版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2022屆福建省部分市縣中考四模數(shù)學試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.一個不透明的布袋里裝有5個紅球,2個白球,3個黃球,它們除顏色外其余都相同,從袋中任意摸出1個球,是黃球的概率為()A. B. C. D.2.一元二次方程x2﹣3x+1=0的根的情況()A.有兩個相等的實數(shù)根 B.有兩個不相等的實數(shù)根C.沒有實數(shù)根 D.以上答案都不對3.已知某校女子田徑隊23人年齡的平均數(shù)和中位數(shù)都是13歲,但是后來發(fā)現(xiàn)其中一位同學的年齡登記錯誤,將14歲寫成15歲,經(jīng)重新計算后,正確的平均數(shù)為a歲,中位數(shù)為b歲,則下列結論中正確的是()A.a(chǎn)<13,b=13B.a(chǎn)<13,b<13C.a(chǎn)>13,b<13D.a(chǎn)>13,b=134.下圖是由八個相同的小正方體組合而成的幾何體,其左視圖是()A. B. C. D.5.如圖,在⊙O中,AE是直徑,半徑OC垂直于弦AB于D,連接BE,若AB=2,CD=1,則BE的長是A.5 B.6 C.7 D.86.某射手在同一條件下進行射擊,結果如下表所示:射擊次數(shù)(n)102050100200500……擊中靶心次數(shù)(m)8194492178451……擊中靶心頻率(mn0.800.950.880.920.890.90……由此表推斷這個射手射擊1次,擊中靶心的概率是()A.0.6 B.0.7 C.0.8 D.0.97.計算﹣1﹣(﹣4)的結果為()A.﹣3 B.3 C.﹣5 D.58.下列運算正確的是()A.a(chǎn)3?a2=a6 B.(x3)3=x6 C.x5+x5=x10 D.﹣a8÷a4=﹣a49.一、單選題如圖,△ABC中,AD是BC邊上的高,AE、BF分別是∠BAC、∠ABC的平分線,∠BAC=50°,∠ABC=60°,則∠EAD+∠ACD=()A.75° B.80° C.85° D.90°10.小明和他的爸爸媽媽共3人站成一排拍照,他的爸爸媽媽相鄰的概率是()A. B. C. D.二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,在平行四邊形紙片上做隨機扎針實驗,則針頭扎在陰影區(qū)域的概率為__________.12.一次函數(shù)y=(k﹣3)x﹣k+2的圖象經(jīng)過第一、三、四象限.則k的取值范圍是_____.13.一個不透明的袋子中裝有三個小球,它們除分別標有的數(shù)字1,3,5不同外,其他完全相同.從袋子中任意摸出一球后放回,再任意摸出一球,則兩次摸出的球所標數(shù)字之和為8的概率是__________.14.若a、b為實數(shù),且b=+4,則a+b=_____.15.如圖(a),有一張矩形紙片ABCD,其中AD=6cm,以AD為直徑的半圓,正好與對邊BC相切,將矩形紙片ABCD沿DE折疊,使點A落在BC上,如圖(b).則半圓還露在外面的部分(陰影部分)的面積為_______.16.如圖,在平面直角坐標系中,四邊形OABC的頂點O是坐標原點,點A的坐標(6,0),B的坐標(0,8),點C的坐標(﹣2,4),點M,N分別為四邊形OABC邊上的動點,動點M從點O開始,以每秒1個單位長度的速度沿O→A→B路線向終點B勻速運動,動點N從O點開始,以每秒2個單位長度的速度沿O→C→B→A路線向終點A勻速運動,點M,N同時從O點出發(fā),當其中一點到達終點后,另一點也隨之停止運動,設動點運動的時間為t秒(t>0),△OMN的面積為S.則:AB的長是_____,BC的長是_____,當t=3時,S的值是_____.三、解答題(共8題,共72分)17.(8分)先化簡,再在1,2,3中選取一個適當?shù)臄?shù)代入求值.18.(8分)隨著通訊技術迅猛發(fā)展,人與人之間的溝通方式更多樣、便捷某校數(shù)學興趣小組設計了“你最喜歡的溝通方式”調查問卷每人必選且只選一種,在全校范圍內隨機調查了部分學生,將統(tǒng)計結果繪制了如下兩幅不完整的統(tǒng)計圖,請結合圖中所給的信息解答下列問題:這次統(tǒng)計共抽查了______名學生;在扇形統(tǒng)計圖中,表示“QQ”的扇形圓心角的度數(shù)為______;將條形統(tǒng)計圖補充完整;該校共有1500名學生,請估計該校最喜歡用“微信”進行溝通的學生有多少名.19.(8分)如圖是某貨站傳送貨物的平面示意圖.為了提高傳送過程的安全性,工人師傅欲減小傳送帶與地面的夾角,使其由45°改為30°.已知原傳送帶AB長為4米.(1)求新傳送帶AC的長度;(2)如果需要在貨物著地點C的左側留出2米的通道,試判斷距離B點4米的貨物MNQP是否需要挪走,并說明理由.(說明:⑴⑵的計算結果精確到0.1米,參考數(shù)據(jù):≈1.41,≈1.73,≈2.24,≈2.45)20.(8分)如圖,已知△ABC為等邊三角形,點D、E分別在BC、AC邊上,且AE=CD,AD與BE相交于點F.求證:△ABE≌△CAD;求∠BFD的度數(shù).21.(8分)計算:(1)(2)2﹣|﹣4|+3﹣1×6+20;(2).22.(10分)計算:﹣(﹣2)2+|﹣3|﹣20180×23.(12分)如圖,一座鋼結構橋梁的框架是△ABC,水平橫梁BC長18米,中柱AD高6米,其中D是BC的中點,且AD⊥BC.(1)求sinB的值;(2)現(xiàn)需要加裝支架DE、EF,其中點E在AB上,BE=2AE,且EF⊥BC,垂足為點F,求支架DE的長.24.《孫子算經(jīng)》是中國傳統(tǒng)數(shù)學的重要著作之一,其中記載的“蕩杯問題”很有趣.《孫子算經(jīng)》記載“今有婦人河上蕩杯.津吏問曰:‘杯何以多?’婦人曰:‘家有客.’津吏曰:‘客幾何?’婦人曰:‘二人共飯,三人共羹,四人共肉,凡用杯六十五.’不知客幾何?”譯文:“2人同吃一碗飯,3人同吃一碗羹,4人同吃一碗肉,共用65個碗,問有多少客人?”
參考答案一、選擇題(共10小題,每小題3分,共30分)1、A【解析】
讓黃球的個數(shù)除以球的總個數(shù)即為所求的概率.【詳解】解:因為一共10個球,其中3個黃球,所以從袋中任意摸出1個球是黃球的概率是.
故選:A.【點睛】本題考查概率的基本計算,用到的知識點為:概率等于所求情況數(shù)與總情況數(shù)之比.2、B【解析】
首先確定a=1,b=-3,c=1,然后求出△=b2-4ac的值,進而作出判斷.【詳解】∵a=1,b=-3,c=1,∴△=(-3)2-4×1×1=5>0,∴一元二次方程x2-3x+1=0兩個不相等的實數(shù)根;故選B.【點睛】此題考查了根的判別式,一元二次方程根的情況與判別式△的關系:(1)△>0?方程有兩個不相等的實數(shù)根;(2)△=0?方程有兩個相等的實數(shù);(3)△<0?方程沒有實數(shù)根.3、A【解析】試題解析:∵原來的平均數(shù)是13歲,∴13×23=299(歲),∴正確的平均數(shù)a=299-12∵原來的中位數(shù)13歲,將14歲寫成15歲,最中間的數(shù)還是13歲,∴b=13;故選A.考點:1.平均數(shù);2.中位數(shù).4、B【解析】
解:找到從左面看所得到的圖形,從左面可看到從左往右三列小正方形的個數(shù)為:2,3,1.故選B.5、B【解析】
根據(jù)垂徑定理求出AD,根據(jù)勾股定理列式求出半徑,根據(jù)三角形中位線定理計算即可.【詳解】解:∵半徑OC垂直于弦AB,∴AD=DB=AB=在Rt△AOD中,OA2=(OC-CD)2+AD2,即OA2=(OA-1)2+()2,解得,OA=4∴OD=OC-CD=3,∵AO=OE,AD=DB,∴BE=2OD=6故選B【點睛】本題考查的是垂徑定理、勾股定理,掌握垂直于弦的直徑平分這條弦是解題的關鍵6、D【解析】
觀察表格的數(shù)據(jù)可以得到擊中靶心的頻率,然后用頻率估計概率即可求解.【詳解】依題意得擊中靶心頻率為0.90,估計這名射手射擊一次,擊中靶心的概率約為0.90.故選:D.【點睛】此題主要考查了利用頻率估計概率,首先通過實驗得到事件的頻率,然后用頻率估計概率即可解決問題.7、B【解析】
原式利用減法法則變形,計算即可求出值.【詳解】,故選:B.【點睛】本題主要考查了有理數(shù)的加減,熟練掌握有理數(shù)加減的運算法則是解決本題的關鍵.8、D【解析】
各項計算得到結果,即可作出判斷.【詳解】A、原式=a5,不符合題意;B、原式=x9,不符合題意;C、原式=2x5,不符合題意;D、原式=-a4,符合題意,故選D.【點睛】此題考查了整式的混合運算,熟練掌握運算法則是解本題的關鍵.9、A【解析】分析:依據(jù)AD是BC邊上的高,∠ABC=60°,即可得到∠BAD=30°,依據(jù)∠BAC=50°,AE平分∠BAC,即可得到∠DAE=5°,再根據(jù)△ABC中,∠C=180°﹣∠ABC﹣∠BAC=70°,可得∠EAD+∠ACD=75°.詳解:∵AD是BC邊上的高,∠ABC=60°,∴∠BAD=30°,∵∠BAC=50°,AE平分∠BAC,∴∠BAE=25°,∴∠DAE=30°﹣25°=5°,∵△ABC中,∠C=180°﹣∠ABC﹣∠BAC=70°,∴∠EAD+∠ACD=5°+70°=75°,故選A.點睛:本題考查了三角形內角和定理:三角形內角和為180°.解決問題的關鍵是三角形外角性質以及角平分線的定義的運用.10、D【解析】試題解析:設小明為A,爸爸為B,媽媽為C,則所有的可能性是:(ABC),(ACB),(BAC),(BCA),(CAB),(CBA),∴他的爸爸媽媽相鄰的概率是:,故選D.二、填空題(本大題共6個小題,每小題3分,共18分)11、【解析】
先根據(jù)平行四邊形的性質求出對角線所分的四個三角形面積相等,再求出概率即可.【詳解】解:∵四邊形是平行四邊形,∴對角線把平行四邊形分成面積相等的四部分,觀察發(fā)現(xiàn):圖中陰影部分面積=S四邊形,∴針頭扎在陰影區(qū)域內的概率為;故答案為:.【點睛】此題主要考查了幾何概率,以及平行四邊形的性質,用到的知識點為:概率=相應的面積與總面積之比.12、k>3【解析】分析:根據(jù)函數(shù)圖象所經(jīng)過的象限列出不等式組通過解該不等式組可以求得k的取值范圍.詳解:∵一次函教y=(k?3)x?k+2的圖象經(jīng)過第一、三、四象限,∴解得,k>3.故答案是:k>3.點睛:此題主要考查了一次函數(shù)圖象,一次函數(shù)的圖象有四種情況:
①當時,函數(shù)的圖象經(jīng)過第一、二、三象限;
②當時,函數(shù)的圖象經(jīng)過第一、三、四象限;
③當時,函數(shù)的圖象經(jīng)過第一、二、四象限;
④當時,函數(shù)的圖象經(jīng)過第二、三、四象限.13、【解析】
根據(jù)題意列出表格或樹狀圖即可解答.【詳解】解:根據(jù)題意畫出樹狀圖如下:總共有9種情況,其中兩個數(shù)字之和為8的有2種情況,∴,故答案為:.【點睛】本題考查了概率的求解,解題的關鍵是畫出樹狀圖或列出表格,并熟記概率的計算公式.14、5或1【解析】
根據(jù)二次根式的性質和分式的意義,被開方數(shù)大于或等于0,分母不等于0,可以求出a的值,b的值,根據(jù)有理數(shù)的加法,可得答案.【詳解】由被開方數(shù)是非負數(shù),得,解得a=1,或a=﹣1,b=4,當a=1時,a+b=1+4=5,當a=﹣1時,a+b=﹣1+4=1,故答案為5或1.【點睛】本題考查了函數(shù)表達式有意義的條件,當函數(shù)表達式是整式時,自變量可取全體實數(shù);當函數(shù)表達式是分式時,考慮分式的分母不能為0;當函數(shù)表達式是二次根式時,被開方數(shù)非負.15、【解析】
解:如圖,作OH⊥DK于H,連接OK,∵以AD為直徑的半圓,正好與對邊BC相切,∴AD=2CD.∴根據(jù)折疊對稱的性質,A'D=2CD.∵∠C=90°,∴∠DA'C=30°.∴∠ODH=30°.∴∠DOH=60°.∴∠DOK=120°.∴扇形ODK的面積為.∵∠ODH=∠OKH=30°,OD=3cm,∴.∴.∴△ODK的面積為.∴半圓還露在外面的部分(陰影部分)的面積是:.故答案為:.16、10,1,1【解析】
作CD⊥x軸于D,CE⊥OB于E,由勾股定理得出AB=10,OC==1,求出BE=OB﹣OE=4,得出OE=BE,由線段垂直平分線的性質得出BC=OC=1;當t=3時,N到達C點,M到達OA的中點,OM=3,ON=OC=1,由三角形面積公式即可得出△OMN的面積.【詳解】解:作CD⊥x軸于D,CE⊥OB于E,如圖所示:由題意得:OA=1,OB=8,∵∠AOB=90°,∴AB==10;∵點C的坐標(﹣2,4),∴OC==1,OE=4,∴BE=OB﹣OE=4,∴OE=BE,∴BC=OC=1;當t=3時,N到達C點,M到達OA的中點,OM=3,ON=OC=1,∴△OMN的面積S=×3×4=1;故答案為:10,1,1.【點睛】本題考查了勾股定理、坐標與圖形性質、線段垂直平分線的性質、三角形面積公式等知識;熟練掌握勾股定理是解題的關鍵.三、解答題(共8題,共72分)17、,當x=2時,原式=.【解析】試題分析:先括號內通分,然后計算除法,最后取值時注意使得分式有意義,最后代入化簡即可.試題解析:原式===當x=2時,原式=.18、(1)100,108°;(2)答案見解析;(3)600人.【解析】
(1)先利用QQ計算出宗人數(shù),再用百分比計算度數(shù);(2)按照扇形圖補充條形圖;(3)利用微信溝通所占百分比計算總人數(shù).【詳解】解:(1)喜歡用電話溝通的人數(shù)為20,所占百分比為20%,∴此次共抽查了:20÷20%=100人.喜歡用QQ溝通所占比例為:,∴QQ的扇形圓心角的度數(shù)為:360°×=108°.(2)喜歡用短信的人數(shù)為:100×5%=5人喜歡用微信的人數(shù)為:100-20-5-30-5=40補充圖形,如圖所示:(3)喜歡用微信溝通所占百分比為:×100%=40%.∴該校共有1500名學生,估計該校最喜歡用“微信”進行溝通的學生有:1500×40%=600人.【點睛】本題考查的是條形統(tǒng)計圖和扇形統(tǒng)計圖的綜合運用.讀懂統(tǒng)計圖,從統(tǒng)計圖中得到必要的信息是解決問題的關鍵.條形統(tǒng)計圖能清楚地表示出每個項目的數(shù)據(jù).19、(1)5.6(2)貨物MNQP應挪走,理由見解析.【解析】
(1)如圖,作AD⊥BC于點DRt△ABD中,AD=ABsin45°=4在Rt△ACD中,∵∠ACD=30°∴AC=2AD=4即新傳送帶AC的長度約為5.6米.(2)結論:貨物MNQP應挪走.在Rt△ABD中,BD=ABcos45°=4在Rt△ACD中,CD=ACcos30°=∴CB=CD—BD=∵PC=PB—CB≈4—2.1=1.9<2∴貨物MNQP應挪走.20、(1)證明見解析;(2).【解析】試題分析:(1)根據(jù)等邊三角形的性質根據(jù)SAS即可證明△ABE≌△CAD;(2)由三角形全等可以得出∠ABE=∠CAD,由外角與內角的關系就可以得出結論.試題解析:(1)∵△ABC為等邊三角形,∴AB=BC=AC,∠ABC=∠ACB=∠BAC=60°.在△ABE和△CAD中,AB=CA,∠BAC=∠C,AE=CD,∴△ABE≌△CAD(SAS),(2)∵△ABE≌△CAD,∴∠ABE=∠CAD,∵∠BAD+∠CAD=60°,∴∠BAD+∠EBA=60°,∵∠BFD=∠ABE+∠BAD,∴∠BF
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 武漢紡織大學《醫(yī)藥企業(yè)管理》2023-2024學年第一學期期末試卷
- 二零二五年教育輔助機構勞動合同及教學質量協(xié)議3篇
- 二零二五年環(huán)保產(chǎn)品生產(chǎn)加工合作合同范本2篇
- 二零二五年度塑料加工工廠承包生產(chǎn)與環(huán)保責任合同3篇
- 濰坊護理職業(yè)學院《學習科學與技術》2023-2024學年第一學期期末試卷
- 天津藝術職業(yè)學院《燈光照明基礎》2023-2024學年第一學期期末試卷
- 二零二五年度高科技設備租賃擔保服務合同3篇
- 2024民間借貸合同(自動放棄利息)
- 二零二五年影視制作項目投資合同正本3篇
- 二零二五版影視制作借款合同示范文本2篇
- 金蝶云星辰初級考試題庫
- 常見老年慢性病防治與護理課件整理
- 履約情況證明(共6篇)
- 云南省迪慶藏族自治州各縣區(qū)鄉(xiāng)鎮(zhèn)行政村村莊村名居民村民委員會明細
- 設備機房出入登記表
- 六年級語文-文言文閱讀訓練題50篇-含答案
- 醫(yī)用冰箱溫度登記表
- 零售學(第二版)第01章零售導論
- 口袋妖怪白金光圖文攻略2周目
- 光伏發(fā)電站集中監(jiān)控系統(tǒng)通信及數(shù)據(jù)標準
- 三年級下冊生字組詞(帶拼音)
評論
0/150
提交評論