初中七年級上學(xué)期數(shù)學(xué)知識點(diǎn)_第1頁
初中七年級上學(xué)期數(shù)學(xué)知識點(diǎn)_第2頁
初中七年級上學(xué)期數(shù)學(xué)知識點(diǎn)_第3頁
初中七年級上學(xué)期數(shù)學(xué)知識點(diǎn)_第4頁
初中七年級上學(xué)期數(shù)學(xué)知識點(diǎn)_第5頁
已閱讀5頁,還剩18頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

初中數(shù)學(xué)知識點(diǎn)全總結(jié)

七年級數(shù)學(xué)(上)知識點(diǎn)

人教版七年級數(shù)學(xué)上冊主要包含了有理數(shù)、整式的加減、一元一次方程、圖形的

認(rèn)識初步四個章節(jié)的內(nèi)容.

第一*彳理數(shù)

、知識框架

二.知識概念

1.有理數(shù):

(1)凡能寫成形式的數(shù),都是有理數(shù).正整數(shù)、0、負(fù)整數(shù)統(tǒng)稱整數(shù);正分?jǐn)?shù)、負(fù)

分?jǐn)?shù)統(tǒng)稱分?jǐn)?shù);整數(shù)和分?jǐn)?shù)統(tǒng)稱有理數(shù).注意:0即不是正數(shù),也不是負(fù)數(shù);-a

不一定是負(fù)數(shù),+a也不一定是正數(shù);p不是有理數(shù);

⑵有理數(shù)的分類:①②

2.數(shù)軸:數(shù)軸是規(guī)定了原點(diǎn)、正方向、單位長度的一條直線.

3.相反數(shù):

(1)只有符號不同的兩個數(shù),我們說其中一個是另一個的相反數(shù);0的相反數(shù)還是

0;

(2)相反數(shù)的和為0?a+b=0?a、b互為相反數(shù).

4.絕對值:

(1)正數(shù)的絕對值是其本身,0的絕對值是0,負(fù)數(shù)的絕對值是它的相反數(shù);注意:

絕對值的意義是數(shù)軸上表示某數(shù)的點(diǎn)離開原點(diǎn)的距離;

⑵絕對值可表示為:或;絕對值的問題經(jīng)常分類討論;

5.有理數(shù)比大?。海?)正數(shù)的絕對值越大,這個數(shù)越大;(2)正數(shù)永遠(yuǎn)比0大,

負(fù)數(shù)永遠(yuǎn)比0??;(3)正數(shù)大于一切負(fù)數(shù);(4)兩個負(fù)數(shù)比大小,絕對值大的

反而小;(5)數(shù)軸上的兩個數(shù),右邊的數(shù)總比左邊的數(shù)大;(6)大數(shù)-小數(shù)>0,

小數(shù)-大數(shù)<0.

6.互為倒數(shù):乘積為1的兩個數(shù)互為倒數(shù);注意:0沒有倒數(shù);若a#0,那么的

倒數(shù)是;若ab=l?a、b互為倒數(shù);若ab=-l?a、b互為負(fù)倒數(shù).

7.有理數(shù)加法法則:

(1)同號兩數(shù)相加,取相同的符號,并把絕對值相加;

(2)異號兩數(shù)相加,取絕對值較大的符號,并用較大的絕對值減去較小的絕對

值;

(3)一個數(shù)與0相加,仍得這個數(shù).

8.有理數(shù)加法的運(yùn)算律:

(1)加法的交換律:a+b=b+a;(2)加法的結(jié)合律:(a+b)+c=a+(b+c).

9.有理數(shù)減法法則:減去一個數(shù),等于加上這個數(shù)的相反數(shù);即a-b=a+(-b).

10有理數(shù)乘法法則:

(1)兩數(shù)相乘,同號為正,異號為負(fù),并把絕對值相乘;

(2)任何數(shù)同零相乘都得零;

(3)幾個數(shù)相乘,有一個因式為零,積為零;各個因式都不為零,積的符號由

負(fù)因式的個數(shù)決定.

n有理數(shù)乘法的運(yùn)算律:

(1)乘法的交換律:ab=ba;(2)乘法的結(jié)合律:(ab)c=a(be);

(3)乘法的分配律:a(b+c)=ab+ac.

12.有理數(shù)除法法則:除以一個數(shù)等于乘以這個數(shù)的倒數(shù);注意:零不能做除數(shù),.

13.有理數(shù)乘方的法則:

(1)正數(shù)的任何次累都是正數(shù);

(2)負(fù)數(shù)的奇次褰是負(fù)數(shù);負(fù)數(shù)的偶次易是正數(shù);注意:當(dāng)n為正奇數(shù)時:(-a)n=-an

或(a-b)n=-(b-a)n,當(dāng)n為正偶數(shù)時:(-a)n=an或(a-b)n=(b-a)n.

14.乘方的定義:

(1)求相同因式積的運(yùn)算,叫做乘方;

(2)乘方中,相同的因式叫做底數(shù),相同因式的個數(shù)叫做指數(shù),乘方的結(jié)果叫

做幕;

15.科學(xué)記數(shù)法:把一個大于10的數(shù)記成aXlO11的形式,其中a是整數(shù)數(shù)位只

有一位的數(shù),這種記數(shù)法叫科學(xué)記數(shù)法.

16.近似數(shù)的精確位:一個近似數(shù),四舍五入到那一位,就說這個近似數(shù)的精確

到那一位.

17.有效數(shù)字:從左邊第一個不為零的數(shù)字起,到精確的位數(shù)止,所有數(shù)字,都

叫這個近似數(shù)的有效數(shù)字.

18.混合運(yùn)算法則:先乘方,后乘除,最后加減.

本章內(nèi)容要求學(xué)生正確認(rèn)識有理數(shù)的概念,在實(shí)際生活和學(xué)習(xí)數(shù)軸的基礎(chǔ)

上,理解正負(fù)數(shù)、相反數(shù)、絕對值的意義所在。重點(diǎn)利用有理數(shù)的運(yùn)算法則解決

實(shí)際問題.

體驗數(shù)學(xué)發(fā)展的一個重要原因是生活實(shí)際的需要.激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,教

師培養(yǎng)學(xué)生的觀察、歸納與概括的能力,使學(xué)生建立正確的數(shù)感和解決實(shí)際問題

的能力。教師在講授本章內(nèi)容時,應(yīng)該多創(chuàng)設(shè)情境,充分體現(xiàn)學(xué)生學(xué)習(xí)的主體性

地位。

第二本卷W的加漏

一.知識框架

二.知識概念

1.單項式:在代數(shù)式中,若只含有乘法(包括乘方)運(yùn)算?;螂m含有除法運(yùn)算,

但除式中不含字母的一類代數(shù)式叫單項式.

2.單項式的系數(shù)與次數(shù):單項式中不為零的數(shù)字因數(shù),叫單項式的數(shù)字系數(shù),

簡稱單項式的系數(shù);系數(shù)不為零時,單項式中所有字母指數(shù)的和,叫單項式的次

數(shù).

3.多項式:幾個單項式的和叫多項式.

4.多項式的項數(shù)與次數(shù):多項式中所含單項式的個數(shù)就是多項式的項數(shù),每個

單項式叫多項式的項;多項式里,次數(shù)最高項的次數(shù)叫多項式的次數(shù)。

通過本章學(xué)習(xí),應(yīng)使學(xué)生達(dá)到以下學(xué)習(xí)目標(biāo):

1.理解并掌握單項式、多項式、整式等概念,弄清它們之間的區(qū)別與聯(lián)系。

2.理解同類項概念,掌握合并同類項的方法,掌握去括號時符號的變化規(guī)律,能

正確地進(jìn)行同類項的合并和去括號。在準(zhǔn)確判斷、正確合并同類項的基礎(chǔ)上,進(jìn)

行整式的加減運(yùn)算。

3.理解整式中的字母表示數(shù),整式的加減運(yùn)算建立在數(shù)的運(yùn)算基礎(chǔ)上;理解合并

同類項、去括號的依據(jù)是分配律;理解數(shù)的運(yùn)算律和運(yùn)算性質(zhì)在整式的加減運(yùn)算

中仍然成立。

4.能夠分析實(shí)際問題中的數(shù)量關(guān)系,并用還有字母的式子表示出來。

在本章學(xué)習(xí)中,教師可以通過讓學(xué)生小組討論、合作學(xué)習(xí)等方式,經(jīng)歷概

念的形成過程,初步培養(yǎng)學(xué)生觀察、分析、抽象、概括等思維能力和應(yīng)用意識。

第三章一無一次方程

一.知識框架

二.知識概念

1.一元一次方程:只含有一個未知數(shù),并且未知數(shù)的次數(shù)是1,并且含未知數(shù)

項的系數(shù)不是零的整式方程是一元一次方程.

2.一元一次方程的標(biāo)準(zhǔn)形式:ax+b=O(x是未知數(shù),a、b是已知數(shù),且aWO).

3.一元一次方程解法的一般步驟:整理方程……去分母……去括號……移

項……合并同類項……系數(shù)化為1……(檢驗方程的解).

4.列一元一次方程解應(yīng)用題:

(1)讀題分析法:........多用于“和,差,倍,分問題”

仔細(xì)讀題,找出表示相等關(guān)系的關(guān)鍵字,例如:“大,小,多,少,是,共,合,

為,完成,增加,減少,配套,利用這些關(guān)鍵字列出文字等式,并且據(jù)題

意設(shè)出未知數(shù),最后利用題目中的量與量的關(guān)系填入代數(shù)式,得到方程.

(2)畫圖分析法:........多用于“行程問題”

利用圖形分析數(shù)學(xué)問題是數(shù)形結(jié)合思想在數(shù)學(xué)中的體現(xiàn),仔細(xì)讀題,依照題意畫

出有關(guān)圖形,使圖形各部分具有特定的含義,通過圖形找相等關(guān)系是解決問題的

關(guān)鍵,從而取得布列方程的依據(jù),最后利用量與量之間的關(guān)系(可把未知數(shù)看做

已知量),填入有關(guān)的代數(shù)式是獲得方程的基礎(chǔ).

11.列方程解應(yīng)用題的常用公式:

(1)行程問題:距離=速度?時間;

(2)工程問題:工作量=工效?工時;

(3)比率問題:部分=全體?比率;

(4)順逆流問題:順流速度=靜水速度+水流速度,逆流速度=靜水速度-水流速

度;

(5)商品價格問題:售價=定價?折?,利潤=售價-成本,;

(6)周長、面積、體積問題:C圓=2nR,S/=nR2,C長方形=2(a+b),S長方形=ab,C

正方形=4a,

2222

S正方形=a2,S環(huán)形=JT(R-r),V長方體=abc,V正方體=a3,V圓柱=nRh,V圓錐=nRh.

本章內(nèi)容是代數(shù)學(xué)的核心,也是所有代數(shù)方程的基礎(chǔ)。豐富多彩的問題情境和

解決問題的快樂很容易激起學(xué)生對數(shù)學(xué)的樂趣,所以要注意引導(dǎo)學(xué)生從身邊的問

題研究起,進(jìn)行有效的數(shù)學(xué)活動和合作交流,讓學(xué)生在主動學(xué)習(xí)、探究學(xué)習(xí)的過

程中獲得知識,提升能力,體會數(shù)學(xué)思想方法。

第一幸圖形的依鐫初步

一、知識框架

本章的主要內(nèi)容是圖形的初步認(rèn)識,從生活周圍熟悉的物體入手,對物體的

形狀的認(rèn)識從感性逐步上升到抽象的幾何圖形.通過從不同方向看立體圖形和展

開立體圖形,初步認(rèn)識立體圖形與平面圖形的聯(lián)系.在此基礎(chǔ)上,認(rèn)識一些簡單

的平面圖形一一直線、射線、線段和角.

二、本章書涉及的數(shù)學(xué)恩慈:

1.分類討論思想。在過平面上若干個點(diǎn)畫直線時,應(yīng)注意對這些點(diǎn)分情況討論;

在畫圖形時,應(yīng)注意圖形的各種可能性。

2.方程思想。在處理有關(guān)角的大小,線段大小的計算時,常需要通過列方程來解

決。

3.圖形變換思想。在研究角的概念時,要充分體會對射線旋轉(zhuǎn)的認(rèn)識。在處理圖

形時應(yīng)注意轉(zhuǎn)化思想的應(yīng)用,如立體圖形與平面圖形的互相轉(zhuǎn)化。

4.化歸思想。在進(jìn)行直線、線段、角以及相關(guān)圖形的計數(shù)時,總要劃歸到公式

n(n-l)/2的具體運(yùn)用上來。

七年級數(shù)學(xué)(下)知識點(diǎn)

人教版七年級數(shù)學(xué)下冊主要包括相交線與平行線、平面直角坐標(biāo)系、三角形、

二元一次方程組、不等式與不等式組和數(shù)據(jù)的收集、整理與表述六章內(nèi)容。

第二本相象鐵與牛行錢

一、知識框架

二、知識概念

1.鄰補(bǔ)角:兩條直線相交所構(gòu)成的四個角中,有公共頂點(diǎn)且有一條公共邊的兩個

角是鄰補(bǔ)角。

2.對頂角:一個角的兩邊分別是另一個叫的兩邊的反向延長線,像這樣的兩個角

互為對頂角。

3.垂線:兩條直線相交成直角時,叫做互相垂直,其中一條叫做另一條的垂線。

4.平行線:在同一平面內(nèi),不相交的兩條直線叫做平行線。

5.同位角、內(nèi)錯角、同旁內(nèi)角:

同位角:Z1與N5像這樣具有相同位置關(guān)系的一對角叫做同位角。

內(nèi)錯角:N2與N6像這樣的一對角叫做內(nèi)錯角。

同旁內(nèi)角:N2與N5像這樣的一對角叫做同旁內(nèi)角。

6.命題:判斷一件事情的語句叫命題。

7.平移:在平面內(nèi),將一個圖形沿某個方向移動一定的距離,圖形的這種移動叫

做平移平移變換,簡稱平移。

8.對應(yīng)點(diǎn):平移后得到的新圖形中每一點(diǎn),都是由原圖形中的某一點(diǎn)移動后得到

的,這樣的兩個點(diǎn)叫做對應(yīng)點(diǎn)。

9.定理與性質(zhì)

對頂角的性質(zhì):對頂角相等。

10垂線的性質(zhì):

性質(zhì)1:過一點(diǎn)有且只有一條直線與已知直線垂直。

性質(zhì)2:連接直線外一點(diǎn)與直線上各點(diǎn)的所有線段中,垂線段最短。

11.平行公理:經(jīng)過直線外一點(diǎn)有且只有一條直線與已知直線平行。

平行公理的推論:如果兩條直線都與第三條直線平行,那么這兩條直線也互相平

行。

12.平行線的性質(zhì):

性質(zhì)1:兩直線平行,同位角相等。

性質(zhì)2:兩直線平行,內(nèi)錯角相等。

性質(zhì)3:兩直線平行,同旁內(nèi)角互補(bǔ)。

13.平行線的判定:

判定1:同位角相等,兩直線平行。

判定2:內(nèi)錯角相等,兩直線平行。

判定3:同旁內(nèi)角相等,兩直線平行。

本章使學(xué)生了解在平面內(nèi)不重合的兩條直線相交與平行的兩種位置關(guān)系,研究

了兩條直線相交時的形成的角的特征,兩條直線互相垂直所具有的特性,兩條直線

平行的長期共存條件和它所有的特征以及有關(guān)圖形平移變換的性質(zhì),利用平移設(shè)

計一些優(yōu)美的圖案.重點(diǎn):垂線和它的性質(zhì),平行線的判定方法和它的性質(zhì),平移和

它的性質(zhì),以及這些的組織運(yùn)用.難點(diǎn):探索平行線的條件和特征,平行線條件與特

征的區(qū)別,運(yùn)用平移性質(zhì)探索圖形之間的平移關(guān)系,以及進(jìn)行圖案設(shè)計。

第三幸外面直龜坐標(biāo)奈

一.知識框架

二.知識概念

1.有序數(shù)對:有順序的兩個數(shù)a與b組成的數(shù)對叫做有序數(shù)對,記做(a,b)

2.平面直角坐標(biāo)系:在平面內(nèi),兩條互相垂直且有公共原點(diǎn)的數(shù)軸組成平面直角

坐標(biāo)系。

3.橫軸、縱軸、原點(diǎn):水平的數(shù)軸稱為x軸或橫軸;豎直的數(shù)軸稱為y軸或縱軸;

兩坐標(biāo)軸的交點(diǎn)為平面直角坐標(biāo)系的原點(diǎn)。

4.坐標(biāo):對于平面內(nèi)任一點(diǎn)P,過P分別向x軸,y軸作垂線,垂足分別在x軸,

y軸上,對應(yīng)的數(shù)a,b分別叫點(diǎn)P的橫坐標(biāo)和縱坐標(biāo)。

5.象限:兩條坐標(biāo)軸把平面分成四個部分,右上部分叫第一象限,按逆時針方向

一次叫第二象限、第三象限、第四象限。坐標(biāo)軸上的點(diǎn)不在任何一個象限內(nèi)。

平面直角坐標(biāo)系是數(shù)軸由一維到二維的過渡,同時它又是學(xué)習(xí)函數(shù)的基礎(chǔ),

起到承上啟下的作用。另外,平面直角坐標(biāo)系將平面內(nèi)的點(diǎn)與數(shù)結(jié)合起來,體現(xiàn)

了數(shù)形結(jié)合的思想。掌握本節(jié)內(nèi)容對以后學(xué)習(xí)和生活有著積極的意義。教師在講

授本章內(nèi)容時應(yīng)多從實(shí)際情形出發(fā),通過對平面上的點(diǎn)的位置確定發(fā)展學(xué)生創(chuàng)新

能力和應(yīng)用意識。

第四聿三宙形

.知識框架

二.知識概念

1.三角形:由不在同一直線上的三條線段首尾順次相接所組成的圖形叫做三角

形。

2.三邊關(guān)系:三角形任意兩邊的和大于第三邊,任意兩邊的差小于第三邊。

3.高:從三角形的一個頂點(diǎn)向它的對邊所在直線作垂線,頂點(diǎn)和垂足間的線段叫

做三角形的高。

4.中線:在三角形中,連接一個頂點(diǎn)和它的對邊中點(diǎn)的線段叫做三角形的中線。

5.角平分線:三角形的一個內(nèi)角的平分線與這個角的對邊相交,這個角的頂點(diǎn)和

交點(diǎn)之間的線段叫做三角形的角平分線。

6.三角形的穩(wěn)定性:三角形的形狀是固定的,三角形的這個性質(zhì)叫三角形的穩(wěn)定

性。

6.多邊形:在平面內(nèi),由一些線段首尾順次相接組成的圖形叫做多邊形。

7.多邊形的內(nèi)角:多邊形相鄰兩邊組成的角叫做它的內(nèi)角。

8.多邊形的外角:多邊形的一邊與它的鄰邊的延長線組成的角叫做多邊形的外

角O

9.多邊形的對角線:連接多邊形不相鄰的兩個頂點(diǎn)的線段,叫做多邊形的對角線。

10.正多邊形:在平面內(nèi),各個角都相等,各條邊都相等的多邊形叫做正多邊形。

11.平面鑲嵌:用一些不重疊擺放的多邊形把平面的一部分完全覆蓋,叫做用多

邊形覆蓋平面。

12.公式與性質(zhì)

三角形的內(nèi)角和:三角形的內(nèi)角和為180°

三角形外角的性質(zhì):

性質(zhì)1:三角形的一個外角等于和它不相鄰的兩個內(nèi)角的和。

性質(zhì)2:三角形的一個外角大于任何一個和它不相鄰的內(nèi)角。

多邊形內(nèi)角和公式:n邊形的內(nèi)角和等于(n-2)?180°

多邊形的外角和:多邊形的內(nèi)角和為360°。

多邊形對角線的條數(shù):(1)從n邊形的一個頂點(diǎn)出發(fā)可以引(n-3)條對角線,

把多邊形分詞(n-2)個三角形。

(2)n邊形共有條對角線。

三角形是初中數(shù)學(xué)中幾何部分的基礎(chǔ)圖形,在學(xué)習(xí)過程中,教師應(yīng)該多鼓勵

學(xué)生動腦動手,發(fā)現(xiàn)和探索其中的知識奧秘。注重培養(yǎng)學(xué)生正確的數(shù)學(xué)情操和幾

何思維能力。

第八拿二無一次方程組

一.知識結(jié)構(gòu)圖

二、知識概念

1.二元一次方程:含有兩個未知數(shù),并且未知數(shù)的指數(shù)都是1,像這樣的方程叫

做二元一次。方程,一般形式是ax+by=c(aW0,bW0)。

2.二元一次方程組:把兩個二元一次方程合在一起,就組成了一個二元一次方程

組。

3.二元一次方程的解:一般地,使二元一次方程兩邊的值相等的未知數(shù)的值叫做

二元一次方程組的解。

4.二元一次方程組的解:一般地,二元一次方程組的兩個方程的公共解叫做二元

一次方程組。

5.消元:將未知數(shù)的個數(shù)由多化少,逐一解決的想法,叫做消元思想。

6.代入消元:將一個未知數(shù)用含有另一個未知數(shù)的式子表示出來,再代入另一個

方程,實(shí)現(xiàn)消元,進(jìn)而求得這個二元一次方程組的解,這種方法叫做代入消元法,

簡稱代入法。

7.加減消元法:當(dāng)兩個方程中同一未知數(shù)的系數(shù)相反或相等時,將兩個方程的兩

邊分別相加或相減,就能消去這個未知數(shù),這種方法叫做加減消元法,簡稱加減

法。

本章通過實(shí)例引入二元一次方程,二元一次方程組以及二元一次方程組的概

念,培養(yǎng)學(xué)生對概念的理解和完整性和深刻性,使學(xué)生掌握好二元一次方程組的兩

種解法.重點(diǎn):二元一次方程組的解法,列二元一次方程組解決實(shí)際問題.難點(diǎn):二

元一次方程組解決實(shí)際問題

第九幸不等式易不等式做

.知識框架

二、知識概念

L用符號“W”“三”表示大小關(guān)系的式子叫做不等式。

2.不等式的解:使不等式成立的未知數(shù)的值,叫做不等式的解。

3.不等式的解集:一個含有未知數(shù)的不等式的所有解,組成這個不等式的解集。

4.一元一次不等式:不等式的左、右兩邊都是整式,只有一個未知數(shù),并且未知

數(shù)的最高次數(shù)是1,像這樣的不等式,叫做一元一次不等式。

5.一元一次不等式組:一般地,關(guān)于同一未知數(shù)的幾個一元一次不等式合在一起,

就組成6.了一個一元一次不等式組。

7.定理與性質(zhì)

不等式的性質(zhì):

不等式的基本性質(zhì)1:不等式的兩邊都加上(或減去)同一個數(shù)(或式子),不

等號的方向不變。

不等式的基本性質(zhì)2:不等式的兩邊都乘以(或除以)同一個正數(shù),不等號的方

向不變。

不等式的基本性質(zhì)3:不等式的兩邊都乘以(或除以)同一個負(fù)數(shù),不等號的方

向改變。

本章內(nèi)容要求學(xué)生經(jīng)歷建立一元一次不等式(組)這樣的數(shù)學(xué)模型并應(yīng)用它解決

實(shí)際問題的過程,體會不等式(組)的特點(diǎn)和作用,掌握運(yùn)用它們解決問題的一

般方法,提高分析問題、解決問題的能力,增強(qiáng)創(chuàng)新精神和應(yīng)用數(shù)學(xué)的意識。

第十辛裁提的收集、卷理易描述

一.知識框架

全面調(diào)查

抽樣調(diào)查

收集數(shù)據(jù)

描述數(shù)據(jù)

整理數(shù)據(jù)

分析數(shù)據(jù)

得出結(jié)論

二.知識概念

1.全面調(diào)查:考察全體對象的調(diào)查方式叫做全面調(diào)查。

2.抽樣調(diào)查:調(diào)查部分?jǐn)?shù)據(jù),根據(jù)部分來估計總體的調(diào)查方式稱為抽樣調(diào)查。

3.總體:要考察的全體對象稱為總體。

4.個體:組成總體的每一個考察對象稱為個體。

5.樣本:被抽取的所有個體組成一個樣本。

6.樣本容量:樣本中個體的數(shù)目稱為樣本容量。

7.頻數(shù):一般地,我們稱落在不同小組中的數(shù)據(jù)個數(shù)為該組的頻數(shù)。

8.頻率:頻數(shù)與數(shù)據(jù)總數(shù)的比為頻率。

9.組數(shù)和組距:在統(tǒng)計數(shù)據(jù)時,把數(shù)據(jù)按照一定的范圍分成若干各組,分成組的

個數(shù)稱為組數(shù),每一組兩個端點(diǎn)的差叫做組距。

本章要求通過實(shí)際參與收集、整理、描述和分析數(shù)據(jù)的活動,經(jīng)歷統(tǒng)計的一

般過程,感受統(tǒng)計在生活和生產(chǎn)中的作用,增強(qiáng)學(xué)習(xí)統(tǒng)計的興趣,初步建立統(tǒng)計

的觀念,培養(yǎng)重視調(diào)查研究的良好習(xí)慣和科學(xué)態(tài)度。

八年級數(shù)學(xué)(上)知識點(diǎn)

人教版八年級上冊主要包括全等三角形、軸對稱、實(shí)數(shù)、一次函數(shù)和整式的乘

除與分解因式五個章節(jié)的內(nèi)容。

第十一章全等三角形

.知識框架

二.知識概念

L全等三角形:兩個三角形的形狀、大小、都一樣時,其中一個可以經(jīng)過平移、

旋轉(zhuǎn)、對稱等運(yùn)動(或稱變換)使之與另一個重合,這兩個三角形稱為全等三角

形。

2.全等三角形的性質(zhì):全等三角形的對應(yīng)角相等、對應(yīng)邊相等。

3.三角形全等的判定公理及推論有:

(1)“邊角邊”簡稱“SAS”

(2)“角邊角”簡稱“ASA”

(3)“邊邊邊”簡稱“SSS”

(4)“角角邊”簡稱“AAS”

(5)斜邊和直角邊相等的兩直角三角形(HL)。

4.角平分線推論:角的內(nèi)部到角的兩邊的距離相等的點(diǎn)在叫的平分線上。

5.證明兩三角形全等或利用它證明線段或角的相等的基本方法步驟:①、確定已

知條件(包括隱含條件,如公共邊、公共角、對頂角、角平分線、中線、高、等

腰三角形、等所隱含的邊角關(guān)系),②、回顧三角形判定,搞清我們還需要什么,

③、正確地書寫證明格式(順序和對應(yīng)關(guān)系從已知推導(dǎo)出要證明的問題).

在學(xué)習(xí)三角形的全等時,教師應(yīng)該從實(shí)際生活中的圖形出發(fā),引出全等圖形

進(jìn)而引出全等三角形。通過直觀的理解和比較發(fā)現(xiàn)全等三角形的奧妙之處。在經(jīng)

歷三角形的角平分線、中線等探索中激發(fā)學(xué)生的集合思維,啟發(fā)他們的靈感,使

學(xué)生體會到集合的真正魅力。

第十二本貓對繇

一.知識框架

二.知識概念

1.對稱軸:如果一個圖形沿某條直線折疊后,直線兩旁的部分能夠互相重合,那

么這個圖形叫做軸對稱圖形;這條直線叫做對稱軸。

2.性質(zhì):(1)軸對稱圖形的對稱軸,是任何一對對應(yīng)點(diǎn)所連線段的垂直平分線。

(2)角平分線上的點(diǎn)到角兩邊距離相等。

(3)線段垂直平分線上的任意一點(diǎn)到線段兩個端點(diǎn)的距離相等。

(4)與一條線段兩個端點(diǎn)距離相等的點(diǎn),在這條線段的垂直平分線上。

(5)軸對稱圖形上對應(yīng)線段相等、對應(yīng)角相等。

3.等腰三角形的性質(zhì):等腰三角形的兩個底角相等,(等邊對等角)

4.等腰三角形的頂角平分線、底邊上的高、底邊上的中線互相重合,簡稱為“三

線合一”。

5.等腰三角形的判定:等角對等邊。

6.等邊三角形角的特點(diǎn):三個內(nèi)角相等,等于60°,

7.等邊三角形的判定:三個角都相等的三角形是等腰三角形。

有一個角是60°的等腰三角形是等邊三角形

有兩個角是60°的三角形是等邊三角形。

8.直角三角形中,30°角所對的直角邊等于斜邊的一半。

9.直角三角形斜邊上的中線等于斜邊的一半。

本章內(nèi)容要求學(xué)生在建立在軸對稱概念的基礎(chǔ)上,能夠?qū)ι钪械膱D形進(jìn)行

分析鑒賞,親身經(jīng)歷數(shù)學(xué)美,正確理解等腰三角形、等邊三角形等的性質(zhì)和判定,

并利用這些性質(zhì)來解決一些數(shù)學(xué)問題。

第十三本實(shí)微

一.知識框架

二.知識概念

L算術(shù)平方根:一般地,如果一個正數(shù)x的平方等于a,即x2=a,那么正數(shù)x叫

做a的算術(shù)平方根,記作。0的算術(shù)平方根為0;從定義可知,只有當(dāng)a》0時,a

才有算術(shù)平方根。

2.平方根:一般地,如果一個數(shù)x的平方根等于a,即x2=a,那么數(shù)x就叫做a

的平方根。

3.正數(shù)有兩個平方根(一正一負(fù))它們互為相反數(shù);0只有一個平方根,就是它

本身;負(fù)數(shù)沒有平方根。

4.正數(shù)的立方根是正數(shù);0的立方根是0;負(fù)數(shù)的立方根是負(fù)數(shù)。

5.數(shù)a的相反數(shù)是-a,一個正實(shí)數(shù)的絕對值是它本身,一個負(fù)數(shù)的絕對值是它的

相反數(shù),0的絕對值是0

實(shí)數(shù)部分主要要求學(xué)生了解無理數(shù)和實(shí)數(shù)的概念,知道實(shí)數(shù)和數(shù)軸上的點(diǎn)一

一對應(yīng),能估算無理數(shù)的大?。涣私鈱?shí)數(shù)的運(yùn)算法則及運(yùn)算律,會進(jìn)行實(shí)數(shù)的運(yùn)

算。重點(diǎn)是實(shí)數(shù)的意義和實(shí)數(shù)的分類;實(shí)數(shù)的運(yùn)算法則及運(yùn)算律。

第十四拿一次備破

一.知識框架

二.知識概念

(D

(3)

(1)

(3)

1.一次函數(shù):若兩個變量X,y間的關(guān)系式可以表示成y=kx+b(k#O)的形式,則稱y

是X的一次函數(shù)(X為自變量,y為因變量)。特別地,當(dāng)b=0時,稱y是X的正比例函

數(shù)。

2.正比例函數(shù)一般式:y=kx(kWO),其圖象是經(jīng)過原點(diǎn)(0,0)的一條直線。

3.正比例函數(shù)y=kx(kWO)的圖象是一條經(jīng)過原點(diǎn)的直線,當(dāng)k>0時,直線y=kx

經(jīng)過第一、三象限,y隨x的增大而增大,當(dāng)k<0時,直線y=kx經(jīng)過第二、四象

限,y隨x的增大而海小,在一次函數(shù)y=kx+b中:當(dāng)k>0時,y隨x的增大而增大;當(dāng)

k<0時,y隨x的增大而減小。

4.已知兩點(diǎn)坐標(biāo)求函數(shù)解析式:待定系數(shù)法

一次函數(shù)是初中學(xué)生學(xué)習(xí)函數(shù)的開始,也是今后學(xué)習(xí)其它函數(shù)知識的基石。

在學(xué)習(xí)本章內(nèi)容時,教師應(yīng)該多從實(shí)際問題出發(fā),引出變量,從具體到抽象的認(rèn)

識事物。培養(yǎng)學(xué)生良好的變化與對應(yīng)意識,體會數(shù)形結(jié)合的思想。在教學(xué)過程中,

應(yīng)更加側(cè)重于理解和運(yùn)用,在解決實(shí)際問題的同時,讓學(xué)習(xí)體會到數(shù)學(xué)的實(shí)用價

值和樂趣。

第十五本餐式的乘除易合斜因式

一.知識概念

1.同底數(shù)哥的乘法法則:(m,n都是正數(shù))

2..累的乘方法則:(m,n都是正數(shù))

3.整式的乘法

(1)單項式乘法法則:單項式相乘,把它們的系數(shù)、相同字母分別相乘,對于只

在一個單項式里含有的字母,連同它的指數(shù)作為積的一個因式。

(2)單項式與多項式相乘:單項式乘以多項式,是通過乘法對加法的分配律,把

它轉(zhuǎn)化為單項式乘以單項式,即單項式與多項式相乘,就是用單項式去乘多項式

的每一項,再把所得的積相加。

(3).多項式與多項式相乘

多項式與多項式相乘,先用一個多項式中的每一項乘以另一個多項式的每一項,

再把所得的積相加。

4.平方差公式:

5.完全平方公式:

6.同底數(shù)累的除法法則:同底數(shù)易相除,底數(shù)不變,指數(shù)相減,即(a#O,m、n都是正

數(shù),且m>n).

在應(yīng)用時需要注意以下幾點(diǎn):

①法則使用的前提條件是“同底數(shù)基相除”而且0不能做除數(shù),所以法則中aWO.

②任何不等于0的數(shù)的0次易等于1,即,如,(-2.5°=1),則0°無意義.

③任何不等于0的數(shù)的-p次易(p是正整數(shù)),等于這個數(shù)的p的次基的倒數(shù),即(a

WO,p是正整數(shù)),而0",0-3都是無意義的;當(dāng)a>0時的值一定是正的;當(dāng)a<0

時,TP的值可能是正也可能是負(fù)的,如,

④運(yùn)算要注意運(yùn)算順序.

7.整式的除法

單項式除法單項式:單項式相除,把系數(shù)、同底數(shù)累分別相除,作為商的因式,

對于只在被除式里含有的字母,則連同它的指數(shù)作為商的一個因式;

多項式除以單項式:多項式除以單項式,先把這個多項式的每一項除以單項式,

再把所得的商相加.

8.分解因式:把一個多項式化成幾個整式的積的形式,這種變形叫做把這個多項式

分解因式.

分解因式的一般方法:1.提公共因式法2.運(yùn)用公式法3.十字相乘法

分解因式的步驟:(1)先看各項有沒有公因式,若有,則先提取公因式;

(2)再看能否使用公式法;

(3)用分組分解法,即通過分組后提取各組公因式或運(yùn)用公式法來達(dá)到分解的目

的;

(4)因式分解的最后結(jié)果必須是幾個整式的乘積,否則不是因式分解;

(5)因式分解的結(jié)果必須進(jìn)行到每個因式在有理數(shù)范圍內(nèi)不能再分解為止.

整式的乘除與分解因式這章內(nèi)容知識點(diǎn)較多,表面看來零碎的概念和性質(zhì)也

較多,但實(shí)際上是密不可分的整體。在學(xué)習(xí)本章內(nèi)容時,應(yīng)多準(zhǔn)備些小組合作與

交流活動,培養(yǎng)學(xué)生推理能力、計算能力。在做題中體驗數(shù)學(xué)法則、公式的簡潔

美、和諧美,提高做題效率。

八年級數(shù)學(xué)(下)知識點(diǎn)

人教版八年級下冊主要包括了分式、反比例函數(shù)、勾股定理、四邊形、數(shù)據(jù)的分

析五章內(nèi)容。

第十大幸臺K

一.知識框架

二.知識概念

L分式:形如A/B,A、B是整式,B中含有未知數(shù)且B不等于0的整式叫做分

式(fraction)。其中A叫做分式的分子,B叫做分式的分母。

2.分式有意義的條件:分母不等于0

3.約分:把一個分式的分子和分母的公因式(不為1的數(shù))約去,這種變形稱為約

分。

4.通分:異分母的分式可以化成同分母的分式,這一過程叫做通分。

分式的基本性質(zhì):分式的分手和分母同時乘以(或除以)同一個不為0的整式,

分式的值不變。用式子表示為:A/B=A*C/B*CA/B=A-C/B-C(A,B,C為整式,

且C#0)

5.最簡分式:一個分式的分子和分母沒有公因式時,這個分式稱為最簡分式.約分

時,一般將一個分式化為最簡分式.

6.分式的四則運(yùn)算:!同分母分式加減法則:同分母的分式相加減,分母不變,把分

子相加減.用字母表示為:a/c±b/c=a±b/c

2.異分母分式加減法則:異分母的分式相加減,先通分,化為同分母的分式,然

后再按同分母分式的加減法法則進(jìn)行計算.用字母表示為:a/b±c/d=ad±cb/bd

3.分式的乘法法則:兩個分式相乘,把分子相乘的積作為積的分子,把分母相乘

的積作為積的分母.用字母表示為:a/b*c/d=ac/bd

4.分式的除法法則:(1).兩個分式相除,把除式的分子和分母顛倒位置后再與

被除式相乘.a/b+c/d=ad/bc

(2).除以一個分式,等于乘以這個分式的倒數(shù):a/b+c/d=a/b*d/c

7.分式方程的意義:分母中含有未知數(shù)的方程叫做分式方程.

8.分式方程的解法:①去分母(方程兩邊同時乘以最簡公分母,將分式方程化

為整式方程);②按解整式方程的步驟求出未知數(shù)的值;③驗根(求出未知數(shù)的

值后必須驗根,因為在把分式方程化為整式方程的過程中,擴(kuò)大了未知數(shù)的

取值范圍,可能產(chǎn)生增根).

分式和分?jǐn)?shù)有著許多相似點(diǎn)。教師在講授本章內(nèi)容時,可以對比分?jǐn)?shù)的

特點(diǎn)及性質(zhì),讓學(xué)生自主學(xué)習(xí)。重點(diǎn)在于分式方程解實(shí)際應(yīng)用問題。

第十七*攻比的備核

.知識框架

二.知識概念

1.反比例函數(shù):形如y=(k為常數(shù),kWO)的函數(shù)稱為反比例函數(shù)。其他形式

xy=k

2.圖像:反比例函數(shù)的圖像屬于雙曲線。反比例函數(shù)的圖象既是軸對稱圖形又是

中心對稱圖形。有兩條對稱軸:直線丫=*和丫=出。對稱中心是:原點(diǎn)

3.性質(zhì):當(dāng)k>0時雙曲線的兩支分別位于第一、第三象限,在每個象限內(nèi)y值隨

x值的增大而減小;

當(dāng)k<0時雙曲線的兩支分別位于第二、第四象限,在每個象限內(nèi)y值隨x

值的增大而增大。

4.|k|的幾何意義:表示反比例函數(shù)圖像上的點(diǎn)向兩坐標(biāo)軸所作的垂線段與兩坐標(biāo)

軸圍成的矩形的面積。

在學(xué)習(xí)反比例函數(shù)時,教師可讓學(xué)生對比之前所學(xué)習(xí)的一次函數(shù)啟發(fā)學(xué)生進(jìn)行

對比性學(xué)習(xí)。在做題時,培養(yǎng)和養(yǎng)成數(shù)形結(jié)合的思想。

第十,?辛為殷友.理

.知識框架

二知識概念

1.勾股定理:如果直角三角形的兩直角邊長分別為a,b,斜邊長為c,那么a?十

b2=c2o

勾股定理逆定理:如果三角形三邊長a,b,c滿足a2+b2=c2。,那么這個三角形是

直角三角形。

2.定理:經(jīng)過證明被確認(rèn)正確的命題叫做定理。

3.我們把題設(shè)、結(jié)論正好相反的兩個命題叫做互逆命題。如果把其中一個叫做原

命題,那么另一個叫做它的逆命題。(例:勾股定理與勾股定理逆定理)

勾股定理是直角三角形具備的重要性質(zhì)。本章要求學(xué)生在理解勾股定理的前

提下,學(xué)會利用這個定理解決實(shí)際問題??梢酝ㄟ^自主學(xué)習(xí)的發(fā)展體驗獲取數(shù)學(xué)

知識的感受

第十九乘四邊形

.知識框架

二.知識概念

1.平行四邊形定義:有兩組對邊分別平行的四邊形叫做平行四邊形。

2.平行四邊形的性質(zhì):平行四邊形的對邊相等;平行四邊形的對角相等。平行四

邊形的對角線互相平分。

3.平行四邊形的判定1.兩組對邊分別相等的四邊形是平行四邊形

2.對角線互相平分的四邊形是平行四邊形;

3.兩組對角分別相等的四邊形是平行四邊形;

4.一組對邊平行且相等的四邊形是平行四邊形。

4.三角形的中位線平行于三角形的第三邊,且等于第三邊的一半。

5.直角三角形斜邊上的中線等于斜邊的一半。

6.矩形的定義:有一個角是直角的平行四邊形。

7.矩形的性質(zhì):矩形的四個角都是直角;矩形的對角線平分且相等。AC=BD

8.矩形判定定理:1.有一個角是直角的平行四邊形叫做矩形。

2.對角線相等的平行四邊形是矩形。

3.有三個角是直角的四邊形是矩形。

9.菱形的定義:鄰邊相等的平行四邊形。

10.菱形的性質(zhì):菱形的四條邊都相等;菱形的兩條對角線互相垂直,并且每一

條對角線平分一組對角。

11.菱形的判定定理:1.一組鄰邊相等的平行四邊形是菱形。

2.對角線互相垂直的平行四邊形是菱形。

3.四條邊相等的四邊形是菱形。

12.S菱形=l/2Xab(a、b為兩條對角線)

13.正方形定義:一個角是直角的菱形或鄰邊相等的矩形。

14.正方形的性質(zhì):四條邊都相等,四個角都是直角。正方形既是矩形,又是菱

形。

15.正方形判定定理:1.鄰邊相等的矩形是正方形。2.有一個角是直角的菱形

是正方形。

16.梯形的定義:一組對邊平行,另一組對邊不平行的四邊形叫做梯形。

17.直角梯形的定義:有一個角是直角的梯形

18.等腰梯形的定義:兩腰相等的梯形。

19.等腰梯形的性質(zhì):等腰梯形同一底邊上的兩個角相等;等腰梯形的兩條對角

線相等。

20.等腰梯形判定定理:同一底上兩個角相等的梯形是等腰梯形。

本章內(nèi)容是對平面上四邊形的分類及性質(zhì)上的研究,要求學(xué)生在學(xué)習(xí)過程中

多動手多動腦,把自己的發(fā)現(xiàn)和知識帶入做題中。因此教師在教學(xué)時可以多鼓勵

學(xué)生自己總結(jié)四邊形的特點(diǎn),這樣有利于學(xué)生對知識的把握。

第二十本撤疆的臺航

一.知識框架

二.知識概念

L加權(quán)平均數(shù):加權(quán)平均數(shù)的計算公式。權(quán)的理解:反映了某個數(shù)據(jù)在整個數(shù)據(jù)

中的重要程度。

2.中位數(shù):將一組數(shù)據(jù)按照由小到大(或由大到?。┑捻樞蚺帕?,如果數(shù)據(jù)的個

數(shù)是奇數(shù),則處于中間位置的數(shù)就是這組數(shù)據(jù)的中位數(shù)(median);如果數(shù)據(jù)的個

數(shù)是偶數(shù),則中間兩個數(shù)據(jù)的平均數(shù)就是這組數(shù)據(jù)的中位數(shù)。

3.眾數(shù):一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù)就是這組數(shù)據(jù)的眾數(shù)(mode)。

4.極差:組數(shù)據(jù)中的最大數(shù)據(jù)與最小數(shù)據(jù)的差叫做這組數(shù)據(jù)的極差(range)。

5.方差越大,數(shù)據(jù)的波動越大;方差越小,數(shù)據(jù)的波動越小,就越穩(wěn)定。

本章內(nèi)容要求學(xué)生在經(jīng)歷數(shù)據(jù)的收集、整理、分析過程中發(fā)展學(xué)生的統(tǒng)計意

識和數(shù)據(jù)處理的方法與能力。在教學(xué)過程中,以生活實(shí)例為主,讓學(xué)生體會到數(shù)

據(jù)在生活中的重要性。

九年級數(shù)學(xué)(上)知識點(diǎn)

人教版九年級數(shù)學(xué)上冊主要包括了二次根式、二元一次方程、旋轉(zhuǎn)、圓和概

率五個章節(jié)的內(nèi)容。

第二十一本二次旅式

.知識框架

二.知識概念

二次根式:一般地,形如咐(aNO)的代數(shù)式叫做二次根式。當(dāng)a>0時,電表

示a的算數(shù)平方根,其中7()=0

對于本章內(nèi)容,教學(xué)中應(yīng)達(dá)到以下幾方面要求:

1.理解二次根式的概念,了解被開方數(shù)必須是非負(fù)數(shù)的理由;

2.了解最簡二次根式的概念;

3.理解并掌握下列結(jié)論:

1)是非負(fù)數(shù);(2);(3);

4.掌握二次根式的加、減、乘、除運(yùn)算法則,會用它們進(jìn)行有關(guān)實(shí)數(shù)的簡單四則

運(yùn)算;

5.了解代數(shù)式的概念,進(jìn)一步體會代數(shù)式在表示數(shù)量關(guān)系方面的作用。

第二十二拿一無二次根K

一.知識框架

二.知識概念

一元二次方程:方程兩邊都是整式,只含有一個未知數(shù)(一元),并且未知數(shù)的

最高次數(shù)是2(二次)的方程,叫做一元二次方程.

一般地,任何一個關(guān)于x的一元二次方程,?經(jīng)過整理,?都能化成如下形式

ax2+bx+c=0(aWO).這種形式叫做一元二次方程的一般形式.

一4'一■元二次方程經(jīng)過整理化成ax?+bx+c=O(a20)后,其中ax?是二次項,a

是二次項系數(shù);bx是一次項,b是一次項系數(shù);c是常數(shù)項.

本章內(nèi)容主要要求學(xué)生在理解一元二次方程的前提下,通過解方程來解決一些實(shí)

際問題。

(1)運(yùn)用開平方法解形如(x+m)2=n(n》0)的方程;領(lǐng)會降次——轉(zhuǎn)化的數(shù)

學(xué)思想.

(2)配方法解一元二次方程的一般步驟:現(xiàn)將已知方程化為一般形式;化二次

項系數(shù)為1;常數(shù)項移到右邊;方程兩邊都加上一次項系數(shù)的一半的平方,使左

邊配成一個完全平方式;變形為(x+p)2=q的形式,如果qNO,方程的根是x=-p

±Vq;如果qVO,方程無實(shí)根.

介紹配方法時,首先通過實(shí)際問題引出形如的方程。這樣的方程可以化為更為

簡單的形如的方程,由平方根的概念,可以得到這個方程的解。進(jìn)而舉例說明

如何解形如的方程。然后舉例說明一元二次方程可以化為形如的方程,引出配

方法。最后安排運(yùn)用配方法解一元二次方程的例題。在例題中,涉及二次項系數(shù)

不是1的一元二次方程,也涉及沒有實(shí)數(shù)根的一元二次方程。對于沒有實(shí)數(shù)根的

一元二次方程,學(xué)了“公式法”以后,學(xué)生對這個內(nèi)容會有進(jìn)一步的理解。

(3)一元二次方程ax2+bx+c=0(aWO)的根由方程的系數(shù)a、b、c而定,因此:

解一元二次方程時,可以先將方程化為一般形式ax2+bx+c=0,當(dāng)bMac^O時,

?將a、b、c代入式子*=就得到方程的根.(公式所出現(xiàn)的運(yùn)算,恰好包括了所

學(xué)過的六中運(yùn)算,力口、減、乘、除、乘方、開方,這體現(xiàn)了公式的統(tǒng)一性與和諧

性。)這個式子叫做一元二次方程的求根公式.利用求根公式解一元二次方程的

方法叫公式法.

第二十三本於浩

.知識框架

二.知識概念

1.旋轉(zhuǎn):在平面內(nèi),將一個圖形繞一個圖形按某個方向轉(zhuǎn)動一個角度,這樣的運(yùn)

動叫做圖形的旋轉(zhuǎn)。這個定點(diǎn)叫做旋轉(zhuǎn)中心,轉(zhuǎn)動的角度叫做旋轉(zhuǎn)角。(圖形的

旋轉(zhuǎn)是圖形上的每一點(diǎn)在平面上繞著某個固定點(diǎn)旋轉(zhuǎn)固定角度的位置移動,其中

對應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等,對應(yīng)線段的長度、對應(yīng)角的大小相等,旋轉(zhuǎn)前后

圖形的大小和形狀沒有改變。)

2.旋轉(zhuǎn)對稱中心:把一個圖形繞著一個定點(diǎn)旋轉(zhuǎn)一個角度后,與初始圖形重合,

這種圖形叫做旋轉(zhuǎn)對稱圖形,這個定點(diǎn)叫做旋轉(zhuǎn)對稱中心,旋轉(zhuǎn)的角度叫做旋轉(zhuǎn)

角(旋轉(zhuǎn)角小于0°,大于360。)。

3.中心對稱圖形與中心對稱:

中心對稱圖形:如果把一個圖形繞著某一點(diǎn)旋轉(zhuǎn)180度后能與自身重合,那么我

們就說,這個圖形成中心對稱圖形。

中心對稱:如果把一個圖形繞著某一點(diǎn)旋轉(zhuǎn)180度后能與另一個圖形重合,那么

我們就說,這兩個圖形成中心對稱。

4.中心對稱的性質(zhì):

關(guān)于中心對稱的兩個圖形是全等形。

關(guān)于中心對稱的兩個圖形,對稱點(diǎn)連線都經(jīng)過對稱中心,并且被對稱中心平分。

關(guān)于中心對稱的兩個圖形,對應(yīng)線段平行(或者在同一直線上)且相等。

本章內(nèi)容通過讓學(xué)生經(jīng)歷觀察、操作等過程了解旋轉(zhuǎn)的概念,探索旋轉(zhuǎn)的性

質(zhì),進(jìn)一步發(fā)展空間觀察,培養(yǎng)幾何思維和審美意識,在實(shí)際問題中體驗數(shù)學(xué)的

快樂,激發(fā)對學(xué)習(xí)學(xué)習(xí)。

第二十詞幸圓

.知識框架

二.知識概念

1.圓:平面上到定點(diǎn)的距離等于定長的所有點(diǎn)組成的圖形叫做圓。定點(diǎn)稱為圓心,

定長稱為半徑。

2.圓弧和弦:圓上任意兩點(diǎn)間的部分叫做圓弧,簡稱弧。大于半圓的弧稱

為優(yōu)弧,小于半圓的弧稱為劣弧。連接圓上任意兩點(diǎn)的線段叫做弦。經(jīng)過

圓心的弦叫做直徑。

3.圓心角和圓周角:頂點(diǎn)在圓心上的角叫做圓心角。頂點(diǎn)在圓周上,且它的

兩邊分別與圓有另一個交點(diǎn)的角叫做圓周角。

4.內(nèi)心和外心:過三角形的三個頂點(diǎn)的圓叫做三角形的外接圓,其圓心叫做

三角形的外心。和三角形三邊都相切的圓叫做這個三角形的內(nèi)切圓,其圓

心稱為內(nèi)心。

5.扇形:在圓上,由兩條半徑和一段弧圍成的圖形叫做扇形。

6.圓錐側(cè)面展開圖是一個扇形。這個扇形的半徑稱為圓錐的母線。

7.圓和點(diǎn)的位置關(guān)系:以點(diǎn)P與圓O的為例(設(shè)P是一點(diǎn),則PO是點(diǎn)到

圓心的距離),P在。。外,PO>r;P在。O上,PO=r;P在。。內(nèi),PO

<ro

8.直線與圓有3種位置關(guān)系:無公共點(diǎn)為相離;有兩個公共點(diǎn)為相交,這

條直線叫做圓的割線;圓與直線有唯一公共點(diǎn)為相切,這條直線叫做圓的

切線,這個唯一的公共點(diǎn)叫做切點(diǎn)。

9.兩圓之間有5種位置關(guān)系:無公共點(diǎn)的,一圓在另一圓之外叫外離,在

之內(nèi)叫內(nèi)含;有唯一公共點(diǎn)的,一圓在另一圓之外叫外切,在之內(nèi)叫內(nèi)切;

有兩個公共點(diǎn)的叫相交。兩圓圓心之間的距離叫做圓心距。兩圓的半徑分

別為R和r,且RNr,圓心距為P:外離P>R+r;外切P=R+r;相交R-r

<P<R+r;內(nèi)切P=R-r;內(nèi)含P<R-r。

10.切線的判定方法:經(jīng)過半徑外端并且垂直于這條半徑的直線是圓的切

線。

11.切線的性質(zhì):(1)經(jīng)過切點(diǎn)垂直于這條半徑的直線是圓的切線。(2)

經(jīng)過切點(diǎn)垂直于切線的直線必經(jīng)過圓心。(3)圓的切線垂直于經(jīng)過切點(diǎn)的

半徑。

12.垂徑定理:平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧。

13.有關(guān)定理:

平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧.

在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦也相等.

在同圓或等圓中,同弧等弧所對的圓周角相等,都等于這條弧所對的圓心角的

一半.

半圓(或直徑)所對的圓周角是直角,90°的圓周角所對的弦是直徑.

14.圓的計算公式1.圓的周長C=2nr=nd2.圓的面積S=nrA2;3.扇形弧

長l=mir/180

15.扇形面積S=n(RA2-rA2)5.圓錐側(cè)面積S=nrl

第二十JL#槐率

知識框架

本章內(nèi)容要求學(xué)生了解事件的可能性,在探究交流中學(xué)習(xí)體驗概率在生活中的

樂趣和實(shí)用性,學(xué)會計算概率。

九年級數(shù)學(xué)(下)知識點(diǎn)

人教版九年級數(shù)學(xué)下冊主要包括了二次函數(shù)、相似、銳角三角形、投影與視

圖四個章節(jié)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論