域與值域的關(guān)系:;
(4)求反國(guó)數(shù)的步驟:①將y=/(X)看成關(guān)于X的方程,解出X=廣,(y),若有兩解,
要注意解的選擇;②將x,),互換,得y=尸⑴;③寫(xiě)出反函數(shù)的
定義域(即y=/(x)的值域工
(5)互為反函數(shù)的圖象間的關(guān)系:;
(6)原函數(shù)與反函數(shù)具有相同的單調(diào)性;
(7)原函數(shù)為奇函數(shù),則其反函數(shù)仍為奇函數(shù);原函數(shù)為偶函數(shù),它一定不存在反函數(shù)。
如:求下列函數(shù)的反函數(shù):f(x)=x2-2x+3(x<0);=;
2—1
x
/U)=log---2(x>0)
2x+1
六、復(fù)合函數(shù):
(1)定義:如果),是〃的函數(shù),記為y=/(“),u又是x的函數(shù),記為“=g(x),且g(x)
的值域與/(〃)的定義域的交集不空,則確定了一個(gè)),關(guān)于x的函數(shù)
y=/[?(%)],這時(shí)y做x的復(fù)合函數(shù),其中u叫做中間變量,y=/(“)叫做
外層函數(shù),U=g(x)叫做內(nèi)層函數(shù)。
(2)復(fù)合函數(shù)單調(diào)性:;
七、常用的初等函數(shù):
(1)一元一次函數(shù):y-ax+b(a工0)
當(dāng)?!?時(shí),是增函數(shù);當(dāng)。<0時(shí),是減函數(shù);
(2)一元二次函數(shù):
一般式:y=ax2+hx+c(a^0);對(duì)稱軸方程是;頂點(diǎn)
為;
兩點(diǎn)式:y=a(x-x,)(x-x2);對(duì)稱軸方程是;與x軸的交點(diǎn)
為;
頂點(diǎn)式:y=a(x-幻2+〃;對(duì)稱軸方程是;頂點(diǎn)為;
①一元二次函數(shù)的單調(diào)性:
當(dāng)a〉0時(shí):為增函數(shù);為減函數(shù);
當(dāng)。<0時(shí):為增函數(shù);為減函數(shù);
②二次函數(shù)求最值問(wèn)題:首先要采用配方法,化為V=。甕-⑥2+4的形式,
I、若頂點(diǎn)的橫坐標(biāo)在給定的區(qū)間上,則
”>0時(shí):在頂點(diǎn)處取得最小值,最大值在距離對(duì)稱軸較遠(yuǎn)的端點(diǎn)處取得;
a<0時(shí):在頂點(diǎn)處取得最大值,最小值在距離對(duì)稱軸較遠(yuǎn)的端點(diǎn)處取得;
n、若頂點(diǎn)的橫坐標(biāo)不在給定的區(qū)間上,則
。>0時(shí):最小值在距離對(duì)稱軸較近的端點(diǎn)處取得,最大值在距離對(duì)稱軸較遠(yuǎn)的
端點(diǎn)處取得;
a<0時(shí):最大值在距離對(duì)稱軸較近的端點(diǎn)處取得,最小值在距離對(duì)稱軸較遠(yuǎn)的
端點(diǎn)處取得;
有三個(gè)類型題型:
Q)頂點(diǎn)固定,區(qū)間也固定。如:y=x2+x+l,xef-l,ll
(2)頂點(diǎn)含參數(shù)(即頂點(diǎn)變動(dòng)),區(qū)間固定,這時(shí)要討論頂點(diǎn)橫坐標(biāo)何時(shí)在區(qū)間之內(nèi),何
時(shí)在區(qū)間之外。如:y=x2+ax+l,xe[-l,l]
(3)頂點(diǎn)固定,區(qū)間變動(dòng),這時(shí)要討論區(qū)間中的參數(shù).y=/+%+1,%e團(tuán),a+1]
③二次方程實(shí)數(shù)根的分布問(wèn)題:設(shè)實(shí)系數(shù)一元二次方程f(x)=ax2+bx+c=0的兩
根為;則:
根的情況x{>x2>kx[<x2<kXj<k<x2
在區(qū)間(左,+8)上有在區(qū)間(-8次)上有在區(qū)間(左,+8)或
等價(jià)命題
兩根兩根(-8,%)上有一根
充要條件
根的情況m<x]<x2<n%,<m<n<x2XjG(m,〃),x20(m,n)
在區(qū)間(m,n)上有在區(qū)間(加,〃)上無(wú)
等價(jià)命題在區(qū)間(m,n)上有一根
兩根根
充要條件
注意:若在閉區(qū)間[加,n]討論方程/(幻=。有實(shí)數(shù)解的情況,可先利用在開(kāi)區(qū)間(m,n)
上實(shí)根分布的情況,得出結(jié)果,在令x=〃和A-=,〃檢直端點(diǎn)的情況。
cic
(3)反比例函數(shù):y^-(x^Q)=>y^a+-^—
xx-b
a,、
y=—(x0)y=c+------(zxwb)
Xx-b
圖形
定義域
值域
4>0
單調(diào)性
a<0
對(duì)稱中心
漸近線
(4)指數(shù)函數(shù):y=ax(a>O,a^l)
指數(shù)運(yùn)算法則:___________________
0<6Z<1a>1
圖象
定義域
值域
龍>0
函數(shù)值
x<0
單調(diào)性
(5)對(duì)數(shù)函數(shù):y=log,,x(a>0,。手1)
指數(shù)運(yùn)算法則:___________________
(1)bg““bn>=;
(2)換底公式:____________________________
(3)對(duì)數(shù)恒等式:__________________________
0<。v1a>1
圖象
0<a<1a>\
定義域
值域
x>0
函數(shù)值
x<0
單調(diào)性
注意:(1)y=優(yōu)與y=log〃x的圖象關(guān)系是;
(2)比較兩個(gè)指數(shù)或?qū)?shù)的大小的基本方法是構(gòu)造相應(yīng)的指數(shù)或?qū)?shù)函數(shù),若
底數(shù)不相同時(shí)轉(zhuǎn)化為同底數(shù)的指數(shù)或?qū)?shù),還要注意與1比較或與0比較。
(3)已知函數(shù)/(x)=log,(x2+kx+2)的定義域?yàn)镽,求k的取值范圍。
2
已知函數(shù)/(x)=log,(x2+kx+2)的值域?yàn)镽,求k的取值范圍。
2
(4)下圖中,與々力213,仇間的關(guān)系是:
k
六、y=x+—(Z>0)圖象:
X
定義域:;
值域:;
奇偶性:;
單調(diào)性:是增函數(shù);是減函數(shù)。
七、補(bǔ)充內(nèi)容:
(1)抽象函數(shù)的性質(zhì)所對(duì)應(yīng)的一些具體特殊函數(shù)模型:
①/區(qū)+/)=/(XJ+f(x2)n正比例函數(shù)/(x)=k&k,0)
②/(%)+x2)=/(X,)-f(x2);/(%1-x2)=/(X|)+f(x2)=>;
x
③/a?%)=/&)+/(%);/(,)=/(-)-/(£)=>;
X2
@/(x,)+/(x2)=2/(^1).n;
(2)不等式恒成立的條件:
(1)已知/(x)=ax+b,a,beR,B.a豐0,〃?],m2GR;則
(a)/(x)>0在xeO],m2)時(shí)恒成立n;
(b)f(x)<0在xw(犯,加2)時(shí)恒成立=;可借助一次函數(shù)得
到。
(2)已知f(x)=ax2+bx+c,a,h,ceR
(a)f(x)〉0在xeR時(shí)恒成立n或;
(b)f(x)20在xeR時(shí)恒成立n或;(可借助一次函
數(shù)
(c)/(尤)<0在xeR時(shí)恒成立n或;或二次函數(shù)得
到入
(3)/。)>0恒成立0"(切"皿>。;/(x)<a恒成立="(X)]max<。
三、不等式
注意:特值法是判斷不等式命題是否成立的一種方法,此法尤其適用于不成立的命題。
二、均值丕等式:兩個(gè)數(shù)的算術(shù)平均數(shù)不小于它們的幾何平均數(shù)。
若凡人>0,則”(當(dāng)且僅當(dāng)。=。時(shí)取等號(hào))
2
④<(^)2<
基本應(yīng)用:①放綢,娜;
②求函數(shù)最值:注意:①一正二定三取等;②積定和小,和定積大。
當(dāng)M=〃(常數(shù)),當(dāng)且僅當(dāng)時(shí),;
當(dāng)a+h=S(常數(shù)),當(dāng)且僅當(dāng)時(shí),
常用的方法為:拆.湊、平方;
91
如:①函數(shù))=4x-24尤(X>])的最小值o
_1,
②已知0cx<g,則y=r(1一5x)的最大值。
③y=sinxcos?"x,尤e(0,,)的最大值。
④若正數(shù)x,y滿足x+2y=1,貝!]!+工的最小
%y
值
推廣:①若,則”;十£?疚(當(dāng)且僅當(dāng)a=o=c時(shí)取等號(hào))
基本變形:a+b+c>;(";+與>;
②若a,a^,---,a>0,貝!]—-------------->…%(當(dāng)且僅當(dāng)
}nn'
q=%=…=。”時(shí)取等號(hào))
三.絕對(duì)值不等式:<<<
法…意…:IQ+b|<|QI+|切0;
|Q+8|=|Q|+|8|<=>;
\a-b\<\a\-v\b\^>;
|Q-b|=|Q|+1b\<=>;
\a\-\b\<\a+b;
\a\—\b\=\a+b|o;
\a\-\h\<\a-b;
|a|-1力|二|a-b\<^>;
四院常用的基本丕等式:
(1)設(shè)a/£R,則。220,(。—力220(當(dāng)且僅當(dāng)時(shí)取等號(hào))
(2)|a|之a(chǎn)(當(dāng)且僅當(dāng)時(shí)取等號(hào));|。|之-。(當(dāng)且僅當(dāng)時(shí)取等號(hào))
(3)若a>0力>0,則2a2b+ah2
(4)若a,/?,c£R,貝!JcJ+Z?2+/2ab+he+ca
(5)若a,b,ceR,則3(aZ?+Ac+eq)<(?+/?+c)2<3(a2+/?2+c2)
2222
(6)柯西不等式:設(shè)%,%也也eR,貝!J(a向+a2h2)<+a2)(b1+Z?2)
—?—?-*—*._*2_*2
注意:可從向量的角度理解:設(shè)。=(4,。2),〃=(4,〃2),貝IK。))b
(7)a>b,cib>0一<一;一<一;
abab
,c、,八c+—b,bb+m-b,hb+m
(8)a,b>0,mER,右一<1,則一<-----;右一>1,則一>------;
aaa+maaa+m
五、證明不等式常用方法:
(1)比較法:①作差比較:A-B<0<=>A<B
A
②作商比較:一21(8〉0)oAN6
B
作差比較的步累:
(1)作差:對(duì)要比較大小的兩個(gè)數(shù)(或式)作差。
⑵變形:對(duì)差進(jìn)行因式分解或配方成幾個(gè)數(shù)(或式)的完全平方和。
⑶判斷差的符號(hào):結(jié)合變形的結(jié)果及題設(shè)條件判斷差的符號(hào)。
注意:若兩個(gè)正數(shù)作差比較有困難,可以通過(guò)它們的平方差來(lái)比較大小。
(2)綜合法:由因?qū)Ч?/p>
(3)分析法:執(zhí)果索因。基本步驟:要證……只需證……,只需證……
(4)反證法:正難則反。
(5)放縮法:將不等式一側(cè)適當(dāng)?shù)姆糯蠡蚩s小以達(dá)證題目的。
放縮法的方法有:
(1)添加亙媾去一型項(xiàng),如:yja2+1>同;+>n
⑵將分子或分母放大(或縮小)
(3)利用基圭不矍式,如:log3?1g5<(他3;尼5)2=lgV15<lgV16=lg4;
/,,八〃+5+1)
傘(〃+1)<--------
(4)利用常用結(jié)論:
,,八?/7b+m
I、a>b>0,meR+,—<-----
aa+m
、〃+l-4k=,---——產(chǎn)<―7=;
ny[k+l+4k14k
11111111,工―、
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 無(wú)窮大系統(tǒng)課程設(shè)計(jì)
- 形體與體能課程設(shè)計(jì)
- 意大利必修課程設(shè)計(jì)
- 校園安防保安培訓(xùn)
- 智能家居app課程設(shè)計(jì)
- 易經(jīng)決策課程設(shè)計(jì)教案
- 幼兒園切菜課程設(shè)計(jì)
- 四大名著之水滸傳武松打虎二2
- 德育培訓(xùn)課程設(shè)計(jì)
- 電動(dòng)自行車換新策略與實(shí)施路徑分析
- 河北省滄州市2022-2023學(xué)年高一年級(jí)上冊(cè)期末考試英語(yǔ)試題(解析版)
- 太常引建康中秋夜為呂叔潛賦課件
- 韓國(guó)豪華游輪7日游課件
- 高中數(shù)學(xué)成績(jī)分析報(bào)告
- 自來(lái)水廠安全教育課件
- 關(guān)愛(ài)自己從心開(kāi)始課件
- 智慧航天物聯(lián)網(wǎng)
- RM60實(shí)用操作課件
- 2024歷史建筑測(cè)繪建檔規(guī)程
- 工地水電倉(cāng)庫(kù)管理制度
- 2024上海高校大學(xué)《輔導(dǎo)員》招聘考試題庫(kù)及答案
評(píng)論
0/150
提交評(píng)論