2022屆山東省齊河縣重點名校中考數(shù)學對點突破模擬試卷含解析_第1頁
2022屆山東省齊河縣重點名校中考數(shù)學對點突破模擬試卷含解析_第2頁
2022屆山東省齊河縣重點名校中考數(shù)學對點突破模擬試卷含解析_第3頁
2022屆山東省齊河縣重點名校中考數(shù)學對點突破模擬試卷含解析_第4頁
2022屆山東省齊河縣重點名校中考數(shù)學對點突破模擬試卷含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2022屆山東省齊河縣重點名校中考數(shù)學對點突破模擬試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(共10小題,每小題3分,共30分)1.已知3a﹣2b=1,則代數(shù)式5﹣6a+4b的值是()A.4B.3C.﹣1D.﹣32.下列計算正確的是()A.﹣= B.=±2C.a(chǎn)6÷a2=a3 D.(﹣a2)3=﹣a63.﹣的絕對值是()A.﹣ B.﹣ C. D.4.若分式有意義,則的取值范圍是()A.; B.; C.; D..5.如圖,平行于x軸的直線與函數(shù),的圖象分別相交于A,B兩點,點A在點B的右側(cè),C為x軸上的一個動點,若的面積為4,則的值為A.8 B. C.4 D.6.有15位同學參加歌詠比賽,所得的分數(shù)互不相同,取得分前8位同學進入決賽.某同學知道自己的分數(shù)后,要判斷自己能否進入決賽,他只需知道這15位同學的()A.平均數(shù) B.中位數(shù) C.眾數(shù) D.方差7.如圖是正方體的表面展開圖,則與“前”字相對的字是()A.認 B.真 C.復 D.習8.如圖,圖1是由5個完全相同的正方體堆成的幾何體,現(xiàn)將標有E的正方體平移至如圖2所示的位置,下列說法中正確的是()A.左、右兩個幾何體的主視圖相同B.左、右兩個幾何體的左視圖相同C.左、右兩個幾何體的俯視圖不相同D.左、右兩個幾何體的三視圖不相同9.若一個函數(shù)的圖象是經(jīng)過原點的直線,并且這條直線過點(-3,2a)和點(8a,-3),則a的值為()A.916 B.34 C.±10.不解方程,判別方程2x2﹣3x=3的根的情況()A.有兩個相等的實數(shù)根 B.有兩個不相等的實數(shù)根C.有一個實數(shù)根 D.無實數(shù)根二、填空題(本大題共6個小題,每小題3分,共18分)11.若關于x的一元二次方程x2+mx+2n=0有一個根是2,則m+n=_____.12.王經(jīng)理到襄陽出差帶回襄陽特產(chǎn)——孔明菜若干袋,分給朋友們品嘗.如果每人分5袋,還余3袋;如果每人分6袋,還差3袋,則王經(jīng)理帶回孔明菜_________袋13.如圖,經(jīng)過點B(-2,0)的直線與直線相交于點A(-1,-2),則不等式的解集為.14.如圖所示,直線y=x+1(記為l1)與直線y=mx+n(記為l2)相交于點P(a,2),則關于x的不等式x+1≥mx+n的解集為__________.15.如圖,在菱形ABCD中,對角線AC、BD相交于點O,點E是線段BO上的一個動點,點F為射線DC上一點,若∠ABC=60°,∠AEF=120°,AB=4,則EF可能的整數(shù)值是_____.16.已知:a(a+2)=1,則a2+=_____.三、解答題(共8題,共72分)17.(8分)已知:如圖,拋物線y=x2+bx+c與x軸交于A(-1,0)、B兩點(A在B左),y軸交于點C(0,-3).(1)求拋物線的解析式;(2)若點D是線段BC下方拋物線上的動點,求四邊形ABCD面積的最大值;(3)若點E在x軸上,點P在拋物線上.是否存在以B、C、E、P為頂點且以BC為一邊的平行四邊形?若存在,求出點P的坐標;若不存在,請說明理由.18.(8分)如圖,△ABC,△CDE均是等腰直角三角形,∠ACB=∠DCE=90°,點E在AB上,求證:△CDA≌△CEB.19.(8分)某校師生到距學校20千米的公路旁植樹,甲班師生騎自行車先走,45分鐘后,乙班師生乘汽車出發(fā),結果兩班師生同時到達,已知汽車的速度是自行車速度的2.5倍,求兩種車的速度各是多少?20.(8分)某新建火車站站前廣場需要綠化的面積為46000米2,施工隊在綠化了22000米2后,將每天的工作量增加為原來的1.5倍,結果提前4天完成了該項綠化工程.該項綠化工程原計劃每天完成多少米2?該項綠化工程中有一塊長為20米,寬為8米的矩形空地,計劃在其中修建兩塊相同的矩形綠地,它們的面積之和為56米2,兩塊綠地之間及周邊留有寬度相等的人行通道(如圖所示),問人行通道的寬度是多少米?21.(8分)如圖所示,飛機在一定高度上沿水平直線飛行,先在點處測得正前方小島的俯角為,面向小島方向繼續(xù)飛行到達處,發(fā)現(xiàn)小島在其正后方,此時測得小島的俯角為.如果小島高度忽略不計,求飛機飛行的高度(結果保留根號).22.(10分)在同一時刻兩根木竿在太陽光下的影子如圖所示,其中木竿AB=2m,它的影子BC=1.6m,木竿PQ落在地面上的影子PM=1.8m,落在墻上的影子MN=1.1m,求木竿PQ的長度.23.(12分)已知二次函數(shù)y=mx2﹣2mx+n的圖象經(jīng)過(0,﹣3).(1)n=_____________;(2)若二次函數(shù)y=mx2﹣2mx+n的圖象與x軸有且只有一個交點,求m值;(3)若二次函數(shù)y=mx2﹣2mx+n的圖象與平行于x軸的直線y=5的一個交點的橫坐標為4,則另一個交點的坐標為;(4)如圖,二次函數(shù)y=mx2﹣2mx+n的圖象經(jīng)過點A(3,0),連接AC,點P是拋物線位于線段AC下方圖象上的任意一點,求△PAC面積的最大值.24.如圖①,AB是⊙O的直徑,CD為弦,且AB⊥CD于E,點M為上一動點(不包括A,B兩點),射線AM與射線EC交于點F.(1)如圖②,當F在EC的延長線上時,求證:∠AMD=∠FMC.(2)已知,BE=2,CD=1.①求⊙O的半徑;②若△CMF為等腰三角形,求AM的長(結果保留根號).

參考答案一、選擇題(共10小題,每小題3分,共30分)1、B【解析】

先變形,再整體代入,即可求出答案.【詳解】∵3a﹣2b=1,∴5﹣6a+4b=5﹣2(3a﹣2b)=5﹣2×1=3,故選:B.【點睛】本題考查了求代數(shù)式的值,能夠整體代入是解此題的關鍵.2、D【解析】

根據(jù)二次根式的運算法則,同類二次根式的判斷,開算術平方根,同底數(shù)冪的除法及冪的乘方運算.【詳解】A.不是同類二次根式,不能合并,故A選項錯誤;B.=2≠±2,故B選項錯誤;C.

a6÷a2=a4≠a3,故C選項錯誤;D.

(?a2)3=?a6,故D選項正確.故選D.【點睛】本題主要考查了二次根式的運算法則,開算術平方根,同底數(shù)冪的除法及冪的乘方運算,熟記法則是解題的關鍵.3、C【解析】

根據(jù)負數(shù)的絕對值是它的相反數(shù),可得答案.【詳解】│-│=,A錯誤;│-│=,B錯誤;││=,D錯誤;││=,故選C.【點睛】本題考查了絕對值,解題的關鍵是掌握絕對值的概念進行解題.4、B【解析】

分式的分母不為零,即x-2≠1.【詳解】∵分式有意義,∴x-2≠1,∴.故選:B.【點睛】考查了分式有意義的條件,(1)分式無意義?分母為零;(2)分式有意義?分母不為零;(3)分式值為零?分子為零且分母不為零.5、A【解析】【分析】設,,根據(jù)反比例函數(shù)圖象上點的坐標特征得出,根據(jù)三角形的面積公式得到,即可求出.【詳解】軸,,B兩點縱坐標相同,設,,則,,,,故選A.【點睛】本題考查了反比例函數(shù)圖象上點的坐標特征,三角形的面積,熟知點在函數(shù)的圖象上,則點的坐標滿足函數(shù)的解析式是解題的關鍵.6、B【解析】

由中位數(shù)的概念,即最中間一個或兩個數(shù)據(jù)的平均數(shù);可知15人成績的中位數(shù)是第8名的成績.根據(jù)題意可得:參賽選手要想知道自己是否能進入前8名,只需要了解自己的成績以及全部成績的中位數(shù),比較即可.【詳解】解:由于15個人中,第8名的成績是中位數(shù),故小方同學知道了自己的分數(shù)后,想知道自己能否進入決賽,還需知道這十五位同學的分數(shù)的中位數(shù).故選B.【點睛】此題主要考查統(tǒng)計的有關知識,主要包括平均數(shù)、中位數(shù)、眾數(shù)的意義.反映數(shù)據(jù)集中程度的統(tǒng)計量有平均數(shù)、中位數(shù)、眾數(shù)等,各有局限性,因此要對統(tǒng)計量進行合理的選擇和恰當?shù)倪\用.7、B【解析】分析:由平面圖形的折疊以及正方體的展開圖解題,罪域正方體的平面展開圖中相對的面一定相隔一個小正方形.詳解:由圖形可知,與“前”字相對的字是“真”.故選B.點睛:本題考查了正方體的平面展開圖,注意正方體的空間圖形,從相對面入手分析及解答問題.8、B【解析】

直接利用已知幾何體分別得出三視圖進而分析得出答案.【詳解】A、左、右兩個幾何體的主視圖為:,故此選項錯誤;B、左、右兩個幾何體的左視圖為:,故此選項正確;C、左、右兩個幾何體的俯視圖為:,故此選項錯誤;D、由以上可得,此選項錯誤;故選B.【點睛】此題主要考查了簡單幾何體的三視圖,正確把握觀察的角度是解題關鍵.9、D【解析】

根據(jù)一次函數(shù)的圖象過原點得出一次函數(shù)式正比例函數(shù),設一次函數(shù)的解析式為y=kx,把點(?3,2a)與點(8a,?3)代入得出方程組2a=-3k①-3=8ak②【詳解】解:設一次函數(shù)的解析式為:y=kx,把點(?3,2a)與點(8a,?3)代入得出方程組2a=-3k①-3=8ak②由①得:k=-2把③代入②得:-3=8a×-解得:a=±3故選:D.【點睛】本題考查了用待定系數(shù)法求一次函數(shù)的解析式,主要考查學生運用性質(zhì)進行計算的能力.10、B【解析】一元二次方程的根的情況與根的判別式有關,,方程有兩個不相等的實數(shù)根,故選B二、填空題(本大題共6個小題,每小題3分,共18分)11、﹣1【解析】

根據(jù)一元二次方程的解的定義把x=1代入x1+mx+1n=0得到4+1m+1n=0得n+m=?1,然后利用整體代入的方法進行計算.【詳解】∵1(n≠0)是關于x的一元二次方程x1+mx+1n=0的一個根,∴4+1m+1n=0,∴n+m=?1,故答案為?1.【點睛】本題考查了一元二次方程的解(根):能使一元二次方程左右兩邊相等的未知數(shù)的值是一元二次方程的解.又因為只含有一個未知數(shù)的方程的解也叫做這個方程的根,所以,一元二次方程的解也稱為一元二次方程的根.12、33.【解析】試題分析:設品嘗孔明菜的朋友有x人,依題意得,5x+3=6x-3,解得x=6,所以孔明菜有5x+3=33袋.考點:一元一次方程的應用.13、【解析】分析:不等式的解集就是在x下方,直線在直線上方時x的取值范圍.由圖象可知,此時.14、x≥1【解析】

把y=2代入y=x+1,得x=1,∴點P的坐標為(1,2),根據(jù)圖象可以知道當x≥1時,y=x+1的函數(shù)值不小于y=mx+n相應的函數(shù)值,因而不等式x+1≥mx+n的解集是:x≥1,故答案為x≥1.【點睛】本題考查了一次函數(shù)與不等式(組)的關系及數(shù)形結合思想的應用.解決此類問題關鍵是仔細觀察圖形,注意幾個關鍵點(交點、原點等),做到數(shù)形結合.15、2,3,1.【解析】分析:根據(jù)題意得出EF的取值范圍,從而得出EF的值.詳解:∵AB=1,∠ABC=60°,∴BD=1,當點E和點B重合時,∠FBD=90°,∠BDC=30°,則EF=1;當點E和點O重合時,∠DEF=30°,則△EFD為等腰三角形,則EF=FD=2,∴EF可能的整數(shù)值為2、3、1.點睛:本題主要考查的就是菱形的性質(zhì)以及直角三角形的勾股定理,屬于中等難度的題型.解決這個問題的關鍵就是找出當點E在何處時取到最大值和最小值,從而得出答案.16、3【解析】

先根據(jù)a(a+2)=1得出a2=1-2a,再把a2=1-2a代入a2+進行計算.【詳解】a(a+2)=1得出a2=1-2a,a2+1-2a+====3.【點睛】本題考查的是代數(shù)式求解,熟練掌握代入法是解題的關鍵.三、解答題(共8題,共72分)17、(1);(2);(3)P1(3,-3),P2(,3),P3(,3).【解析】

(1)將的坐標代入拋物線中,求出待定系數(shù)的值,即可得出拋物線的解析式;

(2)根據(jù)的坐標,易求得直線的解析式.由于都是定值,則的面積不變,若四邊形面積最大,則的面積最大;過點作軸交于,則可得到當面積有最大值時,四邊形的面積最大值;(3)本題應分情況討論:①過作軸的平行線,與拋物線的交點符合點的要求,此時的縱坐標相同,代入拋物線的解析式中即可求出點坐標;②將平移,令點落在軸(即點)、點落在拋物線(即點)上;可根據(jù)平行四邊形的性質(zhì),得出點縱坐標(縱坐標的絕對值相等),代入拋物線的解析式中即可求得點坐標.【詳解】解:(1)把代入,可以求得∴(2)過點作軸分別交線段和軸于點,在中,令,得設直線的解析式為可求得直線的解析式為:∵S四邊形ABCD設當時,有最大值此時四邊形ABCD面積有最大值(3)如圖所示,如圖:①過點C作CP1∥x軸交拋物線于點P1,過點P1作P1E1∥BC交x軸于點E1,此時四邊形BP1CE1為平行四邊形,

∵C(0,-3)

∴設P1(x,-3)

∴x2-x-3=-3,解得x1=0,x2=3,

∴P1(3,-3);

②平移直線BC交x軸于點E,交x軸上方的拋物線于點P,當BC=PE時,四邊形BCEP為平行四邊形,

∵C(0,-3)

∴設P(x,3),

∴x2-x-3=3,

x2-3x-8=0

解得x=或x=,

此時存在點P2(,3)和P3(,3),

綜上所述存在3個點符合題意,坐標分別是P1(3,-3),P2(,3),P3(,3).【點睛】此題考查了二次函數(shù)解析式的確定、圖形面積的求法、平行四邊形的判定和性質(zhì)、二次函數(shù)的應用等知識,綜合性強,難度較大.18、見解析.【解析】試題分析:根據(jù)等腰直角三角形的性質(zhì)得出CE=CD,BC=AC,再利用全等三角形的判定證明即可.試題解析:證明:∵△ABC、△CDE均為等腰直角三角形,∠ACB=∠DCE=90°,∴CE=CD,BC=AC,∴∠ACB﹣∠ACE=∠DCE﹣∠ACE,∴∠ECB=∠DCA,在△CDA與△CEB中,BC=AC∠ECB=∠DAC∴△CDA≌△CEB.考點:全等三角形的判定;等腰直角三角形.19、自行車速度為16千米/小時,汽車速度為40千米/小時.【解析】

設自行車速度為x千米/小時,則汽車速度為2.5x千米/小時,根據(jù)甲班師生騎自行車先走,45分鐘后,乙班師生乘汽車出發(fā),結果同時到達,即可列方程求解.【詳解】設自行車速度為x千米/小時,則汽車速度為2.5x千米/小時,由題意得,解得x=16,經(jīng)檢驗x=16適合題意,2.5x=40,答:自行車速度為16千米/小時,汽車速度為40千米/小時.20、(1)2000;(2)2米【解析】

(1)設未知數(shù),根據(jù)題目中的的量關系列出方程;(2)可以通過平移,也可以通過面積法,列出方程【詳解】解:(1)設該項綠化工程原計劃每天完成x米2,根據(jù)題意得:﹣=4解得:x=2000,經(jīng)檢驗,x=2000是原方程的解;答:該綠化項目原計劃每天完成2000平方米;(2)設人行道的寬度為x米,根據(jù)題意得,(20﹣3x)(8﹣2x)=56解得:x=2或x=(不合題意,舍去).答:人行道的寬為2米.21、【解析】

過點C作CD⊥AB,由∠CBD=45°知BD=CD=x,由∠ACD=30°知AD==x,根據(jù)AD+BD=AB列方程求解可得.【詳解】解:過點C作CD⊥AB于點D,設CD=x,∵∠CBD=45°,∴BD=CD=x,在Rt△ACD中,∵,∴AD====x,由AD+BD=AB可得x+x=10,解得:x=5﹣5,答:飛機飛行的高度為(5﹣5)km.22、木竿PQ的長度為3.35米.【解析】

過N點作ND⊥PQ于D,則四邊形DPMN為矩形,根據(jù)矩形的性質(zhì)得出DP,DN的長,然后根據(jù)同一時刻物高與影長成正比求出QD的長,即可得出PQ的長.試題解析:【詳解】解:過N點作ND⊥PQ于D,則四邊形DPMN為矩形,∴DN=PM=1.8m,DP=MN=1.1m,∴,∴QD==2.25,∴PQ=QD+DP=2.25+1.1=3.35(m).答:木竿PQ的長度為3.35米.【點睛】本題考查了相似三角形的應用,作出輔助線,根據(jù)同一時刻物高與影長成正比列出比例式是解決此題的關鍵.23、(2)-2;(2)m=﹣2;(2)(﹣2,5);(4)當a=時,△PAC的面積取最大值,最大值為【解析】

(2)將(0,-2)代入二次函數(shù)解析式中即可求出n值;(2)由二次函數(shù)圖象與x軸只有一個交點,利用根的判別式△=0,即可得出關于m的一元二次方程,解之取其非零值即可得出結論;(2)根據(jù)二次函數(shù)的解析式利用二次函數(shù)的性質(zhì)可找出二次函數(shù)圖象的對稱軸,利用二次函數(shù)圖象的對稱性即可找出另一個交點的坐標;(4)將點A的坐標代入二次函數(shù)解析式中可求出m值,由此可得出二次函數(shù)解析式,由點A、C的坐標,利用待定系數(shù)法可求出直線AC的解析式,過點P作PD⊥x軸于點D,交AC于點Q,設點P的坐標為(a,a2-2a-2),則點Q的坐標為(a,a-2),點D的坐標為(a,0),根據(jù)三角形的面積公式可找出S△ACP關于a的函數(shù)關系式,配方后即可得出△PAC面積的最大值.【詳解】解:(2)∵二次函數(shù)y=mx2﹣2mx+n的圖象經(jīng)過(0,﹣2),∴n=﹣2.故答案為﹣2.(2)∵二次函數(shù)y=mx2﹣2mx﹣2的圖象與x軸有且只有一個交點,∴△=(﹣2m)2﹣4×(﹣2)m=4m2+22m=0,解得:m2=0,m2=﹣2.∵m≠0,∴m=﹣2.(2)∵二次函數(shù)解析式為y=mx2﹣2mx﹣2,∴二次函數(shù)圖象的對稱軸為直線x=﹣=2.∵該二次函數(shù)圖象與平行于x軸的直線y=5的一個交點的橫坐標為4,∴另一交點的橫坐標為2×2﹣4=﹣2,∴另一個交點的坐標為(﹣2,5).故答案為(﹣2,5).(4)∵二次函數(shù)y=mx2﹣2mx﹣2的圖象經(jīng)過點A(2,0),∴0=9m﹣6m﹣2,∴m=2,∴二次函數(shù)解析式為y=x2﹣2x﹣2.設直線AC的解析式為y=kx+b(k≠0),將A(2,0)、C(0,﹣2)代入y=kx+b,得:,解得:,∴直線AC的解析式為y=x﹣2.過點P作PD⊥x軸于點D,交AC于點Q,如圖所示.設點P的坐標為(a,a2﹣2a﹣2),則點Q的坐標為(a,a﹣2),點D的坐標為(a,0),∴PQ=a﹣

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論