2023-2024學(xué)年湖南長(zhǎng)沙雨花區(qū)雅境中學(xué)中考數(shù)學(xué)模擬預(yù)測(cè)題含解析_第1頁(yè)
2023-2024學(xué)年湖南長(zhǎng)沙雨花區(qū)雅境中學(xué)中考數(shù)學(xué)模擬預(yù)測(cè)題含解析_第2頁(yè)
2023-2024學(xué)年湖南長(zhǎng)沙雨花區(qū)雅境中學(xué)中考數(shù)學(xué)模擬預(yù)測(cè)題含解析_第3頁(yè)
2023-2024學(xué)年湖南長(zhǎng)沙雨花區(qū)雅境中學(xué)中考數(shù)學(xué)模擬預(yù)測(cè)題含解析_第4頁(yè)
2023-2024學(xué)年湖南長(zhǎng)沙雨花區(qū)雅境中學(xué)中考數(shù)學(xué)模擬預(yù)測(cè)題含解析_第5頁(yè)
已閱讀5頁(yè),還剩17頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2023-2024學(xué)年湖南長(zhǎng)沙雨花區(qū)雅境中學(xué)中考數(shù)學(xué)模擬預(yù)測(cè)題請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫(xiě)在答題紙相應(yīng)的答題區(qū)內(nèi)。寫(xiě)在試題卷、草稿紙上均無(wú)效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1.如果一元二次方程2x2+3x+m=0有兩個(gè)相等的實(shí)數(shù)根,那么實(shí)數(shù)m的取值為()A.m> B.m C.m= D.m=2.將一塊直角三角板ABC按如圖方式放置,其中∠ABC=30°,A、B兩點(diǎn)分別落在直線m、n上,∠1=20°,添加下列哪一個(gè)條件可使直線m∥n()A.∠2=20° B.∠2=30° C.∠2=45° D.∠2=50°3.有15位同學(xué)參加歌詠比賽,所得的分?jǐn)?shù)互不相同,取得分前8位同學(xué)進(jìn)入決賽.某同學(xué)知道自己的分?jǐn)?shù)后,要判斷自己能否進(jìn)入決賽,他只需知道這15位同學(xué)的()A.平均數(shù) B.中位數(shù) C.眾數(shù) D.方差4.計(jì)算﹣的結(jié)果為()A. B. C. D.5.如圖,等腰直角三角形位于第一象限,,直角頂點(diǎn)在直線上,其中點(diǎn)的橫坐標(biāo)為,且兩條直角邊,分別平行于軸、軸,若反比例函數(shù)的圖象與有交點(diǎn),則的取值范圍是().A. B. C. D.6.已知一次函數(shù)y=﹣x+2的圖象,繞x軸上一點(diǎn)P(m,1)旋轉(zhuǎn)181°,所得的圖象經(jīng)過(guò)(1.﹣1),則m的值為()A.﹣2 B.﹣1 C.1 D.27.如圖是一個(gè)正方體展開(kāi)圖,把展開(kāi)圖折疊成正方體后,“愛(ài)”字一面相對(duì)面上的字是()A.美 B.麗 C.泗 D.陽(yáng)8.下列運(yùn)算正確的是()A.a(chǎn)3?a2=a6 B.(x3)3=x6 C.x5+x5=x10 D.﹣a8÷a4=﹣a49.下列一元二次方程中,有兩個(gè)不相等實(shí)數(shù)根的是()A.x2+6x+9=0 B.x2=x C.x2+3=2x D.(x﹣1)2+1=010.如果一組數(shù)據(jù)6,7,x,9,5的平均數(shù)是2x,那么這組數(shù)據(jù)的中位數(shù)為()A.5 B.6 C.7 D.911.中國(guó)幅員遼闊,陸地面積約為960萬(wàn)平方公里,“960萬(wàn)”用科學(xué)記數(shù)法表示為()A.0.96×107 B.9.6×106 C.96×105 D.9.6×10212.定義運(yùn)算“※”為:a※b=,如:1※(﹣2)=﹣1×(﹣2)2=﹣1.則函數(shù)y=2※x的圖象大致是()A. B.C. D.二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13.如圖,點(diǎn)E在正方形ABCD的邊CD上.若△ABE的面積為8,CE=3,則線段BE的長(zhǎng)為_(kāi)______.14.如圖,AC、BD為圓O的兩條垂直的直徑,動(dòng)點(diǎn)P從圓心O出發(fā),沿線段OC-A.B.C.D.15.在函數(shù)中,自變量x的取值范圍是_________.16.如圖,無(wú)人機(jī)在空中C處測(cè)得地面A、B兩點(diǎn)的俯角分別為60°、45°,如果無(wú)人機(jī)距地面高度CD為米,點(diǎn)A、D、B在同一水平直線上,則A、B兩點(diǎn)間的距離是_____米.(結(jié)果保留根號(hào))17.如圖,在扇形OAB中,∠O=60°,OA=4,四邊形OECF是扇形OAB中最大的菱形,其中點(diǎn)E,C,F(xiàn)分別在OA,,OB上,則圖中陰影部分的面積為_(kāi)_________.18.月球的半徑約為1738000米,1738000這個(gè)數(shù)用科學(xué)記數(shù)法表示為_(kāi)__________.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟.19.(6分)如果a2+2a-1=0,求代數(shù)式的值.20.(6分)如圖,已知拋物線經(jīng)過(guò)點(diǎn)A(﹣1,0),B(4,0),C(0,2)三點(diǎn),點(diǎn)D與點(diǎn)C關(guān)于x軸對(duì)稱,點(diǎn)P是x軸上的一個(gè)動(dòng)點(diǎn),設(shè)點(diǎn)P的坐標(biāo)為(m,0),過(guò)點(diǎn)P做x軸的垂線l交拋物線于點(diǎn)Q,交直線BD于點(diǎn)M.(1)求該拋物線所表示的二次函數(shù)的表達(dá)式;(2)已知點(diǎn)F(0,),當(dāng)點(diǎn)P在x軸上運(yùn)動(dòng)時(shí),試求m為何值時(shí),四邊形DMQF是平行四邊形?(3)點(diǎn)P在線段AB運(yùn)動(dòng)過(guò)程中,是否存在點(diǎn)Q,使得以點(diǎn)B、Q、M為頂點(diǎn)的三角形與△BOD相似?若存在,求出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.21.(6分)如圖,吊車(chē)在水平地面上吊起貨物時(shí),吊繩BC與地面保持垂直,吊臂AB與水平線的夾角為64°,吊臂底部A距地面1.5m.(計(jì)算結(jié)果精確到0.1m,參考數(shù)據(jù)sin64°≈0.90,cos64°≈0.44,tan64°≈2.05)(1)當(dāng)?shù)醣鄣撞緼與貨物的水平距離AC為5m時(shí),吊臂AB的長(zhǎng)為m.(2)如果該吊車(chē)吊臂的最大長(zhǎng)度AD為20m,那么從地面上吊起貨物的最大高度是多少?(吊鉤的長(zhǎng)度與貨物的高度忽略不計(jì))22.(8分)今年5月,某大型商業(yè)集團(tuán)隨機(jī)抽取所屬的m家商業(yè)連鎖店進(jìn)行評(píng)估,將各連鎖店按照評(píng)估成績(jī)分成了A、B、C、D四個(gè)等級(jí),繪制了如圖尚不完整的統(tǒng)計(jì)圖表.評(píng)估成績(jī)n(分)

評(píng)定等級(jí)

頻數(shù)

90≤n≤100

A

2

80≤n<90

B

70≤n<80

C

15

n<70

D

6

根據(jù)以上信息解答下列問(wèn)題:(1)求m的值;(2)在扇形統(tǒng)計(jì)圖中,求B等級(jí)所在扇形的圓心角的大小;(結(jié)果用度、分、秒表示)(3)從評(píng)估成績(jī)不少于80分的連鎖店中任選2家介紹營(yíng)銷經(jīng)驗(yàn),求其中至少有一家是A等級(jí)的概率.23.(8分)重慶某中學(xué)組織七、八、九年級(jí)學(xué)生參加“直轄20年,點(diǎn)贊新重慶”作文比賽,該校將收到的參賽作文進(jìn)行分年級(jí)統(tǒng)計(jì),繪制了如圖1和如圖2兩幅不完整的統(tǒng)計(jì)圖,根據(jù)圖中提供的信息完成以下問(wèn)題.扇形統(tǒng)計(jì)圖中九年級(jí)參賽作文篇數(shù)對(duì)應(yīng)的圓心角是度,并補(bǔ)全條形統(tǒng)計(jì)圖;經(jīng)過(guò)評(píng)審,全校有4篇作文榮獲特等獎(jiǎng),其中有一篇來(lái)自七年級(jí),學(xué)校準(zhǔn)備從特等獎(jiǎng)作文中任選兩篇刊登在校刊上,請(qǐng)利用畫(huà)樹(shù)狀圖或列表的方法求出七年級(jí)特等獎(jiǎng)作文被選登在??系母怕剩?4.(10分)如圖,拋物線y=ax2+bx+c與x軸交于點(diǎn)A(﹣1,0),B(4,0),與y軸交于點(diǎn)C(0,2)(1)求拋物線的表達(dá)式;(2)拋物線的對(duì)稱軸與x軸交于點(diǎn)M,點(diǎn)D與點(diǎn)C關(guān)于點(diǎn)M對(duì)稱,試問(wèn)在該拋物線的對(duì)稱軸上是否存在點(diǎn)P,使△BMP與△ABD相似?若存在,請(qǐng)求出所有滿足條件的P點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.25.(10分)如圖,△ABC中,D是AB上一點(diǎn),DE⊥AC于點(diǎn)E,F(xiàn)是AD的中點(diǎn),F(xiàn)G⊥BC于點(diǎn)G,與DE交于點(diǎn)H,若FG=AF,AG平分∠CAB,連接GE,GD.求證:△ECG≌△GHD;26.(12分)一個(gè)不透明的袋子中裝有3個(gè)標(biāo)號(hào)分別為1、2、3的完全相同的小球,隨機(jī)地摸出一個(gè)小球不放回,再隨機(jī)地摸出一個(gè)小球.采用樹(shù)狀圖或列表法列出兩次摸出小球出現(xiàn)的所有可能結(jié)果;求摸出的兩個(gè)小球號(hào)碼之和等于4的概率.27.(12分)如圖,已知⊙O經(jīng)過(guò)△ABC的頂點(diǎn)A、B,交邊BC于點(diǎn)D,點(diǎn)A恰為的中點(diǎn),且BD=8,AC=9,sinC=,求⊙O的半徑.

參考答案一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、C【解析】試題解析:∵一元二次方程2x2+3x+m=0有兩個(gè)相等的實(shí)數(shù)根,∴△=32-4×2m=9-8m=0,解得:m=.故選C.2、D【解析】

根據(jù)平行線的性質(zhì)即可得到∠2=∠ABC+∠1,即可得出結(jié)論.【詳解】∵直線EF∥GH,

∴∠2=∠ABC+∠1=30°+20°=50°,

故選D.【點(diǎn)睛】本題考查了平行線的性質(zhì),熟練掌握平行線的性質(zhì)是解題的關(guān)鍵.3、B【解析】

由中位數(shù)的概念,即最中間一個(gè)或兩個(gè)數(shù)據(jù)的平均數(shù);可知15人成績(jī)的中位數(shù)是第8名的成績(jī).根據(jù)題意可得:參賽選手要想知道自己是否能進(jìn)入前8名,只需要了解自己的成績(jī)以及全部成績(jī)的中位數(shù),比較即可.【詳解】解:由于15個(gè)人中,第8名的成績(jī)是中位數(shù),故小方同學(xué)知道了自己的分?jǐn)?shù)后,想知道自己能否進(jìn)入決賽,還需知道這十五位同學(xué)的分?jǐn)?shù)的中位數(shù).故選B.【點(diǎn)睛】此題主要考查統(tǒng)計(jì)的有關(guān)知識(shí),主要包括平均數(shù)、中位數(shù)、眾數(shù)的意義.反映數(shù)據(jù)集中程度的統(tǒng)計(jì)量有平均數(shù)、中位數(shù)、眾數(shù)等,各有局限性,因此要對(duì)統(tǒng)計(jì)量進(jìn)行合理的選擇和恰當(dāng)?shù)倪\(yùn)用.4、A【解析】

根據(jù)分式的運(yùn)算法則即可【詳解】解:原式=,故選A.【點(diǎn)睛】本題主要考查分式的運(yùn)算。5、D【解析】設(shè)直線y=x與BC交于E點(diǎn),分別過(guò)A、E兩點(diǎn)作x軸的垂線,垂足為D、F,則A(1,1),而AB=AC=2,則B(3,1),△ABC為等腰直角三角形,E為BC的中點(diǎn),由中點(diǎn)坐標(biāo)公式求E點(diǎn)坐標(biāo),當(dāng)雙曲線與△ABC有唯一交點(diǎn)時(shí),這個(gè)交點(diǎn)分別為A、E,由此可求出k的取值范圍.解:∵,..又∵過(guò)點(diǎn),交于點(diǎn),∴,∴,∴.故選D.6、C【解析】

根據(jù)題意得出旋轉(zhuǎn)后的函數(shù)解析式為y=-x-1,然后根據(jù)解析式求得與x軸的交點(diǎn)坐標(biāo),結(jié)合點(diǎn)的坐標(biāo)即可得出結(jié)論.【詳解】∵一次函數(shù)y=﹣x+2的圖象,繞x軸上一點(diǎn)P(m,1)旋轉(zhuǎn)181°,所得的圖象經(jīng)過(guò)(1.﹣1),∴設(shè)旋轉(zhuǎn)后的函數(shù)解析式為y=﹣x﹣1,在一次函數(shù)y=﹣x+2中,令y=1,則有﹣x+2=1,解得:x=4,即一次函數(shù)y=﹣x+2與x軸交點(diǎn)為(4,1).一次函數(shù)y=﹣x﹣1中,令y=1,則有﹣x﹣1=1,解得:x=﹣2,即一次函數(shù)y=﹣x﹣1與x軸交點(diǎn)為(﹣2,1).∴m==1,故選:C.【點(diǎn)睛】本題考查了一次函數(shù)圖象與幾何變換,解題的關(guān)鍵是求出旋轉(zhuǎn)后的函數(shù)解析式.本題屬于基礎(chǔ)題,難度不大.7、D【解析】

正方體的表面展開(kāi)圖,相對(duì)的面之間一定相隔一個(gè)正方形,根據(jù)這一特點(diǎn)作答.【詳解】解:正方體的表面展開(kāi)圖,相對(duì)的面之間一定相隔一個(gè)正方形,“愛(ài)”字一面相對(duì)面上的字是“陽(yáng)”;故本題答案為:D.【點(diǎn)睛】本題主要考查了正方體相對(duì)兩個(gè)面上的文字,注意正方體的空間圖形是解題的關(guān)鍵.8、D【解析】

各項(xiàng)計(jì)算得到結(jié)果,即可作出判斷.【詳解】A、原式=a5,不符合題意;B、原式=x9,不符合題意;C、原式=2x5,不符合題意;D、原式=-a4,符合題意,故選D.【點(diǎn)睛】此題考查了整式的混合運(yùn)算,熟練掌握運(yùn)算法則是解本題的關(guān)鍵.9、B【解析】分析:根據(jù)一元二次方程根的判別式判斷即可.詳解:A、x2+6x+9=0.△=62-4×9=36-36=0,方程有兩個(gè)相等實(shí)數(shù)根;B、x2=x.x2-x=0.△=(-1)2-4×1×0=1>0.方程有兩個(gè)不相等實(shí)數(shù)根;C、x2+3=2x.x2-2x+3=0.△=(-2)2-4×1×3=-8<0,方程無(wú)實(shí)根;D、(x-1)2+1=0.(x-1)2=-1,則方程無(wú)實(shí)根;故選B.點(diǎn)睛:本題考查的是一元二次方程根的判別式,一元二次方程ax2+bx+c=0(a≠0)的根與△=b2-4ac有如下關(guān)系:①當(dāng)△>0時(shí),方程有兩個(gè)不相等的實(shí)數(shù)根;②當(dāng)△=0時(shí),方程有兩個(gè)相等的實(shí)數(shù)根;③當(dāng)△<0時(shí),方程無(wú)實(shí)數(shù)根.10、B【解析】

直接利用平均數(shù)的求法進(jìn)而得出x的值,再利用中位數(shù)的定義求出答案.【詳解】∵一組數(shù)據(jù)1,7,x,9,5的平均數(shù)是2x,∴,解得:,則從大到小排列為:3,5,1,7,9,故這組數(shù)據(jù)的中位數(shù)為:1.故選B.【點(diǎn)睛】此題主要考查了中位數(shù)以及平均數(shù),正確得出x的值是解題關(guān)鍵.11、B【解析】試題分析:“960萬(wàn)”用科學(xué)記數(shù)法表示為9.6×106,故選B.考點(diǎn):科學(xué)記數(shù)法—表示較大的數(shù).12、C【解析】

根據(jù)定義運(yùn)算“※”為:a※b=,可得y=2※x的函數(shù)解析式,根據(jù)函數(shù)解析式,可得函數(shù)圖象.【詳解】解:y=2※x=,當(dāng)x>0時(shí),圖象是y=對(duì)稱軸右側(cè)的部分;當(dāng)x<0時(shí),圖象是y=對(duì)稱軸左側(cè)的部分,所以C選項(xiàng)是正確的.【點(diǎn)睛】本題考查了二次函數(shù)的圖象,利用定義運(yùn)算“※”為:a※b=得出分段函數(shù)是解題關(guān)鍵.二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13、5.【解析】

試題解析:過(guò)E作EM⊥AB于M,∵四邊形ABCD是正方形,∴AD=BC=CD=AB,∴EM=AD,BM=CE,∵△ABE的面積為8,∴×AB×EM=8,解得:EM=4,即AD=DC=BC=AB=4,∵CE=3,由勾股定理得:BE==5.考點(diǎn):1.正方形的性質(zhì);2.三角形的面積;3.勾股定理.14、C.【解析】分析:根據(jù)動(dòng)點(diǎn)P在OC上運(yùn)動(dòng)時(shí),∠APB逐漸減小,當(dāng)P在上運(yùn)動(dòng)時(shí),∠APB不變,當(dāng)P在DO上運(yùn)動(dòng)時(shí),∠APB逐漸增大,即可得出答案.解答:解:當(dāng)動(dòng)點(diǎn)P在OC上運(yùn)動(dòng)時(shí),∠APB逐漸減小;當(dāng)P在上運(yùn)動(dòng)時(shí),∠APB不變;當(dāng)P在DO上運(yùn)動(dòng)時(shí),∠APB逐漸增大.故選C.15、x≤1且x≠﹣1【解析】試題分析:根據(jù)二次根式有意義,分式有意義得:1﹣x≥0且x+1≠0,解得:x≤1且x≠﹣1.故答案為x≤1且x≠﹣1.考點(diǎn):函數(shù)自變量的取值范圍;分式有意義的條件;二次根式有意義的條件.16、100(1+)【解析】分析:如圖,利用平行線的性質(zhì)得∠A=60°,∠B=45°,在Rt△ACD中利用正切定義可計(jì)算出AD=100,在Rt△BCD中利用等腰直角三角形的性質(zhì)得BD=CD=100,然后計(jì)算AD+BD即可.詳解:如圖,∵無(wú)人機(jī)在空中C處測(cè)得地面A、B兩點(diǎn)的俯角分別為60°、45°,∴∠A=60°,∠B=45°,在Rt△ACD中,∵tanA=,∴AD==100,在Rt△BCD中,BD=CD=100,∴AB=AD+BD=100+100=100(1+).答:A、B兩點(diǎn)間的距離為100(1+)米.故答案為100(1+).點(diǎn)睛:本題考查了解直角三角形的應(yīng)用﹣仰角俯角問(wèn)題:解決此類問(wèn)題要了解角之間的關(guān)系,找到與已知和未知相關(guān)聯(lián)的直角三角形,當(dāng)圖形中沒(méi)有直角三角形時(shí),要通過(guò)作高或垂線構(gòu)造直角三角形.17、8π﹣8【解析】

連接EF、OC交于點(diǎn)H,根據(jù)正切的概念求出FH,根據(jù)菱形的面積公式求出菱形FOEC的面積,根據(jù)扇形面積公式求出扇形OAB的面積,計(jì)算即可.【詳解】連接EF、OC交于點(diǎn)H,則OH=2,∴FH=OH×tan30°=2,∴菱形FOEC的面積=×4×4=8,扇形OAB的面積==8π,則陰影部分的面積為8π﹣8,故答案為8π﹣8.【點(diǎn)睛】本題考查了扇形面積的計(jì)算、菱形的性質(zhì),熟練掌握扇形的面積公式、菱形的性質(zhì)、靈活運(yùn)用銳角三角函數(shù)的定義是解題的關(guān)鍵.18、1.738×1【解析】

解:將1738000用科學(xué)記數(shù)法表示為1.738×1.故答案為1.738×1.【點(diǎn)睛】本題考查科學(xué)記數(shù)法—表示較大的數(shù),掌握科學(xué)計(jì)數(shù)法的計(jì)數(shù)形式,難度不大.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟.19、1【解析】==1.故答案為1.20、(1)y=﹣x2+x+2;(2)m=﹣1或m=3時(shí),四邊形DMQF是平行四邊形;(3)點(diǎn)Q的坐標(biāo)為(3,2)或(﹣1,0)時(shí),以點(diǎn)B、Q、M為頂點(diǎn)的三角形與△BOD相似.【解析】

分析:(1)待定系數(shù)法求解可得;

(2)先利用待定系數(shù)法求出直線BD解析式為y=x-2,則Q(m,-m2+m+2)、M(m,m-2),由QM∥DF且四邊形DMQF是平行四邊形知QM=DF,據(jù)此列出關(guān)于m的方程,解之可得;

(3)易知∠ODB=∠QMB,故分①∠DOB=∠MBQ=90°,利用△DOB∽△MBQ得,再證△MBQ∽△BPQ得,即,解之即可得此時(shí)m的值;②∠BQM=90°,此時(shí)點(diǎn)Q與點(diǎn)A重合,△BOD∽△BQM′,易得點(diǎn)Q坐標(biāo).詳解:(1)由拋物線過(guò)點(diǎn)A(-1,0)、B(4,0)可設(shè)解析式為y=a(x+1)(x-4),

將點(diǎn)C(0,2)代入,得:-4a=2,

解得:a=-,

則拋物線解析式為y=-(x+1)(x-4)=-x2+x+2;

(2)由題意知點(diǎn)D坐標(biāo)為(0,-2),

設(shè)直線BD解析式為y=kx+b,

將B(4,0)、D(0,-2)代入,得:,解得:,

∴直線BD解析式為y=x-2,

∵QM⊥x軸,P(m,0),

∴Q(m,-m2+m+2)、M(m,m-2),

則QM=-m2+m+2-(m-2)=-m2+m+4,

∵F(0,)、D(0,-2),

∴DF=,

∵QM∥DF,

∴當(dāng)-m2+m+4=時(shí),四邊形DMQF是平行四邊形,

解得:m=-1(舍)或m=3,

即m=3時(shí),四邊形DMQF是平行四邊形;

(3)如圖所示:

∵QM∥DF,

∴∠ODB=∠QMB,

分以下兩種情況:

①當(dāng)∠DOB=∠MBQ=90°時(shí),△DOB∽△MBQ,

則,

∵∠MBQ=90°,

∴∠MBP+∠PBQ=90°,

∵∠MPB=∠BPQ=90°,

∴∠MBP+∠BMP=90°,

∴∠BMP=∠PBQ,

∴△MBQ∽△BPQ,

∴,即,

解得:m1=3、m2=4,

當(dāng)m=4時(shí),點(diǎn)P、Q、M均與點(diǎn)B重合,不能構(gòu)成三角形,舍去,

∴m=3,點(diǎn)Q的坐標(biāo)為(3,2);

②當(dāng)∠BQM=90°時(shí),此時(shí)點(diǎn)Q與點(diǎn)A重合,△BOD∽△BQM′,

此時(shí)m=-1,點(diǎn)Q的坐標(biāo)為(-1,0);

綜上,點(diǎn)Q的坐標(biāo)為(3,2)或(-1,0)時(shí),以點(diǎn)B、Q、M為頂點(diǎn)的三角形與△BOD相似.點(diǎn)睛:本題主要考查二次函數(shù)的綜合問(wèn)題,解題的關(guān)鍵是掌握待定系數(shù)法求函數(shù)解析式、平行四邊形的判定與性質(zhì)、相似三角形的判定與性質(zhì)及分類討論思想的運(yùn)用.【詳解】請(qǐng)?jiān)诖溯斎朐斀猓?1、(1)11.4;(2)19.5m.【解析】

(1)根據(jù)直角三角形的性質(zhì)和三角函數(shù)解答即可;

(2)過(guò)點(diǎn)D作DH⊥地面于H,利用直角三角形的性質(zhì)和三角函數(shù)解答即可.【詳解】解:(1)在Rt△ABC中,∵∠BAC=64°,AC=5m,∴AB=ACcos64°故答案為:11.4;(2)過(guò)點(diǎn)D作DH⊥地面于H,交水平線于點(diǎn)E,在Rt△ADE中,∵AD=20m,∠DAE=64°,EH=1.5m,∴DE=sin64°×AD≈20×0.9≈18(m),即DH=DE+EH=18+1.5=19.5(m),答:如果該吊車(chē)吊臂的最大長(zhǎng)度AD為20m,那么從地面上吊起貨物的最大高度是19.5m.【點(diǎn)睛】本題考查解直角三角形、銳角三角函數(shù)等知識(shí),解題的關(guān)鍵是添加輔助線,構(gòu)造直角三角形.22、(1)25;(2)8°48′;(3)56【解析】試題分析:(1)由C等級(jí)頻數(shù)為15除以C等級(jí)所占的百分比60%,即可求得m的值;(2)首先求得B等級(jí)的頻數(shù),繼而求得B等級(jí)所在扇形的圓心角的大小;(3)首先根據(jù)題意畫(huà)出樹(shù)狀圖,然后由樹(shù)狀圖求得所有等可能的結(jié)果與其中至少有一家是A等級(jí)的情況,再利用概率公式求解即可求得答案.試題解析:(1)∵C等級(jí)頻數(shù)為15,占60%,∴m=15÷60%=25;(2)∵B等級(jí)頻數(shù)為:25﹣2﹣15﹣6=2,∴B等級(jí)所在扇形的圓心角的大小為:225(3)評(píng)估成績(jī)不少于80分的連鎖店中,有兩家等級(jí)為A,有兩家等級(jí)為B,畫(huà)樹(shù)狀圖得:∵共有12種等可能的結(jié)果,其中至少有一家是A等級(jí)的有10種情況,∴其中至少有一家是A等級(jí)的概率為:1012=5考點(diǎn):頻數(shù)(率)分布表;扇形統(tǒng)計(jì)圖;列表法與樹(shù)狀圖法.23、【解析】

試題分析:(1)求出總的作文篇數(shù),即可得出九年級(jí)參賽作文篇數(shù)對(duì)應(yīng)的圓心角的度數(shù),求出八年級(jí)的作文篇數(shù),補(bǔ)全條形統(tǒng)計(jì)圖即可;(2)設(shè)四篇榮獲特等獎(jiǎng)的作文分別為A、B、C、D,其中A代表七年級(jí)獲獎(jiǎng)的特等獎(jiǎng)作文,用畫(huà)樹(shù)狀法即可求得結(jié)果.試題解析:(1)20÷20%=100,九年級(jí)參賽作文篇數(shù)對(duì)應(yīng)的圓心角=360°×=126°;100﹣20﹣35=45,補(bǔ)全條形統(tǒng)計(jì)圖如圖所示:(2)假設(shè)4篇榮獲特等獎(jiǎng)的作文分別為A、B、C、D,其中A代表七年級(jí)獲獎(jiǎng)的特等獎(jiǎng)作文.畫(huà)樹(shù)狀圖法:共有12種可能的結(jié)果,七年級(jí)特等獎(jiǎng)作文被選登在??系慕Y(jié)果有6種,∴P(七年級(jí)特等獎(jiǎng)作文被選登在??希?.考點(diǎn):1.條形統(tǒng)計(jì)圖;2.扇形統(tǒng)計(jì)圖;3.列表法與畫(huà)樹(shù)狀圖法.24、(1)y=﹣x2+x+2;(2)滿足條件的點(diǎn)P的坐標(biāo)為(,)或(,﹣)或(,5)或(,﹣5).【解析】

(1)利用待定系數(shù)法求拋物線的表達(dá)式;(2)使△BMP與△ABD相似的有三種情況,分別求出這三個(gè)點(diǎn)的坐標(biāo).【詳解】(1)∵拋物線與x軸交于點(diǎn)A(﹣1,0),B(4,0),∴設(shè)拋物線的解析式為y=a(x+1)(x﹣4),∵拋物線與y軸交于點(diǎn)C(0,2),∴a×1×(﹣4)=2,∴a=﹣,∴拋物線的解析式為y=﹣(x+1)(x﹣4)=﹣x2+x+2;(2)如圖1,連接CD,∵拋物線的解析式為y=﹣x2+x+2,∴拋物線的對(duì)稱軸為直線x=,∴M(,0),∵點(diǎn)D與點(diǎn)C關(guān)于點(diǎn)M對(duì)稱,且C(0,2),∴D(3,﹣2),∵M(jìn)A=MB,MC=MD,∴四邊形ACBD是平行四邊形,∵A(﹣1,0),B(4,0),C(3,﹣22),∴AB2=25,BD2=(4﹣1)2+22=5,AD2=(3+1)2+22=20,∴AD2+BD2=AB2,∴△ABD是直角三角形,∴∠ADB=90°,設(shè)點(diǎn)P(,m),∴MP=|m|,∵M(jìn)(,0),B(4,0),∴BM=,∵△BMP與△ABD相似,∴①當(dāng)△BMP∽ADB時(shí),∴,∴,∴m=±,∴P(,)或(,﹣),②當(dāng)△BMP∽△

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論