2024屆廣西貴港市桂平市中考數(shù)學模擬預測題含解析_第1頁
2024屆廣西貴港市桂平市中考數(shù)學模擬預測題含解析_第2頁
2024屆廣西貴港市桂平市中考數(shù)學模擬預測題含解析_第3頁
2024屆廣西貴港市桂平市中考數(shù)學模擬預測題含解析_第4頁
2024屆廣西貴港市桂平市中考數(shù)學模擬預測題含解析_第5頁
已閱讀5頁,還剩20頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2024屆廣西貴港市桂平市中考數(shù)學模擬預測題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.如圖,四邊形ABCD內(nèi)接于⊙O,F(xiàn)是上一點,且,連接CF并延長交AD的延長線于點E,連接AC.若∠ABC=105°,∠BAC=25°,則∠E的度數(shù)為()A.45° B.50° C.55° D.60°2.如圖,正方形ABCD的邊長為3cm,動點P從B點出發(fā)以3cm/s的速度沿著邊BC﹣CD﹣DA運動,到達A點停止運動;另一動點Q同時從B點出發(fā),以1cm/s的速度沿著邊BA向A點運動,到達A點停止運動.設(shè)P點運動時間為x(s),△BPQ的面積為y(cm2),則y關(guān)于x的函數(shù)圖象是()A. B. C. D.3.下列判斷錯誤的是()A.對角線相等的四邊形是矩形B.對角線相互垂直平分的四邊形是菱形C.對角線相互垂直且相等的平行四邊形是正方形D.對角線相互平分的四邊形是平行四邊形4.某市6月份日平均氣溫統(tǒng)計如圖所示,那么在日平均氣溫這組數(shù)據(jù)中,中位數(shù)是()A.8 B.10 C.21 D.225.下列命題中,錯誤的是()A.三角形的兩邊之和大于第三邊B.三角形的外角和等于360°C.等邊三角形既是軸對稱圖形,又是中心對稱圖形D.三角形的一條中線能將三角形分成面積相等的兩部分6.某藥品經(jīng)過兩次降價,每瓶零售價由168元降為108元,已知兩次降價的百分率相同,設(shè)每次降價的百分率為x,根據(jù)題意列方程得()A.168(1﹣x)2=108 B.168(1﹣x2)=108C.168(1﹣2x)=108 D.168(1+x)2=1087.如圖,若a∥b,∠1=60°,則∠2的度數(shù)為()A.40° B.60° C.120° D.150°8.如圖,等腰直角三角形位于第一象限,,直角頂點在直線上,其中點的橫坐標為,且兩條直角邊,分別平行于軸、軸,若反比例函數(shù)的圖象與有交點,則的取值范圍是().A. B. C. D.9.如圖,若銳角△ABC內(nèi)接于⊙O,點D在⊙O外(與點C在AB同側(cè)),則∠C與∠D的大小關(guān)系為()A.∠C>∠D B.∠C<∠D C.∠C=∠D D.無法確定10.下列運算正確的是()A.a(chǎn)2+a3=a5 B.(a3)2÷a6=1 C.a(chǎn)2?a3=a6 D.(2+3)2=5二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,在平面直角坐標系中,點P(﹣1,a)在直線y=2x+2與直線y=2x+4之間,則a的取值范圍是_____.12.如圖,AB是半徑為2的⊙O的弦,將沿著弦AB折疊,正好經(jīng)過圓心O,點C是折疊后的上一動點,連接并延長BC交⊙O于點D,點E是CD的中點,連接AC,AD,EO.則下列結(jié)論:①∠ACB=120°,②△ACD是等邊三角形,③EO的最小值為1,其中正確的是_____.(請將正確答案的序號填在橫線上)13.我國自主研發(fā)的某型號手機處理器采用10nm工藝,已知1nm=0.000000001m,則10nm用科學記數(shù)法可表示為_____m.14.如圖,在正方形ABCD中,AD=5,點E,F(xiàn)是正方形ABCD內(nèi)的兩點,且AE=FC=3,BE=DF=4,則EF的長為__________.15.計算:(+)=_____.16.Rt△ABC的邊AB=5,AC=4,BC=3,矩形DEFG的四個頂點都在Rt△ABC的邊上,當矩形DEFG的面積最大時,其對角線的長為_______.三、解答題(共8題,共72分)17.(8分)在Rt△ABC中,∠BAC=,D是BC的中點,E是AD的中點.過點A作AF∥BC交BE的延長線于點F.(1)求證:△AEF≌△DEB;(2)證明四邊形ADCF是菱形;(3)若AC=4,AB=5,求菱形ADCFD的面積.18.(8分)小敏參加答題游戲,答對最后兩道單選題就順利通關(guān).第一道單選題有3個選項,,,第二道單選題有4個選項,,,,這兩道題小敏都不會,不過小敏還有一個“求助”機會,使用“求助”可以去掉其中一道題的一個錯誤選項.假設(shè)第一道題的正確選項是,第二道題的正確選項是,解答下列問題:(1)如果小敏第一道題不使用“求助”,那么她答對第一道題的概率是________;(2)如果小敏將“求助”留在第二道題使用,用畫樹狀圖或列表的方法,求小敏順利通關(guān)的概率;(3)小敏選第________道題(選“一”或“二”)使用“求助”,順利通關(guān)的可能性更大.19.(8分)如圖,已知二次函數(shù)的圖象與x軸交于A,B兩點,與y軸交于點C,的半徑為,P為上一動點.點B,C的坐標分別為______,______;是否存在點P,使得為直角三角形?若存在,求出點P的坐標;若不存在,請說明理由;連接PB,若E為PB的中點,連接OE,則OE的最大值______.20.(8分)已知邊長為2a的正方形ABCD,對角線AC、BD交于點Q,對于平面內(nèi)的點P與正方形ABCD,給出如下定義:如果,則稱點P為正方形ABCD的“關(guān)聯(lián)點”.在平面直角坐標系xOy中,若A(﹣1,1),B(﹣1,﹣1),C(1,﹣1),D(1,1).(1)在,,中,正方形ABCD的“關(guān)聯(lián)點”有_____;(2)已知點E的橫坐標是m,若點E在直線上,并且E是正方形ABCD的“關(guān)聯(lián)點”,求m的取值范圍;(3)若將正方形ABCD沿x軸平移,設(shè)該正方形對角線交點Q的橫坐標是n,直線與x軸、y軸分別相交于M、N兩點.如果線段MN上的每一個點都是正方形ABCD的“關(guān)聯(lián)點”,求n的取值范圍.21.(8分)如圖,已知AB是圓O的直徑,弦CD⊥AB,垂足H在半徑OB上,AH=5,CD=,點E在弧AD上,射線AE與CD的延長線交于點F.(1)求圓O的半徑;(2)如果AE=6,求EF的長.22.(10分)解不等式組,并把解集在數(shù)軸上表示出來.23.(12分)先化簡,再求值:(1﹣)÷,其中a=﹣1.24.在平面直角坐標系xOy中,點C是二次函數(shù)y=mx2+4mx+4m+1的圖象的頂點,一次函數(shù)y=x+4的圖象與x軸、y軸分別交于點A、B.(1)請你求出點A、B、C的坐標;(2)若二次函數(shù)y=mx2+4mx+4m+1與線段AB恰有一個公共點,求m的取值范圍.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、B【解析】

先根據(jù)圓內(nèi)接四邊形的性質(zhì)求出∠ADC的度數(shù),再由圓周角定理得出∠DCE的度數(shù),根據(jù)三角形外角的性質(zhì)即可得出結(jié)論.【詳解】∵四邊形ABCD內(nèi)接于⊙O,∠ABC=105°,∴∠ADC=180°﹣∠ABC=180°﹣105°=75°.∵,∠BAC=25°,∴∠DCE=∠BAC=25°,∴∠E=∠ADC﹣∠DCE=75°﹣25°=50°.【點睛】本題考查圓內(nèi)接四邊形的性質(zhì),圓周角定理.圓內(nèi)接四邊形對角互補.在同圓或等圓中,同弧或等弧所對的圓心角相等,而同弧所對的圓周角等于圓心角的一半,所以在同圓或等圓中,同弧或等弧所對的圓周角相等.2、C【解析】試題分析:由題意可得BQ=x.①0≤x≤1時,P點在BC邊上,BP=3x,則△BPQ的面積=BP?BQ,解y=?3x?x=;故A選項錯誤;②1<x≤2時,P點在CD邊上,則△BPQ的面積=BQ?BC,解y=?x?3=;故B選項錯誤;③2<x≤3時,P點在AD邊上,AP=9﹣3x,則△BPQ的面積=AP?BQ,解y=?(9﹣3x)?x=;故D選項錯誤.故選C.考點:動點問題的函數(shù)圖象.3、A【解析】

利用菱形的判定定理、矩形的判定定理、平行四邊形的判定定理、正方形的判定定理分別對每個選項進行判斷后即可確定正確的選項.【詳解】解:、對角線相等的四邊形是矩形,錯誤;、對角線相互垂直平分的四邊形是菱形,正確;、對角線相互垂直且相等的平行四邊形是正方形,正確;、對角線相互平分的四邊形是平行四邊形,正確;故選:.【點睛】本題考查了命題與定理的知識,解題的關(guān)鍵是能夠了解矩形和菱形的判定定理,難度不大.4、D【解析】分析:根據(jù)條形統(tǒng)計圖得到各數(shù)據(jù)的權(quán),然后根據(jù)中位數(shù)的定義求解.詳解:一共30個數(shù)據(jù),第15個數(shù)和第16個數(shù)都是22,所以中位數(shù)是22.故選D.點睛:考查中位數(shù)的定義,看懂條形統(tǒng)計圖是解題的關(guān)鍵.5、C【解析】

根據(jù)三角形的性質(zhì)即可作出判斷.【詳解】解:A、正確,符合三角形三邊關(guān)系;B、正確;三角形外角和定理;C、錯誤,等邊三角形既是軸對稱圖形,不是中心對稱圖形;D、三角形的一條中線能將三角形分成面積相等的兩部分,正確.故選:C.【點睛】本題考查了命題真假的判斷,屬于基礎(chǔ)題.根據(jù)定義:符合事實真理的判斷是真命題,不符合事實真理的判斷是假命題,不難選出正確項.6、A【解析】

設(shè)每次降價的百分率為x,根據(jù)降價后的價格=降價前的價格(1-降價的百分率),則第一次降價后的價格是168(1-x),第二次后的價格是168(1-x)2,據(jù)此即可列方程求解.【詳解】設(shè)每次降價的百分率為x,根據(jù)題意得:168(1-x)2=1.故選A.【點睛】此題主要考查了一元二次方程的應用,關(guān)鍵是根據(jù)題意找到等式兩邊的平衡條件,這種價格問題主要解決價格變化前后的平衡關(guān)系,列出方程即可.7、C【解析】如圖:∵∠1=60°,∴∠3=∠1=60°,又∵a∥b,∴∠2+∠3=180°,∴∠2=120°,故選C.點睛:本題考查了平行線的性質(zhì),對頂角相等的性質(zhì),熟記性質(zhì)是解題的關(guān)鍵.平行線的性質(zhì)定理:兩直線平行,同位角相等,內(nèi)錯角相等,同旁內(nèi)角互補,兩條平行線之間的距離處處相等.8、D【解析】設(shè)直線y=x與BC交于E點,分別過A、E兩點作x軸的垂線,垂足為D、F,則A(1,1),而AB=AC=2,則B(3,1),△ABC為等腰直角三角形,E為BC的中點,由中點坐標公式求E點坐標,當雙曲線與△ABC有唯一交點時,這個交點分別為A、E,由此可求出k的取值范圍.解:∵,..又∵過點,交于點,∴,∴,∴.故選D.9、A【解析】

直接利用圓周角定理結(jié)合三角形的外角的性質(zhì)即可得.【詳解】連接BE,如圖所示:

∵∠ACB=∠AEB,

∠AEB>∠D,

∴∠C>∠D.

故選:A.【點睛】考查了圓周角定理以及三角形的外角,正確作出輔助線是解題關(guān)鍵.10、B【解析】

利用合并同類項對A進行判斷;根據(jù)冪的乘方和同底數(shù)冪的除法對B進行判斷;根據(jù)同底數(shù)冪的乘法法則對C進行判斷;利用完全平方公式對D進行判斷.【詳解】解:A、a2與a3不能合并,所以A選項錯誤;B、原式=a6÷a6=1,所以A選項正確;C、原式=a5,所以C選項錯誤;D、原式=2+26+3=5+26,所以D選項錯誤.故選:B.【點睛】本題考查同底數(shù)冪的乘除、二次根式的混合運算,:二次根式的混合運算先把二次根式化為最簡二次根式,然后進行二次根式的乘除運算,再合并即可.解題關(guān)鍵是在二次根式的混合運算中,如能結(jié)合題目特點,靈活運用二次根式的性質(zhì),選擇恰當?shù)慕忸}途徑,往往能事半功倍.二、填空題(本大題共6個小題,每小題3分,共18分)11、【解析】

計算出當P在直線上時a的值,再計算出當P在直線上時a的值,即可得答案.【詳解】解:當P在直線上時,,當P在直線上時,,則.故答案為【點睛】此題主要考查了一次函數(shù)與一元一次不等式,關(guān)鍵是掌握函數(shù)圖象經(jīng)過的點,必能使解析式左右相等.12、①②【解析】

根據(jù)折疊的性質(zhì)可知,結(jié)合垂徑定理、三角形的性質(zhì)、同圓或等圓中圓周角與圓心的性質(zhì)等可以判斷①②是否正確,EO的最小值問題是個難點,這是一個動點問題,只要把握住E在什么軌跡上運動,便可解決問題.【詳解】如圖1,連接OA和OB,作OF⊥AB.

由題知:沿著弦AB折疊,正好經(jīng)過圓心O

∴OF=OA=OB

∴∠AOF=∠BOF=60°

∴∠AOB=120°

∴∠ACB=120°(同弧所對圓周角相等)

∠D=∠AOB=60°(同弧所對的圓周角是圓心角的一半)

∴∠ACD=180°-∠ACB=60°

∴△ACD是等邊三角形(有兩個角是60°的三角形是等邊三角形)

故,①②正確

下面研究問題EO的最小值是否是1

如圖2,連接AE和EF

∵△ACD是等邊三角形,E是CD中點

∴AE⊥BD(三線合一)

又∵OF⊥AB

∴F是AB中點

即,EF是△ABE斜邊中線

∴AF=EF=BF

即,E點在以AB為直徑的圓上運動.

所以,如圖3,當E、O、F在同一直線時,OE長度最小

此時,AE=EF,AE⊥EF

∵⊙O的半徑是2,即OA=2,OF=1

∴AF=(勾股定理)

∴OE=EF-OF=AF-OF=-1

所以,③不正確

綜上所述:①②正確,③不正確.

故答案是:①②.【點睛】考查了圓周角定理:在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半.推論:半圓(或直徑)所對的圓周角是直角,90°的圓周角所對的弦是直徑.也考查了垂徑定理.13、1×10﹣1【解析】

絕對值小于1的正數(shù)也可以利用科學記數(shù)法表示,一般形式為a×10-n,與較大數(shù)的科學記數(shù)法不同的是其所使用的是負指數(shù)冪,指數(shù)由原數(shù)左邊起第一個不為零的數(shù)字前面的0的個數(shù)所決定.【詳解】解:10nm用科學記數(shù)法可表示為1×10-1m,

故答案為1×10-1.【點睛】本題考查用科學記數(shù)法表示較小的數(shù),一般形式為a×10-n,其中1≤|a|<10,n為由原數(shù)左邊起第一個不為零的數(shù)字前面的0的個數(shù)所決定.14、【解析】分析:延長AE交DF于G,再根據(jù)全等三角形的判定得出△AGD與△ABE全等,得出AG=BE=4,由AE=3,得出EG=1,同理得出GF=1,再根據(jù)勾股定理得出EF的長.詳解:延長AE交DF于G,如圖,∵AB=5,AE=3,BE=4,∴△ABE是直角三角形,同理可得△DFC是直角三角形,可得△AGD是直角三角形,∴∠ABE+∠BAE=∠DAE+∠BAE,∴∠GAD=∠EBA,同理可得:∠ADG=∠BAE.在△AGD和△BAE中,∵,∴△AGD≌△BAE(ASA),∴AG=BE=4,DG=AE=3,∴EG=4﹣3=1,同理可得:GF=1,∴EF=.故答案為.點睛:本題考查了正方形的性質(zhì),關(guān)鍵是根據(jù)全等三角形的判定和性質(zhì)得出EG=FG=1,再利用勾股定理計算.15、1.【解析】

去括號后得到答案.【詳解】原式=×+×=2+1=1,故答案為1.【點睛】本題主要考查了去括號的概念,解本題的要點在于二次根式的運算.16、或【解析】

分兩種情形畫出圖形分別求解即可解決問題【詳解】情況1:如圖1中,四邊形DEFG是△ABC的內(nèi)接矩形,設(shè)DE=CF=x,則BF=3-x∵EF∥AC,∴=∴=∴EF=(3-x)∴S矩形DEFG=x?(3-x)=﹣(x-)2+3∴x=時,矩形的面積最大,最大值為3,此時對角線=.情況2:如圖2中,四邊形DEFG是△ABC的內(nèi)接矩形,設(shè)DE=GF=x,作CH⊥AB于H,交DG于T.則CH=,CT=﹣x,∵DG∥AB,∴△CDG∽△CAB,∴∴∴DG=5﹣x,∴S矩形DEFG=x(5﹣x)=﹣(x﹣)2+3,∴x=時,矩形的面積最大為3,此時對角線==∴矩形面積的最大值為3,此時對角線的長為或故答案為或【點睛】本題考查相似三角形的應用、矩形的性質(zhì)、二次函數(shù)的最值等知識,解題的關(guān)鍵是學會用分類討論的思想思考問題三、解答題(共8題,共72分)17、(1)證明詳見解析;(2)證明詳見解析;(3)1.【解析】

(1)利用平行線的性質(zhì)及中點的定義,可利用AAS證得結(jié)論;

(2)由(1)可得AF=BD,結(jié)合條件可求得AF=DC,則可證明四邊形ADCF為平行四邊形,再利用直角三角形的性質(zhì)可證得AD=CD,可證得四邊形ADCF為菱形;

(3)連接DF,可證得四邊形ABDF為平行四邊形,則可求得DF的長,利用菱形的面積公式可求得答案.【詳解】(1)證明:∵AF∥BC,

∴∠AFE=∠DBE,

∵E是AD的中點,

∴AE=DE,

在△AFE和△DBE中,

∴△AFE≌△DBE(AAS);

(2)證明:由(1)知,△AFE≌△DBE,則AF=DB.

∵AD為BC邊上的中線

∴DB=DC,

∴AF=CD.

∵AF∥BC,

∴四邊形ADCF是平行四邊形,

∵∠BAC=90°,D是BC的中點,E是AD的中點,

∴AD=DC=BC,

∴四邊形ADCF是菱形;

(3)連接DF,

∵AF∥BD,AF=BD,

∴四邊形ABDF是平行四邊形,

∴DF=AB=5,

∵四邊形ADCF是菱形,

∴S菱形ADCF=AC?DF=×4×5=1.【點睛】本題主要考查菱形的性質(zhì)及判定,利用全等三角形的性質(zhì)證得AF=CD是解題的關(guān)鍵,注意菱形面積公式的應用.18、(1);(2);(3)一.【解析】

(1)直接利用概率公式求解;

(2)畫樹狀圖(用Z表示正確選項,C表示錯誤選項)展示所有9種等可能的結(jié)果數(shù),找出小敏順利通關(guān)的結(jié)果數(shù),然后根據(jù)概率公式計算出小敏順利通關(guān)的概率;

(3)與(2)方法一樣求出小穎將“求助”留在第一道題使用,小敏順利通關(guān)的概率,然后比較兩個概率的大小可判斷小敏在答第幾道題時使用“求助”.【詳解】解:(1)若小敏第一道題不使用“求助”,那么小敏答對第一道題的概率=;

故答案為;

(2)若小敏將“求助”留在第二道題使用,那么小敏順利通關(guān)的概率是.理由如下:

畫樹狀圖為:(用Z表示正確選項,C表示錯誤選項)

共有9種等可能的結(jié)果數(shù),其中小穎順利通關(guān)的結(jié)果數(shù)為1,

所以小敏順利通關(guān)的概率=;

(3)若小敏將“求助”留在第一道題使用,畫樹狀圖為:(用Z表示正確選項,C表示錯誤選項)

共有8種等可能的結(jié)果數(shù),其中小敏順利通關(guān)的結(jié)果數(shù)為1,所以小敏將“求助”留在第一道題使用,小敏順利通關(guān)的概率=,

由于>,

所以建議小敏在答第一道題時使用“求助”.【點睛】本題考查了用畫樹狀圖的方法求概率,掌握其畫法是解題的關(guān)鍵.19、(1)B(1,0),C(0,﹣4);(2)點P的坐標為:(﹣1,﹣2)或(,)或(,﹣﹣4)或(﹣,﹣4);(1).【解析】試題分析:(1)在拋物線解析式中令y=0可求得B點坐標,令x=0可求得C點坐標;(2)①當PB與⊙相切時,△PBC為直角三角形,如圖1,連接BC,根據(jù)勾股定理得到BC=5,BP2的值,過P2作P2E⊥x軸于E,P2F⊥y軸于F,根據(jù)相似三角形的性質(zhì)得到=2,設(shè)OC=P2E=2x,CP2=OE=x,得到BE=1﹣x,CF=2x﹣4,于是得到FP2,EP2的值,求得P2的坐標,過P1作P1G⊥x軸于G,P1H⊥y軸于H,同理求得P1(﹣1,﹣2),②當BC⊥PC時,△PBC為直角三角形,根據(jù)相似三角形的判定和性質(zhì)即可得到結(jié)論;(1)如圖1中,連接AP,由OB=OA,BE=EP,推出OE=AP,可知當AP最大時,OE的值最大.試題解析:(1)在中,令y=0,則x=±1,令x=0,則y=﹣4,∴B(1,0),C(0,﹣4);故答案為1,0;0,﹣4;(2)存在點P,使得△PBC為直角三角形,分兩種情況:①當PB與⊙相切時,△PBC為直角三角形,如圖(2)a,連接BC,∵OB=1.OC=4,∴BC=5,∵CP2⊥BP2,CP2=,∴BP2=,過P2作P2E⊥x軸于E,P2F⊥y軸于F,則△CP2F∽△BP2E,四邊形OCP2B是矩形,∴=2,設(shè)OC=P2E=2x,CP2=OE=x,∴BE=1﹣x,CF=2x﹣4,∴=2,∴x=,2x=,∴FP2=,EP2=,∴P2(,﹣),過P1作P1G⊥x軸于G,P1H⊥y軸于H,同理求得P1(﹣1,﹣2);②當BC⊥PC時,△PBC為直角三角形,過P4作P4H⊥y軸于H,則△BOC∽△CHP4,∴=,∴CH=,P4H=,∴P4(,﹣﹣4);同理P1(﹣,﹣4);綜上所述:點P的坐標為:(﹣1,﹣2)或(,)或(,﹣﹣4)或(﹣,﹣4);(1)如圖(1),連接AP,∵OB=OA,BE=EP,∴OE=AP,∴當AP最大時,OE的值最大,∵當P在AC的延長線上時,AP的值最大,最大值=,∴OE的最大值為.故答案為.20、(1)正方形ABCD的“關(guān)聯(lián)點”為P2,P3;(2)或;(3).【解析】

(1)正方形ABCD的“關(guān)聯(lián)點”中正方形的內(nèi)切圓和外切圓之間(包括兩個圓上的點),由此畫出圖形即可判斷;(2)因為E是正方形ABCD的“關(guān)聯(lián)點”,所以E在正方形ABCD的內(nèi)切圓和外接圓之間(包括兩個圓上的點),因為E在直線上,推出點E在線段FG上,求出點F、G的橫坐標,再根據(jù)對稱性即可解決問題;(3)因為線段MN上的每一個點都是正方形ABCD的“關(guān)聯(lián)點”,分兩種情形:①如圖3中,MN與小⊙Q相切于點F,求出此時點Q的橫坐標;②M如圖4中,落在大⊙Q上,求出點Q的橫坐標即可解決問題;【詳解】(1)由題意正方形ABCD的“關(guān)聯(lián)點”中正方形的內(nèi)切圓和外切圓之間(包括兩個圓上的點),觀察圖象可知:正方形ABCD的“關(guān)聯(lián)點”為P2,P3;(2)作正方形ABCD的內(nèi)切圓和外接圓,∴OF=1,,.∵E是正方形ABCD的“關(guān)聯(lián)點”,∴E在正方形ABCD的內(nèi)切圓和外接圓之間(包括兩個圓上的點),∵點E在直線上,∴點E在線段FG上.分別作FF’⊥x軸,GG’⊥x軸,∵OF=1,,∴,.∴.根據(jù)對稱性,可以得出.∴或.(3)∵、N(0,1),∴,ON=1.∴∠OMN=60°.∵線段MN上的每一個點都是正方形ABCD的“關(guān)聯(lián)點”,①MN與小⊙Q相切于點F,如圖3中,∵QF=1,∠OMN=60°,∴.∵,∴.∴.②M落在大⊙Q上,如圖4中,∵,,∴.∴.綜上:.【點睛】本題考查一次函數(shù)綜合題、正方形的性質(zhì)、直線與圓的位置關(guān)系等知識,解題的關(guān)鍵是理解題意,學會尋找特殊位置解決數(shù)學問題,屬于中考壓軸題.21、(1)圓的半徑為4.5;(2)EF=.【解析】

(1)連接OD,根據(jù)垂徑定理得:DH=2,設(shè)圓O的半徑為r,根據(jù)勾股定理列方程可得結(jié)論;(2)過O作OG⊥AE于G,證明

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論