版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2024-2025學(xué)年陜西省西安市高三下學(xué)期4月模擬考試數(shù)學(xué)試題試卷注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)、考場(chǎng)號(hào)和座位號(hào)填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時(shí),選出每小題答案后,用2B鉛筆把答題卡上對(duì)應(yīng)題目選項(xiàng)的答案信息點(diǎn)涂黑;如需改動(dòng),用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動(dòng),先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.我國古代數(shù)學(xué)名著《數(shù)書九章》中有“天池盆測(cè)雨”題:在下雨時(shí),用一個(gè)圓臺(tái)形的天池盆接雨水.天池盆盆口直徑為二尺八寸,盆底直徑為一尺二寸,盆深一尺八寸.若盆中積水深九寸,則平地降雨量是(注:①平地降雨量等于盆中積水體積除以盆口面積;②一尺等于十寸;③臺(tái)體的體積公式).A.2寸 B.3寸 C.4寸 D.5寸2.集合的子集的個(gè)數(shù)是()A.2 B.3 C.4 D.83.已知函數(shù),以下結(jié)論正確的個(gè)數(shù)為()①當(dāng)時(shí),函數(shù)的圖象的對(duì)稱中心為;②當(dāng)時(shí),函數(shù)在上為單調(diào)遞減函數(shù);③若函數(shù)在上不單調(diào),則;④當(dāng)時(shí),在上的最大值為1.A.1 B.2 C.3 D.44.第24屆冬奧會(huì)將于2022年2月4日至2月20日在北京市和張家口市舉行,為了解奧運(yùn)會(huì)會(huì)旗中五環(huán)所占面積與單獨(dú)五個(gè)環(huán)面積之和的比值P,某學(xué)生做如圖所示的模擬實(shí)驗(yàn):通過計(jì)算機(jī)模擬在長為10,寬為6的長方形奧運(yùn)會(huì)旗內(nèi)隨機(jī)取N個(gè)點(diǎn),經(jīng)統(tǒng)計(jì)落入五環(huán)內(nèi)部及其邊界上的點(diǎn)數(shù)為n個(gè),已知圓環(huán)半徑為1,則比值P的近似值為()A. B. C. D.5.已知正三角形的邊長為2,為邊的中點(diǎn),、分別為邊、上的動(dòng)點(diǎn),并滿足,則的取值范圍是()A. B. C. D.6.根據(jù)散點(diǎn)圖,對(duì)兩個(gè)具有非線性關(guān)系的相關(guān)變量x,y進(jìn)行回歸分析,設(shè)u=lny,v=(x-4)2,利用最小二乘法,得到線性回歸方程為=0.5v+2,則變量y的最大值的估計(jì)值是()A.e B.e2 C.ln2 D.2ln27.已知隨機(jī)變量X的分布列如下表:X01Pabc其中a,b,.若X的方差對(duì)所有都成立,則()A. B. C. D.8.已知(),i為虛數(shù)單位,則()A. B.3 C.1 D.59.已知不重合的平面和直線,則“”的充分不必要條件是()A.內(nèi)有無數(shù)條直線與平行 B.且C.且 D.內(nèi)的任何直線都與平行10.半正多面體(semiregularsolid)亦稱“阿基米德多面體”,是由邊數(shù)不全相同的正多邊形為面的多面體,體現(xiàn)了數(shù)學(xué)的對(duì)稱美.二十四等邊體就是一種半正多面體,是由正方體切截而成的,它由八個(gè)正三角形和六個(gè)正方形為面的半正多面體.如圖所示,圖中網(wǎng)格是邊長為1的正方形,粗線部分是某二十四等邊體的三視圖,則該幾何體的體積為()A. B. C. D.11.是的()條件A.充分不必要 B.必要不充分 C.充要 D.既不充分也不必要12.設(shè),,是非零向量.若,則()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若的展開式中只有第六項(xiàng)的二項(xiàng)式系數(shù)最大,則展開式中各項(xiàng)的系數(shù)和是________.14.已知函數(shù),對(duì)于任意都有,則的值為______________.15.的二項(xiàng)展開式中,含項(xiàng)的系數(shù)為__________.16.已知點(diǎn)為雙曲線的右焦點(diǎn),兩點(diǎn)在雙曲線上,且關(guān)于原點(diǎn)對(duì)稱,若,設(shè),且,則該雙曲線的焦距的取值范圍是________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在三棱柱中,平面平面,側(cè)面為平行四邊形,側(cè)面為正方形,,,為的中點(diǎn).(1)求證:平面;(2)求二面角的大小.18.(12分)已知函數(shù).若在定義域內(nèi)存在,使得成立,則稱為函數(shù)的局部對(duì)稱點(diǎn).(1)若a,且a≠0,證明:函數(shù)有局部對(duì)稱點(diǎn);(2)若函數(shù)在定義域內(nèi)有局部對(duì)稱點(diǎn),求實(shí)數(shù)c的取值范圍;(3)若函數(shù)在R上有局部對(duì)稱點(diǎn),求實(shí)數(shù)m的取值范圍.19.(12分)已知橢圓的焦點(diǎn)在軸上,且順次連接四個(gè)頂點(diǎn)恰好構(gòu)成了一個(gè)邊長為且面積為的菱形.(1)求橢圓的方程;(2)設(shè),過橢圓右焦點(diǎn)的直線交于、兩點(diǎn),若對(duì)滿足條件的任意直線,不等式恒成立,求的最小值.20.(12分)某商店舉行促銷反饋活動(dòng),顧客購物每滿200元,有一次抽獎(jiǎng)機(jī)會(huì)(即滿200元可以抽獎(jiǎng)一次,滿400元可以抽獎(jiǎng)兩次,依次類推).抽獎(jiǎng)的規(guī)則如下:在一個(gè)不透明口袋中裝有編號(hào)分別為1,2,3,4,5的5個(gè)完全相同的小球,顧客每次從口袋中摸出一個(gè)小球,共摸三次,每次摸出的小球均不放回口袋,若摸得的小球編號(hào)一次比一次大(如1,2,5),則獲得一等獎(jiǎng),獎(jiǎng)金40元;若摸得的小球編號(hào)一次比一次小(如5,3,1),則獲得二等獎(jiǎng),獎(jiǎng)金20元;其余情況獲得三等獎(jiǎng),獎(jiǎng)金10元.(1)某人抽獎(jiǎng)一次,求其獲獎(jiǎng)金額X的概率分布和數(shù)學(xué)期望;(2)趙四購物恰好滿600元,假設(shè)他不放棄每次抽獎(jiǎng)機(jī)會(huì),求他獲得的獎(jiǎng)金恰好為60元的概率.21.(12分)已知函數(shù)f(x)=|x-2|-|x+1|.(Ⅰ)解不等式f(x)>1;(Ⅱ)當(dāng)x>0時(shí),若函數(shù)g(x)(a>0)的最小值恒大于f(x),求實(shí)數(shù)a的取值范圍.22.(10分)選修4-4:坐標(biāo)系與參數(shù)方程:在平面直角坐標(biāo)系中,曲線:(為參數(shù)),在以平面直角坐標(biāo)系的原點(diǎn)為極點(diǎn)、軸的正半軸為極軸,且與平面直角坐標(biāo)系取相同單位長度的極坐標(biāo)系中,曲線:.(1)求曲線的普通方程以及曲線的平面直角坐標(biāo)方程;(2)若曲線上恰好存在三個(gè)不同的點(diǎn)到曲線的距離相等,求這三個(gè)點(diǎn)的極坐標(biāo).
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.B【解析】試題分析:根據(jù)題意可得平地降雨量,故選B.考點(diǎn):1.實(shí)際應(yīng)用問題;2.圓臺(tái)的體積.2.D【解析】
先確定集合中元素的個(gè)數(shù),再得子集個(gè)數(shù).【詳解】由題意,有三個(gè)元素,其子集有8個(gè).故選:D.本題考查子集的個(gè)數(shù)問題,含有個(gè)元素的集合其子集有個(gè),其中真子集有個(gè).3.C【解析】
逐一分析選項(xiàng),①根據(jù)函數(shù)的對(duì)稱中心判斷;②利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性;③先求函數(shù)的導(dǎo)數(shù),若滿足條件,則極值點(diǎn)必在區(qū)間;④利用導(dǎo)數(shù)求函數(shù)在給定區(qū)間的最值.【詳解】①為奇函數(shù),其圖象的對(duì)稱中心為原點(diǎn),根據(jù)平移知識(shí),函數(shù)的圖象的對(duì)稱中心為,正確.②由題意知.因?yàn)楫?dāng)時(shí),,又,所以在上恒成立,所以函數(shù)在上為單調(diào)遞減函數(shù),正確.③由題意知,當(dāng)時(shí),,此時(shí)在上為增函數(shù),不合題意,故.令,解得.因?yàn)樵谏喜粏握{(diào),所以在上有解,需,解得,正確.④令,得.根據(jù)函數(shù)的單調(diào)性,在上的最大值只可能為或.因?yàn)椋?,所以最大值?4,結(jié)論錯(cuò)誤.故選:C本題考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,極值,最值,意在考查基本的判斷方法,屬于基礎(chǔ)題型.4.B【解析】
根據(jù)比例關(guān)系求得會(huì)旗中五環(huán)所占面積,再計(jì)算比值.【詳解】設(shè)會(huì)旗中五環(huán)所占面積為,由于,所以,故可得.故選:B.本題考查面積型幾何概型的問題求解,屬基礎(chǔ)題.5.A【解析】
建立平面直角坐標(biāo)系,求出直線,設(shè)出點(diǎn),通過,找出與的關(guān)系.通過數(shù)量積的坐標(biāo)表示,將表示成與的關(guān)系式,消元,轉(zhuǎn)化成或的二次函數(shù),利用二次函數(shù)的相關(guān)知識(shí),求出其值域,即為的取值范圍.【詳解】以D為原點(diǎn),BC所在直線為軸,AD所在直線為軸建系,設(shè),則直線,設(shè)點(diǎn),所以由得,即,所以,由及,解得,由二次函數(shù)的圖像知,,所以的取值范圍是.故選A.本題主要考查解析法在向量中的應(yīng)用,以及轉(zhuǎn)化與化歸思想的運(yùn)用.6.B【解析】
將u=lny,v=(x-4)2代入線性回歸方程=-0.5v+2,利用指數(shù)函數(shù)和二次函數(shù)的性質(zhì)可得最大估計(jì)值.【詳解】解:將u=lny,v=(x4)2代入線性回歸方程=0.5v+2得:,即,當(dāng)時(shí),取到最大值2,因?yàn)樵谏蠁握{(diào)遞增,則取到最大值.故選:B.本題考查了非線性相關(guān)的二次擬合問題,考查復(fù)合型指數(shù)函數(shù)的最值,是基礎(chǔ)題,.7.D【解析】
根據(jù)X的分布列列式求出期望,方差,再利用將方差變形為,從而可以利用二次函數(shù)的性質(zhì)求出其最大值為,進(jìn)而得出結(jié)論.【詳解】由X的分布列可得X的期望為,又,所以X的方差,因?yàn)?所以當(dāng)且僅當(dāng)時(shí),取最大值,又對(duì)所有成立,所以,解得,故選:D.本題綜合考查了隨機(jī)變量的期望?方差的求法,結(jié)合了概率?二次函數(shù)等相關(guān)知識(shí),需要學(xué)生具備一定的計(jì)算能力,屬于中檔題.8.C【解析】
利用復(fù)數(shù)代數(shù)形式的乘法運(yùn)算化簡得答案.【詳解】由,得,解得.故選:C.本題考查復(fù)數(shù)代數(shù)形式的乘法運(yùn)算,是基礎(chǔ)題.9.B【解析】
根據(jù)充分不必要條件和直線和平面,平面和平面的位置關(guān)系,依次判斷每個(gè)選項(xiàng)得到答案.【詳解】A.內(nèi)有無數(shù)條直線與平行,則相交或,排除;B.且,故,當(dāng),不能得到且,滿足;C.且,,則相交或,排除;D.內(nèi)的任何直線都與平行,故,若,則內(nèi)的任何直線都與平行,充要條件,排除.故選:.本題考查了充分不必要條件和直線和平面,平面和平面的位置關(guān)系,意在考查學(xué)生的綜合應(yīng)用能力.10.D【解析】
根據(jù)三視圖作出該二十四等邊體如下圖所示,求出該幾何體的棱長,可以將該幾何體看作是相應(yīng)的正方體沿各棱的中點(diǎn)截去8個(gè)三棱錐所得到的,可求出其體積.【詳解】如下圖所示,將該二十四等邊體的直觀圖置于棱長為2的正方體中,由三視圖可知,該幾何體的棱長為,它是由棱長為2的正方體沿各棱中點(diǎn)截去8個(gè)三棱錐所得到的,該幾何體的體積為,故選:D.本題考查三視圖,幾何體的體積,對(duì)于二十四等邊體比較好的處理方式是由正方體各棱的中點(diǎn)得到,屬于中檔題.11.B【解析】
利用充分條件、必要條件與集合包含關(guān)系之間的等價(jià)關(guān)系,即可得出。【詳解】設(shè)對(duì)應(yīng)的集合是,由解得且對(duì)應(yīng)的集合是,所以,故是的必要不充分條件,故選B。本題主要考查充分條件、必要條件的判斷方法——集合關(guān)系法。設(shè),如果,則是的充分條件;如果B則是的充分不必要條件;如果,則是的必要條件;如果,則是的必要不充分條件。12.D【解析】試題分析:由題意得:若,則;若,則由可知,,故也成立,故選D.考點(diǎn):平面向量數(shù)量積.【思路點(diǎn)睛】幾何圖形中向量的數(shù)量積問題是近幾年高考的又一熱點(diǎn),作為一類既能考查向量的線性運(yùn)算、坐標(biāo)運(yùn)算、數(shù)量積及平面幾何知識(shí),又能考查學(xué)生的數(shù)形結(jié)合能力及轉(zhuǎn)化與化歸能力的問題,實(shí)有其合理之處.解決此類問題的常用方法是:①利用已知條件,結(jié)合平面幾何知識(shí)及向量數(shù)量積的基本概念直接求解(較易);②將條件通過向量的線性運(yùn)算進(jìn)行轉(zhuǎn)化,再利用①求解(較難);③建系,借助向量的坐標(biāo)運(yùn)算,此法對(duì)解含垂直關(guān)系的問題往往有很好效果.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
由題意得出展開式中共有11項(xiàng),;再令求得展開式中各項(xiàng)的系數(shù)和.【詳解】由的展開式中只有第六項(xiàng)的二項(xiàng)式系數(shù)最大,所以展開式中共有11項(xiàng),所以;令,可求得展開式中各項(xiàng)的系數(shù)和是:.故答案為:1.本小題主要考查二項(xiàng)式展開式的通項(xiàng)公式的運(yùn)用,考查二項(xiàng)式展開式各項(xiàng)系數(shù)和的求法,屬于基礎(chǔ)題.14.【解析】
由條件得到函數(shù)的對(duì)稱性,從而得到結(jié)果【詳解】∵f=f,∴x=是函數(shù)f(x)=2sin(ωx+φ)的一條對(duì)稱軸.∴f=±2.本題考查了正弦型三角函數(shù)的對(duì)稱性,注意對(duì)稱軸必過最高點(diǎn)或最低點(diǎn),屬于基礎(chǔ)題.15.【解析】
寫出二項(xiàng)展開式的通項(xiàng),然后取的指數(shù)為求得的值,則項(xiàng)的系數(shù)可求得.【詳解】,由,可得.含項(xiàng)的系數(shù)為.故答案為:本題考查了二項(xiàng)式定理展開式、需熟記二項(xiàng)式展開式的通項(xiàng)公式,屬于基礎(chǔ)題.16.【解析】
設(shè)雙曲線的左焦點(diǎn)為,連接,由于.所以四邊形為矩形,故,由雙曲線定義可得,再求的值域即可.【詳解】如圖,設(shè)雙曲線的左焦點(diǎn)為,連接,由于.所以四邊形為矩形,故.在中,由雙曲線的定義可得,.故答案為:本題考查雙曲線定義及其性質(zhì),涉及到求余弦型函數(shù)的值域,考查學(xué)生的運(yùn)算能力,是一道中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1)證明見解析(2)【解析】
(1)連接,交與,連接,由,得出結(jié)論;(2)以為原點(diǎn),,,分別為,,軸建立空間直角坐標(biāo)系,求出平面的法向量,利用夾角公式求出即可.【詳解】(1)連接,交與,連接,在中,,又平面,平面,所以平面;(2)由平面平面,,為平面與平面的交線,故平面,故,又,所以平面,以為原點(diǎn),,,分別為,,軸建立空間直角坐標(biāo)系,,,,,,,設(shè)平面的法向量為,,,由,得,平面的法向量為,由,故二面角的大小為.本小題主要考查線面平行的證明,考查二面角的求法,考查空間想象能力和邏輯推理能力,屬于中檔題.18.(1)見解析(2)(3)【解析】
(1)若函數(shù)有局部對(duì)稱點(diǎn),則,即有解,即可求證;(2)由題可得在內(nèi)有解,即方程在區(qū)間上有解,則,設(shè),利用導(dǎo)函數(shù)求得的范圍,即可求得的范圍;(3)由題可得在上有解,即在上有解,設(shè),則可變形為方程在區(qū)間內(nèi)有解,進(jìn)而求解即可.【詳解】(1)證明:由得,代入得,則得到關(guān)于x的方程,由于且,所以,所以函數(shù)必有局部對(duì)稱點(diǎn)(2)解:由題,因?yàn)楹瘮?shù)在定義域內(nèi)有局部對(duì)稱點(diǎn)所以在內(nèi)有解,即方程在區(qū)間上有解,所以,設(shè),則,所以令,則,當(dāng)時(shí),,故函數(shù)在區(qū)間上單調(diào)遞減,當(dāng)時(shí),,故函數(shù)在區(qū)間上單調(diào)遞增,所以,因?yàn)?,所以,所以,所以(3)解:由題,,由于,所以,所以(*)在R上有解,令,則,所以方程(*)變?yōu)樵趨^(qū)間內(nèi)有解,需滿足條件:,即,得本題考查函數(shù)的局部對(duì)稱點(diǎn)的理解,利用導(dǎo)函數(shù)研究函數(shù)的最值問題,考查轉(zhuǎn)化思想與運(yùn)算能力.19.(1)(2)【解析】
(1)由已知條件列出關(guān)于和的方程,并計(jì)算出和的值,jike得到橢圓的方程.(2)設(shè)出點(diǎn)和點(diǎn)坐標(biāo),運(yùn)用點(diǎn)坐標(biāo)計(jì)算出,分類討論直線的斜率存在和不存在兩種情況,求解出的最小值.【詳解】(1)由己知得:,解得,所以,橢圓的方程(2)設(shè),.當(dāng)直線垂直于軸時(shí),,且此時(shí),,當(dāng)直線不垂直于軸時(shí),設(shè)直線由,得.,.要使恒成立,只需,即最小值為本題考查了求解橢圓方程以及直線與橢圓的位置關(guān)系,求解過程中需要分類討論直線的斜率存在和不存在兩種情況,并運(yùn)用根與系數(shù)的關(guān)系轉(zhuǎn)化為只含一個(gè)變量的表達(dá)式進(jìn)行求解,需要掌握解題方法,并且有一定的計(jì)算量.20.(1)分布見解析,期望為;(2).【解析】
(1)先明確X的可能取值,分別求解其概率,然后寫出分布列,利用期望公式可求期望;(2)獲得的獎(jiǎng)金恰好為60元,可能是三次二等獎(jiǎng),也可能是一次一等獎(jiǎng),兩次三等獎(jiǎng),然后分別求解概率即可.【詳解】(1)由題意知,隨機(jī)變量X的可能取值為10,20,40且,,所以,即隨機(jī)變量X的概率分布為X102040P所以隨機(jī)變量X的數(shù)學(xué)期望.(2)由題意知,趙四有三次抽獎(jiǎng)機(jī)會(huì),設(shè)恰好獲得60元為事件A,因?yàn)?0=20×3=40+10+10,所以.本題主要考查隨機(jī)變量的分布列及數(shù)學(xué)期望
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年生態(tài)園林木制景觀工程設(shè)計(jì)施工合同3篇
- 2024年度單位二手房買賣合同范本解析3篇
- 2024年民爆物品研發(fā)成果轉(zhuǎn)化與購銷合同3篇
- 大班體育游戲教案及反思
- 2024-2027年中國中間件軟件行業(yè)市場(chǎng)調(diào)查研究及發(fā)展戰(zhàn)略研究報(bào)告
- 2025年中國公共圖書館數(shù)字化行業(yè)市場(chǎng)深度評(píng)估及投資策略咨詢報(bào)告
- 2025年中國少兒編程行業(yè)市場(chǎng)全景評(píng)估及發(fā)展戰(zhàn)略規(guī)劃報(bào)告
- 2024年粘合劑項(xiàng)目提案報(bào)告模板
- 江蘇飛泰電子有限公司介紹企業(yè)發(fā)展分析報(bào)告模板
- 智慧市可行性研究報(bào)告
- 云計(jì)算應(yīng)用-云服務(wù)平臺(tái)部署計(jì)劃
- 《國有企業(yè)采購操作規(guī)范》【2023修訂版】
- 保密與信息安全培訓(xùn)
- 砂石料供應(yīng)、運(yùn)輸、售后服務(wù)方案-1
- 2022-2023學(xué)年江蘇省徐州市銅山區(qū)四校聯(lián)考五年級(jí)(上)期末科學(xué)試卷(人教版)
- 個(gè)體工商戶公司章程范本:免修版模板范本
- 2023四川測(cè)繪地理信息局直屬事業(yè)單位招考筆試參考題庫(共500題)答案詳解版
- 山東師范大學(xué)《古代文學(xué)專題(一)》期末復(fù)習(xí)題
- 【《“雙減”背景下小學(xué)數(shù)學(xué)創(chuàng)新作業(yè)設(shè)計(jì)問題研究》(論文)】
- 健康養(yǎng)生管理系統(tǒng)
- 口風(fēng)琴在小學(xué)音樂課堂中的運(yùn)用與實(shí)踐 論文
評(píng)論
0/150
提交評(píng)論