版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
山東聊城市2025屆高三下學(xué)期期末數(shù)學(xué)試題理試題注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若復(fù)數(shù)滿足(是虛數(shù)單位),則的虛部為()A. B. C. D.2.函數(shù)的一個單調(diào)遞增區(qū)間是()A. B. C. D.3.已知無窮等比數(shù)列的公比為2,且,則()A. B. C. D.4.函數(shù)滿足對任意都有成立,且函數(shù)的圖象關(guān)于點對稱,,則的值為()A.0 B.2 C.4 D.15.函數(shù)的值域為()A. B. C. D.6.一個正四棱錐形骨架的底邊邊長為,高為,有一個球的表面與這個正四棱錐的每個邊都相切,則該球的表面積為()A. B. C. D.7.雙曲線的漸近線方程為()A. B.C. D.8.已知函數(shù)滿足=1,則等于()A.- B. C.- D.9.已知數(shù)列是公比為的等比數(shù)列,且,若數(shù)列是遞增數(shù)列,則的取值范圍為()A. B. C. D.10.如圖是甲、乙兩位同學(xué)在六次數(shù)學(xué)小測試(滿分100分)中得分情況的莖葉圖,則下列說法錯誤的是()A.甲得分的平均數(shù)比乙大 B.甲得分的極差比乙大C.甲得分的方差比乙小 D.甲得分的中位數(shù)和乙相等11.已知函數(shù),的圖象與直線的兩個相鄰交點的距離等于,則的一條對稱軸是()A. B. C. D.12.已知等差數(shù)列中,,,則數(shù)列的前10項和()A.100 B.210 C.380 D.400二、填空題:本題共4小題,每小題5分,共20分。13.設(shè)等差數(shù)列的前項和為,若,,則數(shù)列的公差________,通項公式________.14.某市高三理科學(xué)生有名,在一次調(diào)研測試中,數(shù)學(xué)成績服從正態(tài)分布,已知,若按成績分層抽樣的方式取份試卷進(jìn)行分析,則應(yīng)從分以上的試卷中抽取的份數(shù)為__________.15.現(xiàn)有5人要排成一排照相,其中甲與乙兩人不相鄰,且甲不站在兩端,則不同的排法有____種.(用數(shù)字作答)16.已知雙曲線的一條漸近線為,則焦點到這條漸近線的距離為_____.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在平面直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),曲線的極坐標(biāo)方程為.(Ⅰ)求直線的普通方程及曲線的直角坐標(biāo)方程;(Ⅱ)設(shè)點,直線與曲線相交于,,求的值.18.(12分)甲、乙、丙三名射擊運動員射中目標(biāo)的概率分別為,三人各射擊一次,擊中目標(biāo)的次數(shù)記為.(1)求的分布列及數(shù)學(xué)期望;(2)在概率(=0,1,2,3)中,若的值最大,求實數(shù)的取值范圍.19.(12分)(選修4-4:坐標(biāo)系與參數(shù)方程)在平面直角坐標(biāo)系,已知曲線(為參數(shù)),在以原點為極點,軸的非負(fù)半軸為極軸建立的極坐標(biāo)系中,直線的極坐標(biāo)方程為.(1)求曲線的普通方程和直線的直角坐標(biāo)方程;(2)過點且與直線平行的直線交于,兩點,求點到,的距離之積.20.(12分)已知函數(shù).(1)若在處取得極值,求的值;(2)求在區(qū)間上的最小值;(3)在(1)的條件下,若,求證:當(dāng)時,恒有成立.21.(12分)已知拋物線的焦點為,點,點為拋物線上的動點.(1)若的最小值為,求實數(shù)的值;(2)設(shè)線段的中點為,其中為坐標(biāo)原點,若,求的面積.22.(10分)橢圓:的左、右焦點分別是,,離心率為,左、右頂點分別為,.過且垂直于軸的直線被橢圓截得的線段長為1.(1)求橢圓的標(biāo)準(zhǔn)方程;(2)經(jīng)過點的直線與橢圓相交于不同的兩點、(不與點、重合),直線與直線相交于點,求證:、、三點共線.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.A【解析】
由得,然后分子分母同時乘以分母的共軛復(fù)數(shù)可得復(fù)數(shù),從而可得的虛部.【詳解】因為,所以,所以復(fù)數(shù)的虛部為.故選A.本題考查了復(fù)數(shù)的除法運算和復(fù)數(shù)的概念,屬于基礎(chǔ)題.復(fù)數(shù)除法運算的方法是分子分母同時乘以分母的共軛復(fù)數(shù),轉(zhuǎn)化為乘法運算.2.D【解析】
利用同角三角函數(shù)的基本關(guān)系式、二倍角公式和輔助角公式化簡表達(dá)式,再根據(jù)三角函數(shù)單調(diào)區(qū)間的求法,求得的單調(diào)區(qū)間,由此確定正確選項.【詳解】因為,由單調(diào)遞增,則(),解得(),當(dāng)時,D選項正確.C選項是遞減區(qū)間,A,B選項中有部分增區(qū)間部分減區(qū)間.故選:D本小題考查三角函數(shù)的恒等變換,三角函數(shù)的圖象與性質(zhì)等基礎(chǔ)知識;考查運算求解能力,推理論證能力,數(shù)形結(jié)合思想,應(yīng)用意識.3.A【解析】
依據(jù)無窮等比數(shù)列求和公式,先求出首項,再求出,利用無窮等比數(shù)列求和公式即可求出結(jié)果。【詳解】因為無窮等比數(shù)列的公比為2,則無窮等比數(shù)列的公比為。由有,,解得,所以,,故選A。本題主要考查無窮等比數(shù)列求和公式的應(yīng)用。4.C【解析】
根據(jù)函數(shù)的圖象關(guān)于點對稱可得為奇函數(shù),結(jié)合可得是周期為4的周期函數(shù),利用及可得所求的值.【詳解】因為函數(shù)的圖象關(guān)于點對稱,所以的圖象關(guān)于原點對稱,所以為上的奇函數(shù).由可得,故,故是周期為4的周期函數(shù).因為,所以.因為,故,所以.故選:C.本題考查函數(shù)的奇偶性和周期性,一般地,如果上的函數(shù)滿足,那么是周期為的周期函數(shù),本題屬于中檔題.5.A【解析】
由計算出的取值范圍,利用正弦函數(shù)的基本性質(zhì)可求得函數(shù)的值域.【詳解】,,,因此,函數(shù)的值域為.故選:A.本題考查正弦型函數(shù)在區(qū)間上的值域的求解,解答的關(guān)鍵就是求出對象角的取值范圍,考查計算能力,屬于基礎(chǔ)題.6.B【解析】
根據(jù)正四棱錐底邊邊長為,高為,得到底面的中心到各棱的距離都是1,從而底面的中心即為球心.【詳解】如圖所示:因為正四棱錐底邊邊長為,高為,所以,到的距離為,同理到的距離為1,所以為球的球心,所以球的半徑為:1,所以球的表面積為.故選:B本題主要考查組合體的表面積,還考查了空間想象的能力,屬于中檔題.7.A【解析】
將雙曲線方程化為標(biāo)準(zhǔn)方程為,其漸近線方程為,化簡整理即得漸近線方程.【詳解】雙曲線得,則其漸近線方程為,整理得.故選:A本題主要考查了雙曲線的標(biāo)準(zhǔn)方程,雙曲線的簡單性質(zhì)的應(yīng)用.8.C【解析】
設(shè)的最小正周期為,可得,則,再根據(jù)得,又,則可求出,進(jìn)而可得.【詳解】解:設(shè)的最小正周期為,因為,所以,所以,所以,又,所以當(dāng)時,,,因為,整理得,因為,,,則所以.故選:C.本題考查三角形函數(shù)的周期性和對稱性,考查學(xué)生分析能力和計算能力,是一道難度較大的題目.9.D【解析】
先根據(jù)已知條件求解出的通項公式,然后根據(jù)的單調(diào)性以及得到滿足的不等關(guān)系,由此求解出的取值范圍.【詳解】由已知得,則.因為,數(shù)列是單調(diào)遞增數(shù)列,所以,則,化簡得,所以.故選:D.本題考查數(shù)列通項公式求解以及根據(jù)數(shù)列單調(diào)性求解參數(shù)范圍,難度一般.已知數(shù)列單調(diào)性,可根據(jù)之間的大小關(guān)系分析問題.10.B【解析】
由平均數(shù)、方差公式和極差、中位數(shù)概念,可得所求結(jié)論.【詳解】對于甲,;對于乙,,故正確;甲的極差為,乙的極差為,故錯誤;對于甲,方差.5,對于乙,方差,故正確;甲得分的中位數(shù)為,乙得分的中位數(shù)為,故正確.故選:.本題考查莖葉圖的應(yīng)用,考查平均數(shù)和方差等概念,培養(yǎng)計算能力,意在考查學(xué)生對這些知識的理解掌握水平,屬于基礎(chǔ)題.11.D【解析】
由題,得,由的圖象與直線的兩個相鄰交點的距離等于,可得最小正周期,從而求得,得到函數(shù)的解析式,又因為當(dāng)時,,由此即可得到本題答案.【詳解】由題,得,因為的圖象與直線的兩個相鄰交點的距離等于,所以函數(shù)的最小正周期,則,所以,當(dāng)時,,所以是函數(shù)的一條對稱軸,故選:D本題主要考查利用和差公式恒等變形,以及考查三角函數(shù)的周期性和對稱性.12.B【解析】
設(shè)公差為,由已知可得,進(jìn)而求出的通項公式,即可求解.【詳解】設(shè)公差為,,,,.故選:B.本題考查等差數(shù)列的基本量計算以及前項和,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13.2【解析】
直接利用等差數(shù)列公式計算得到答案.【詳解】,,解得,,故.故答案為:2;.本題考查了等差數(shù)列的基本計算,意在考查學(xué)生的計算能力.14.【解析】
由題意結(jié)合正態(tài)分布曲線可得分以上的概率,乘以可得.【詳解】解:,所以應(yīng)從分以上的試卷中抽取份.故答案為:.本題考查正態(tài)分布曲線,屬于基礎(chǔ)題.15.36【解析】
先優(yōu)先考慮甲、乙兩人不相鄰的排法,在此條件下,計算甲不排在兩端的排法,最后相減即可得到結(jié)果.【詳解】由題意得5人排成一排,甲、乙兩人不相鄰,有種排法,其中甲排在兩端,有種排法,則6人排成一排,甲、乙兩人不相鄰,且甲不排在兩端,共有(種)排法.所以本題答案為36.排列、組合問題由于其思想方法獨特,計算量龐大,對結(jié)果的檢驗困難,所以在解決這類問題時就要遵循一定的解題原則,如特殊元素、位置優(yōu)先原則、先取后排原則、先分組后分配原則、正難則反原則等,只有這樣我們才能有明確的解題方向.同時解答組合問題時必須心思細(xì)膩、考慮周全,這樣才能做到不重不漏,正確解題.16.2.【解析】
由雙曲線的一條漸近線為,解得.求出雙曲線的右焦點,利用點到直線的距離公式求解即可.【詳解】雙曲線的一條漸近線為解得:雙曲線的右焦點為焦點到這條漸近線的距離為:本題正確結(jié)果:本題考查了雙曲線和的標(biāo)準(zhǔn)方程及其性質(zhì),涉及到點到直線距離公式的考查,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(Ⅰ),;(Ⅱ).【解析】
(Ⅰ)由(為參數(shù))直接消去參數(shù),可得直線的普通方程,把兩邊同時乘以,結(jié)合,可得曲線的直角坐標(biāo)方程;(Ⅱ)把代入,化為關(guān)于的一元二次方程,利用根與系數(shù)的關(guān)系及參數(shù)的幾何意義求解.【詳解】解:(Ⅰ)由(為參數(shù)),消去參數(shù),可得.∵,∴,即.∴曲線的直角坐標(biāo)方程為;(Ⅱ)把代入,得.設(shè),兩點對應(yīng)的參數(shù)分別為,則,.不妨設(shè),,∴.本題考查簡單曲線的極坐標(biāo)方程,考查參數(shù)方程化普通方程,明確直線參數(shù)方程中參數(shù)的幾何意義是解題的關(guān)鍵,是中檔題.18.(1),ξ的分布列為ξ
0
1
2
3
P
(1-a)2
(1-a2)
(2a-a2)
(2)【解析】(1)P(ξ)是“ξ個人命中,3-ξ個人未命中”的概率.其中ξ的可能取值為0、1、2、3.P(ξ=0)=(1-a)2=(1-a)2;P(ξ=1)=·(1-a)2+a(1-a)=(1-a2);P(ξ=2)=·a(1-a)+a2=(2a-a2);P(ξ=3)=·a2=.所以ξ的分布列為ξ
0
1
2
3
P
(1-a)2
(1-a2)
(2a-a2)
ξ的數(shù)學(xué)期望為E(ξ)=0×(1-a)2+1×(1-a2)+2×(2a-a2)+3×=.(2)P(ξ=1)-P(ξ=0)=[(1-a2)-(1-a)2]=a(1-a);P(ξ=1)-P(ξ=2)=[(1-a2)-(2a-a2)]=;P(ξ=1)-P(ξ=3)=[(1-a2)-a2]=.由和0<a<1,得0<a≤,即a的取值范圍是.19.(1)曲線:,直線的直角坐標(biāo)方程;(2)1.【解析】試題分析:(1)先根據(jù)三角函數(shù)平方關(guān)系消參數(shù)得曲線化為普通方程,再根據(jù)將直線的極坐標(biāo)方程化為直角坐標(biāo)方程;(2)根據(jù)題意設(shè)直線參數(shù)方程,代入C方程,利用參數(shù)幾何意義以及韋達(dá)定理得點到,的距離之積試題解析:(1)曲線化為普通方程為:,由,得,所以直線的直角坐標(biāo)方程為.(2)直線的參數(shù)方程為(為參數(shù)),代入化簡得:,設(shè)兩點所對應(yīng)的參數(shù)分別為,則,.20.(1)2;(2);(3)證明見解析【解析】
(1)先求出函數(shù)的定義域和導(dǎo)數(shù),由已知函數(shù)在處取得極值,得到,即可求解的值;(2)由(1)得,定義域為,分,和三種情況討論,分別求得函數(shù)的最小值,即可得到結(jié)論;(3)由,得到,把,只需證,構(gòu)造新函數(shù),利用導(dǎo)數(shù)求得函數(shù)的單調(diào)性與最值,即可求解.【詳解】(1)由,定義域為,則,因為函數(shù)在處取得極值,所以,即,解得,經(jīng)檢驗,滿足題意,所以.(2)由(1)得,定義域為,當(dāng)時,有,在區(qū)間上單調(diào)遞增,最小值為,當(dāng)時,由得,且,當(dāng)時,,單調(diào)遞減;當(dāng)時,,單調(diào)遞增;所以在區(qū)間上單調(diào)遞增,最小值為,當(dāng)時,則,當(dāng)時,,單調(diào)遞減;當(dāng)時,,單調(diào)遞增;所以在處取得最小值,綜上可得:當(dāng)時,在區(qū)間上的最小值為1,當(dāng)時,在區(qū)間上的最小值為.(3)由得,當(dāng)時,,則,欲證,只需證,即證,即,設(shè),則,當(dāng)時,,在區(qū)間上單調(diào)遞增,當(dāng)時,,即,故,即當(dāng)時,恒有成立.本題主要考查導(dǎo)數(shù)在函數(shù)中的綜合應(yīng)用,以及不等式的證明,著重考查了轉(zhuǎn)化與化歸思想、分類討論、及邏輯推理能力與計算能力,對于此類問題,通常要構(gòu)造新函數(shù),利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,求出最值,進(jìn)而得出相應(yīng)的含參不等式,從而求出參數(shù)的取值范圍;也可分離變量,構(gòu)造新函數(shù),直接把問題轉(zhuǎn)化為函數(shù)的最值問題.21.(1)的值為或.(2)【解析】
(1)分類討論,當(dāng)時,線段與拋物線沒有公共點,設(shè)點在拋物線準(zhǔn)線上的射影為,當(dāng)三點共線時,能取得最小值,利用拋物線的焦半徑公式即可求解;當(dāng)時,線段與拋物線有公共點,利用兩點間的距離公式即可求解.(2)由題意可得
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 味精產(chǎn)業(yè)發(fā)展趨勢-洞察分析
- 元器件品質(zhì)控制標(biāo)準(zhǔn)制定-洞察分析
- 大班第二學(xué)期周計劃
- 語言政策的社會影響-洞察分析
- 2023-2024學(xué)年山東省煙臺市高一上學(xué)期期末考試生物試題(解析版)
- 土壤侵蝕時空變化研究-洞察分析
- 2024-2025學(xué)年山東省名??荚嚶?lián)盟高一上學(xué)期11月期中聯(lián)考物理試題(解析版)
- 2023年項目部治理人員安全培訓(xùn)考試題附答案(A卷)
- 2023年-2024年項目安全培訓(xùn)考試題附答案【鞏固】
- 2023年-2024年生產(chǎn)經(jīng)營單位安全教育培訓(xùn)試題及答案【奪冠系列】
- 研究生實驗方案
- 云南省昆明市盤龍區(qū)2023-2024學(xué)年高二上學(xué)期期末質(zhì)量檢測數(shù)學(xué)試題【含答案解析】
- 腎上腺皮質(zhì)功能減退通用課件
- 《安徒生童話》試題及答案
- 《社會工作概論》課件
- 化工生產(chǎn)操作工培訓(xùn)手冊
- 銀行催收外包服務(wù)投標(biāo)方案(技術(shù)標(biāo))
- 2024年廣西北部灣港集團(tuán)招聘筆試參考題庫含答案解析
- 建設(shè)工程項目工程項目三方合署辦公管理標(biāo)準(zhǔn)
- 工程造價畢業(yè)設(shè)計總結(jié)3000字(5篇)
- 鼓膜置管方法
評論
0/150
提交評論