版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2022屆云南省紅河州彌勒市中考五模數(shù)學(xué)試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)填寫(xiě)清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書(shū)寫(xiě),字體工整、筆跡清楚。3.請(qǐng)按照題號(hào)順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書(shū)寫(xiě)的答案無(wú)效;在草稿紙、試題卷上答題無(wú)效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1.如圖,在中,,將繞點(diǎn)逆時(shí)針旋轉(zhuǎn),使點(diǎn)落在線(xiàn)段上的點(diǎn)處,點(diǎn)落在點(diǎn)處,則兩點(diǎn)間的距離為()A. B. C. D.2.已知關(guān)于x的不等式組至少有兩個(gè)整數(shù)解,且存在以3,a,7為邊的三角形,則a的整數(shù)解有()A.4個(gè) B.5個(gè) C.6個(gè) D.7個(gè)3.已知關(guān)于x的一元二次方程有實(shí)數(shù)根,則m的取值范圍是()A. B. C. D.4.如圖,直線(xiàn)l1、l2、l3表示三條相互交叉的公路,現(xiàn)要建一個(gè)貨物中轉(zhuǎn)站,要求它到三條公路的距離相等,則供選擇的地址有()A.1處 B.2處 C.3處 D.4處5.如圖,四邊形ABCD內(nèi)接于⊙O,若∠B=130°,則∠AOC的大小是()A.130° B.120° C.110° D.100°6.如圖,已知點(diǎn)P是雙曲線(xiàn)y=上的一個(gè)動(dòng)點(diǎn),連結(jié)OP,若將線(xiàn)段OP繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°得到線(xiàn)段OQ,則經(jīng)過(guò)點(diǎn)Q的雙曲線(xiàn)的表達(dá)式為()A.y= B.y=﹣ C.y= D.y=﹣7.下面的幾何體中,主(正)視圖為三角形的是()A. B. C. D.8.等腰中,,D是AC的中點(diǎn),于E,交BA的延長(zhǎng)線(xiàn)于F,若,則的面積為()A.40 B.46 C.48 D.509.浙江省陸域面積為101800平方千米。數(shù)據(jù)101800用科學(xué)記數(shù)法表示為()A.1.018×104 B.1.018×105 C.10.18×105 D.0.1018×10610.在平面直角坐標(biāo)系中,正方形A1B1C1D1、D1E1E2B2、A2B2C2D2、D2E3E4B3…按如圖所示的方式放置,其中點(diǎn)B1在y軸上,點(diǎn)C1、E1、E2、C2、E3、E4、C3…在x軸上,已知正方形A1B1C1D1的邊長(zhǎng)為l,∠B1C1O=60°,B1C1∥B2C2∥B3C3…,則正方形A2017B2017C2017D2017的邊長(zhǎng)是()A.(12)2016B.(12)2017C.(33)2016D.(11.如圖,BD∥AC,BE平分∠ABD,交AC于點(diǎn)E,若∠A=40°,則∠1的度數(shù)為()A.80° B.70° C.60° D.40°12.如圖,由四個(gè)正方體組成的幾何體的左視圖是()A. B. C. D.二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13.如圖,△ABE和△ACD是△ABC分別沿著AB,AC邊翻折180°形成的,若∠BAC14.計(jì)算:|﹣3|+(﹣1)2=.15.化簡(jiǎn)二次根式的正確結(jié)果是_____.16.已知一次函數(shù)的圖象與直線(xiàn)y=x+3平行,并且經(jīng)過(guò)點(diǎn)(﹣2,﹣4),則這個(gè)一次函數(shù)的解析式為_(kāi)____.17.如圖1,在△ABC中,∠ACB=90°,BC=2,∠A=30°,點(diǎn)E,F(xiàn)分別是線(xiàn)段BC,AC的中點(diǎn),連結(jié)EF.(1)線(xiàn)段BE與AF的位置關(guān)系是,=.(2)如圖2,當(dāng)△CEF繞點(diǎn)C順時(shí)針旋轉(zhuǎn)a時(shí)(0°<a<180°),連結(jié)AF,BE,(1)中的結(jié)論是否仍然成立.如果成立,請(qǐng)證明;如果不成立,請(qǐng)說(shuō)明理由.(3)如圖3,當(dāng)△CEF繞點(diǎn)C順時(shí)針旋轉(zhuǎn)a時(shí)(0°<a<180°),延長(zhǎng)FC交AB于點(diǎn)D,如果AD=6﹣2,求旋轉(zhuǎn)角a的度數(shù).18.邊長(zhǎng)為6的正六邊形外接圓半徑是_____.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟.19.(6分)我市某中學(xué)藝術(shù)節(jié)期間,向全校學(xué)生征集書(shū)畫(huà)作品.九年級(jí)美術(shù)王老師從全年級(jí)14個(gè)班中隨機(jī)抽取了4個(gè)班,對(duì)征集到的作品的數(shù)量進(jìn)行了分析統(tǒng)計(jì),制作了如下兩幅不完整的統(tǒng)計(jì)圖.王老師采取的調(diào)查方式是(填“普查”或“抽樣調(diào)查”),王老師所調(diào)查的4個(gè)班征集到作品共件,其中b班征集到作品件,請(qǐng)把圖2補(bǔ)充完整;王老師所調(diào)查的四個(gè)班平均每個(gè)班征集作品多少件?請(qǐng)估計(jì)全年級(jí)共征集到作品多少件?如果全年級(jí)參展作品中有5件獲得一等獎(jiǎng),其中有3名作者是男生,2名作者是女生.現(xiàn)在要在其中抽兩人去參加學(xué)??偨Y(jié)表彰座談會(huì),請(qǐng)直接寫(xiě)出恰好抽中一男一女的概率.20.(6分)湯姆斯杯世界男子羽毛球團(tuán)體賽小組賽比賽規(guī)則:兩隊(duì)之間進(jìn)行五局比賽,其中三局單打,兩局雙打,五局比賽必須全部打完,贏得三局及以上的隊(duì)獲勝.假如甲,乙兩隊(duì)每局獲勝的機(jī)會(huì)相同.(1)若前四局雙方戰(zhàn)成2:2,那么甲隊(duì)最終獲勝的概率是__________;(2)現(xiàn)甲隊(duì)在前兩局比賽中已取得2:0的領(lǐng)先,那么甲隊(duì)最終獲勝的概率是多少?21.(6分)如圖,直線(xiàn)y=﹣x+3分別與x軸、y交于點(diǎn)B、C;拋物線(xiàn)y=x2+bx+c經(jīng)過(guò)點(diǎn)B、C,與x軸的另一個(gè)交點(diǎn)為點(diǎn)A(點(diǎn)A在點(diǎn)B的左側(cè)),對(duì)稱(chēng)軸為l1,頂點(diǎn)為D.(1)求拋物線(xiàn)y=x2+bx+c的解析式.(2)點(diǎn)M(1,m)為y軸上一動(dòng)點(diǎn),過(guò)點(diǎn)M作直線(xiàn)l2平行于x軸,與拋物線(xiàn)交于點(diǎn)P(x1,y1),Q(x2,y2),與直線(xiàn)BC交于點(diǎn)N(x3,y3),且x2>x1>1.①結(jié)合函數(shù)的圖象,求x3的取值范圍;②若三個(gè)點(diǎn)P、Q、N中恰好有一點(diǎn)是其他兩點(diǎn)所連線(xiàn)段的中點(diǎn),求m的值.22.(8分)如圖,在三角形ABC中,AB=6,AC=BC=5,以BC為直徑作⊙O交AB于點(diǎn)D,交AC于點(diǎn)G,直線(xiàn)DF是⊙O的切線(xiàn),D為切點(diǎn),交CB的延長(zhǎng)線(xiàn)于點(diǎn)E.(1)求證:DF⊥AC;(2)求tan∠E的值.23.(8分)已知關(guān)于x的一元二次方程(a+c)x2+2bx+(a﹣c)=0,其中a、b、c分別為△ABC三邊的長(zhǎng).如果x=﹣1是方程的根,試判斷△ABC的形狀,并說(shuō)明理由;如果方程有兩個(gè)相等的實(shí)數(shù)根,試判斷△ABC的形狀,并說(shuō)明理由;如果△ABC是等邊三角形,試求這個(gè)一元二次方程的根.24.(10分)計(jì)算:.25.(10分)如圖,D為⊙O上一點(diǎn),點(diǎn)C在直徑BA的延長(zhǎng)線(xiàn)上,且∠CDA=∠CBD.
(1)求證:CD是⊙O的切線(xiàn);
(2)過(guò)點(diǎn)B作⊙O的切線(xiàn)交CD的延長(zhǎng)線(xiàn)于點(diǎn)E,BC=6,ADBD=226.(12分)如圖,已知Rt△ABC中,∠C=90°,D為BC的中點(diǎn),以AC為直徑的⊙O交AB于點(diǎn)E.(1)求證:DE是⊙O的切線(xiàn);(2)若AE:EB=1:2,BC=6,求⊙O的半徑.27.(12分)在平面直角坐標(biāo)系中,函數(shù)()的圖象經(jīng)過(guò)點(diǎn)(4,1),直線(xiàn)與圖象交于點(diǎn),與軸交于點(diǎn).求的值;橫、縱坐標(biāo)都是整數(shù)的點(diǎn)叫做整點(diǎn).記圖象在點(diǎn),之間的部分與線(xiàn)段,,圍成的區(qū)域(不含邊界)為.①當(dāng)時(shí),直接寫(xiě)出區(qū)域內(nèi)的整點(diǎn)個(gè)數(shù);②若區(qū)域內(nèi)恰有4個(gè)整點(diǎn),結(jié)合函數(shù)圖象,求的取值范圍.
參考答案一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、A【解析】
先利用勾股定理計(jì)算出AB,再在Rt△BDE中,求出BD即可;【詳解】解:∵∠C=90°,AC=4,BC=3,
∴AB=5,
∵△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn),使點(diǎn)C落在線(xiàn)段AB上的點(diǎn)E處,點(diǎn)B落在點(diǎn)D處,
∴AE=AC=4,DE=BC=3,
∴BE=AB-AE=5-4=1,
在Rt△DBE中,BD=,故選A.【點(diǎn)睛】本題考查了旋轉(zhuǎn)的性質(zhì):對(duì)應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等;對(duì)應(yīng)點(diǎn)與旋轉(zhuǎn)中心所連線(xiàn)段的夾角等于旋轉(zhuǎn)角;旋轉(zhuǎn)前、后的圖形全等.2、A【解析】
依據(jù)不等式組至少有兩個(gè)整數(shù)解,即可得到a>5,再根據(jù)存在以3,a,7為邊的三角形,可得4<a<10,進(jìn)而得出a的取值范圍是5<a<10,即可得到a的整數(shù)解有4個(gè).【詳解】解:解不等式①,可得x<a,解不等式②,可得x≥4,∵不等式組至少有兩個(gè)整數(shù)解,∴a>5,又∵存在以3,a,7為邊的三角形,∴4<a<10,∴a的取值范圍是5<a<10,∴a的整數(shù)解有4個(gè),故選:A.【點(diǎn)睛】此題考查的是一元一次不等式組的解法和三角形的三邊關(guān)系的運(yùn)用,求不等式組的解集應(yīng)遵循以下原則:同大取較大,同小取較小,小大大小中間找,大大小小解不了.3、C【解析】
解:∵關(guān)于x的一元二次方程有實(shí)數(shù)根,∴△==,解得m≥1,故選C.【點(diǎn)睛】本題考查一元二次方程根的判別式.4、D【解析】
到三條相互交叉的公路距離相等的地點(diǎn)應(yīng)是三條角平分線(xiàn)的交點(diǎn).把三條公路的中心部位看作三角形,那么這個(gè)三角形兩個(gè)內(nèi)角平分線(xiàn)的交點(diǎn)以及三個(gè)外角兩兩平分線(xiàn)的交點(diǎn)都滿(mǎn)足要求.【詳解】滿(mǎn)足條件的有:(1)三角形兩個(gè)內(nèi)角平分線(xiàn)的交點(diǎn),共一處;(2)三個(gè)外角兩兩平分線(xiàn)的交點(diǎn),共三處.如圖所示,故選D.【點(diǎn)睛】本題考查了角平分線(xiàn)的性質(zhì);這是一道生活聯(lián)系實(shí)際的問(wèn)題,解答此類(lèi)題目時(shí)最直接的判斷就是三角形的角平分線(xiàn),很容易漏掉外角平分線(xiàn),解答時(shí)一定要注意,不要漏解.5、D【解析】分析:先根據(jù)圓內(nèi)接四邊形的性質(zhì)得到然后根據(jù)圓周角定理求詳解:∵∴∴故選D.點(diǎn)睛:考查圓內(nèi)接四邊形的性質(zhì),圓周角定理,掌握?qǐng)A內(nèi)接四邊形的對(duì)角互補(bǔ)是解題的關(guān)鍵.6、D【解析】
過(guò)P,Q分別作PM⊥x軸,QN⊥x軸,利用AAS得到兩三角形全等,由全等三角形對(duì)應(yīng)邊相等及反比例函數(shù)k的幾何意義確定出所求即可.【詳解】過(guò)P,Q分別作PM⊥x軸,QN⊥x軸,∵∠POQ=90°,∴∠QON+∠POM=90°,∵∠QON+∠OQN=90°,∴∠POM=∠OQN,由旋轉(zhuǎn)可得OP=OQ,在△QON和△OPM中,,∴△QON≌△OPM(AAS),∴ON=PM,QN=OM,設(shè)P(a,b),則有Q(-b,a),由點(diǎn)P在y=上,得到ab=3,可得-ab=-3,則點(diǎn)Q在y=-上.故選D.【點(diǎn)睛】此題考查了待定系數(shù)法求反比例函數(shù)解析式,反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征,以及坐標(biāo)與圖形變化,熟練掌握待定系數(shù)法是解本題的關(guān)鍵.7、C【解析】
解:圓柱的主視圖是矩形,正方體的主視圖是正方形,圓錐的主視圖是三角形,三棱柱的主視圖是寬相等兩個(gè)相連的矩形.故選C.8、C【解析】∵CE⊥BD,∴∠BEF=90°,∵∠BAC=90°,∴∠CAF=90°,∴∠FAC=∠BAD=90°,∠ABD+∠F=90°,∠ACF+∠F=90°,∴∠ABD=∠ACF,又∵AB=AC,∴△ABD≌△ACF,∴AD=AF,∵AB=AC,D為AC中點(diǎn),∴AB=AC=2AD=2AF,∵BF=AB+AF=12,∴3AF=12,∴AF=4,∴AB=AC=2AF=8,∴S△FBC=×BF×AC=×12×8=48,故選C.9、B【解析】.故選B.點(diǎn)睛:在把一個(gè)絕對(duì)值較大的數(shù)用科學(xué)記數(shù)法表示為的形式時(shí),我們要注意兩點(diǎn):①必須滿(mǎn)足:;②比原來(lái)的數(shù)的整數(shù)位數(shù)少1(也可以通過(guò)小數(shù)點(diǎn)移位來(lái)確定).10、C【解析】利用正方形的性質(zhì)結(jié)合銳角三角函數(shù)關(guān)系得出正方形的邊長(zhǎng),進(jìn)而得出變化規(guī)律即可得出答案.解:如圖所示:∵正方形A1B1C1D1的邊長(zhǎng)為1,∠B1C1O=60°,B1C1∥B2C2∥B3C3…∴D1E1=B2E2,D2E3=B3E4,∠D1C1E1=∠C2B2E2=∠C3B3E4=30°,∴D1E1=C1D1sin30°=,則B2C2===()1,同理可得:B3C3==()2,故正方形AnBnCnDn的邊長(zhǎng)是:()n﹣1.則正方形A2017B2017C2017D2017的邊長(zhǎng)是:()2.故選C.“點(diǎn)睛”此題主要考查了正方形的性質(zhì)以及銳角三角函數(shù)關(guān)系,得出正方形的邊長(zhǎng)變化規(guī)律是解題關(guān)鍵.11、B【解析】
根據(jù)平行線(xiàn)的性質(zhì)得到根據(jù)BE平分∠ABD,即可求出∠1的度數(shù).【詳解】解:∵BD∥AC,∴∵BE平分∠ABD,∴故選B.【點(diǎn)睛】本題考查角平分線(xiàn)的性質(zhì)和平行線(xiàn)的性質(zhì),熟記它們的性質(zhì)是解題的關(guān)鍵.12、B【解析】從左邊看可以看到兩個(gè)小正方形摞在一起,故選B.二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13、60【解析】∵∠BAC=150°∴∠ABC+∠ACB=30°∵∠EBA=∠ABC,∠DCA=∠ACB∴∠EBA+∠ABC+∠DCA+∠ACB=2(∠ABC+∠ACB)=60°,即∠EBC+∠DCB=60°∴θ=60°.14、4.【解析】
|﹣3|+(﹣1)2=4,故答案為4.15、﹣a【解析】,..16、y=x﹣1【解析】分析:根據(jù)互相平行的兩直線(xiàn)解析式的k值相等設(shè)出一次函數(shù)的解析式,再把點(diǎn)(﹣2,﹣4)的坐標(biāo)代入解析式求解即可.詳解:∵一次函數(shù)的圖象與直線(xiàn)y=x+1平行,∴設(shè)一次函數(shù)的解析式為y=x+b.∵一次函數(shù)經(jīng)過(guò)點(diǎn)(﹣2,﹣4),∴×(﹣2)+b=﹣4,解得:b=﹣1,所以這個(gè)一次函數(shù)的表達(dá)式是:y=x﹣1.故答案為y=x﹣1.點(diǎn)睛:本題考查了兩直線(xiàn)平行的問(wèn)題,熟記平行直線(xiàn)的解析式的k值相等設(shè)出一次函數(shù)解析式是解題的關(guān)鍵.17、(1)互相垂直;;(2)結(jié)論仍然成立,證明見(jiàn)解析;(3)135°.【解析】
(1)結(jié)合已知角度以及利用銳角三角函數(shù)關(guān)系求出AB的長(zhǎng),進(jìn)而得出答案;
(2)利用已知得出△BEC∽△AFC,進(jìn)而得出∠1=∠2,即可得出答案;
(3)過(guò)點(diǎn)D作DH⊥BC于H,則DB=4-(6-2)=2-2,進(jìn)而得出BH=-1,DH=3-,求出CH=BH,得出∠DCA=45°,進(jìn)而得出答案.【詳解】解:(1)如圖1,線(xiàn)段BE與AF的位置關(guān)系是互相垂直;
∵∠ACB=90°,BC=2,∠A=30°,
∴AC=2,
∵點(diǎn)E,F(xiàn)分別是線(xiàn)段BC,AC的中點(diǎn),
∴=;(2))如圖2,∵點(diǎn)E,F(xiàn)分別是線(xiàn)段BC,AC的中點(diǎn),
∴EC=BC,F(xiàn)C=AC,
∴,
∵∠BCE=∠ACF=α,
∴△BEC∽△AFC,
∴,
∴∠1=∠2,
延長(zhǎng)BE交AC于點(diǎn)O,交AF于點(diǎn)M
∵∠BOC=∠AOM,∠1=∠2
∴∠BCO=∠AMO=90°
∴BE⊥AF;(3)如圖3,∵∠ACB=90°,BC=2,∠A=30°∴AB=4,∠B=60°過(guò)點(diǎn)D作DH⊥BC于H∴DB=4-(6-2)=2-2,∴BH=-1,DH=3-,又∵CH=2-(-1)=3-,∴CH=BH,∴∠HCD=45°,∴∠DCA=45°,α=180°-45°=135°.18、6【解析】
根據(jù)正六邊形的外接圓半徑和正六邊形的邊長(zhǎng)將組成一個(gè)等邊三角形,即可求解.【詳解】解:正6邊形的中心角為360°÷6=60°,那么外接圓的半徑和正六邊形的邊長(zhǎng)將組成一個(gè)等邊三角形,∴邊長(zhǎng)為6的正六邊形外接圓半徑是6,故答案為:6.【點(diǎn)睛】本題考查了正多邊形和圓,得出正六邊形的外接圓半徑和正六邊形的邊長(zhǎng)將組成一個(gè)等邊三角形是解題的關(guān)鍵.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟.19、(1)抽樣調(diào)查;12;3;(2)60;(3).【解析】試題分析:(1)根據(jù)只抽取了4個(gè)班可知是抽樣調(diào)查,根據(jù)C在扇形圖中的角度求出所占的份數(shù),再根據(jù)C的人數(shù)是5,列式進(jìn)行計(jì)算即可求出作品的件數(shù),然后減去A、C、D的件數(shù)即為B的件數(shù);(2)求出平均每一個(gè)班的作品件數(shù),然后乘以班級(jí)數(shù)14,計(jì)算即可得解;(3)畫(huà)出樹(shù)狀圖或列出圖表,再根據(jù)概率公式列式進(jìn)行計(jì)算即可得解.試題解析:(1)抽樣調(diào)查,所調(diào)查的4個(gè)班征集到作品數(shù)為:5÷=12件,B作品的件數(shù)為:12﹣2﹣5﹣2=3件,故答案為抽樣調(diào)查;12;3;把圖2補(bǔ)充完整如下:(2)王老師所調(diào)查的四個(gè)班平均每個(gè)班征集作品=12÷4=3(件),所以,估計(jì)全年級(jí)征集到參展作品:3×14=42(件);(3)畫(huà)樹(shù)狀圖如下:列表如下:共有20種機(jī)會(huì)均等的結(jié)果,其中一男一女占12種,所以,P(一男一女)==,即恰好抽中一男一女的概率是.考點(diǎn):1.條形統(tǒng)計(jì)圖;2.用樣本估計(jì)總體;3.扇形統(tǒng)計(jì)圖;4.列表法與樹(shù)狀圖法;5.圖表型.20、(1)12;(2)【解析】分析:(1)直接利用概率公式求解;(2)畫(huà)樹(shù)狀圖展示所有8種等可能的結(jié)果數(shù),再找出甲至少勝一局的結(jié)果數(shù),然后根據(jù)概率公式求.詳解:(1)甲隊(duì)最終獲勝的概率是12(2)畫(huà)樹(shù)狀圖為:共有8種等可能的結(jié)果數(shù),其中甲至少勝一局的結(jié)果數(shù)為7,所以甲隊(duì)最終獲勝的概率=78點(diǎn)睛:本題考查了列表法與樹(shù)狀圖法:利用列表法或樹(shù)狀圖法展示所有等可能的結(jié)果n,再?gòu)闹羞x出符合事件A或B的結(jié)果數(shù)目m,然后利用概率公式計(jì)算事件A或事件B的概率.21、(2)y=x2﹣4x+3;(2)①2<x3<4,②m的值為或2.【解析】
(2)由直線(xiàn)y=﹣x+3分別與x軸、y交于點(diǎn)B、C求得點(diǎn)B、C的坐標(biāo),再代入y=x2+bx+c求得b、c的值,即可求得拋物線(xiàn)的解析式;(2)①先求得拋物線(xiàn)的頂點(diǎn)坐標(biāo)為D(2,﹣2),當(dāng)直線(xiàn)l2經(jīng)過(guò)點(diǎn)D時(shí)求得m=﹣2;當(dāng)直線(xiàn)l2經(jīng)過(guò)點(diǎn)C時(shí)求得m=3,再由x2>x2>2,可得﹣2<y3<3,即可﹣2<﹣x3+3<3,所以2<x3<4;②分當(dāng)直線(xiàn)l2在x軸的下方時(shí),點(diǎn)Q在點(diǎn)P、N之間和當(dāng)直線(xiàn)l2在x軸的上方時(shí),點(diǎn)N在點(diǎn)P、Q之間兩種情況求m的值即可.【詳解】(2)在y=﹣x+3中,令x=2,則y=3;令y=2,則x=3;得B(3,2),C(2,3),將點(diǎn)B(3,2),C(2,3)的坐標(biāo)代入y=x2+bx+c得:,解得∴y=x2﹣4x+3;(2)∵直線(xiàn)l2平行于x軸,∴y2=y2=y3=m,①如圖①,y=x2﹣4x+3=(x﹣2)2﹣2,∴頂點(diǎn)為D(2,﹣2),當(dāng)直線(xiàn)l2經(jīng)過(guò)點(diǎn)D時(shí),m=﹣2;當(dāng)直線(xiàn)l2經(jīng)過(guò)點(diǎn)C時(shí),m=3∵x2>x2>2,∴﹣2<y3<3,即﹣2<﹣x3+3<3,得2<x3<4,②如圖①,當(dāng)直線(xiàn)l2在x軸的下方時(shí),點(diǎn)Q在點(diǎn)P、N之間,若三個(gè)點(diǎn)P、Q、N中恰好有一點(diǎn)是其他兩點(diǎn)所連線(xiàn)段的中點(diǎn),則得PQ=QN.∵x2>x2>2,∴x3﹣x2=x2﹣x2,即x3=2x2﹣x2,∵l2∥x軸,即PQ∥x軸,∴點(diǎn)P、Q關(guān)于拋物線(xiàn)的對(duì)稱(chēng)軸l2對(duì)稱(chēng),又拋物線(xiàn)的對(duì)稱(chēng)軸l2為x=2,∴2﹣x2=x2﹣2,即x2=4﹣x2,∴x3=3x2﹣4,將點(diǎn)Q(x2,y2)的坐標(biāo)代入y=x2﹣4x+3得y2=x22﹣4x2+3,又y2=y3=﹣x3+3∴x22﹣4x2+3=﹣x3+3,∴x22﹣4x2=﹣(3x2﹣4)即x22﹣x2﹣4=2,解得x2=,(負(fù)值已舍去),∴m=()2﹣4×+3=如圖②,當(dāng)直線(xiàn)l2在x軸的上方時(shí),點(diǎn)N在點(diǎn)P、Q之間,若三個(gè)點(diǎn)P、Q、N中恰好有一點(diǎn)是其他兩點(diǎn)所連線(xiàn)段的中點(diǎn),則得PN=NQ.由上可得點(diǎn)P、Q關(guān)于直線(xiàn)l2對(duì)稱(chēng),∴點(diǎn)N在拋物線(xiàn)的對(duì)稱(chēng)軸l2:x=2,又點(diǎn)N在直線(xiàn)y=﹣x+3上,∴y3=﹣2+3=2,即m=2.故m的值為或2.【點(diǎn)睛】本題是二次函數(shù)綜合題,本題為二次函數(shù)的綜合應(yīng)用,涉及待定系數(shù)法、函數(shù)圖象的交點(diǎn)、線(xiàn)段的中點(diǎn)及分類(lèi)討論思想等知識(shí).在(2)中注意待定系數(shù)法的應(yīng)用;在(2)①注意利用數(shù)形結(jié)合思想;在(2)②注意分情況討論.本題考查知識(shí)點(diǎn)較多,綜合性較強(qiáng),難度較大.22、(1)證明見(jiàn)解析;(2)tan∠CBG=.【解析】
(1)連接OD,CD,根據(jù)圓周角定理得∠BDC=90°,由等腰三角形三線(xiàn)合一的性質(zhì)得D為AB的中點(diǎn),所以O(shè)D是中位線(xiàn),由三角形中位線(xiàn)性質(zhì)得:OD∥AC,根據(jù)切線(xiàn)的性質(zhì)可得結(jié)論;
(2)如圖,連接BG,先證明EF∥BG,則∠CBG=∠E,求∠CBG的正切即可.【詳解】解:(1)證明:連接OD,CD,∵BC是⊙O的直徑,∴∠BDC=90°,∴CD⊥AB,∵AC=BC,∴AD=BD,∵OB=OC,∴OD是△ABC的中位線(xiàn)∴OD∥AC,∵DF為⊙O的切線(xiàn),∴OD⊥DF,∴DF⊥AC;(2)解:如圖,連接BG,∵BC是⊙O的直徑,∴∠BGC=90°,∵∠EFC=90°=∠BGC,∴EF∥BG,∴∠CBG=∠E,Rt△BDC中,∵BD=3,BC=5,∴CD=4,∵S△ABC=,即6×4=5BG,∴BG=,由勾股定理得:CG=,∴tan∠CBG=tan∠E=.【點(diǎn)睛】本題考查了切線(xiàn)的性質(zhì)、等腰三角形的性質(zhì)、平行線(xiàn)的判定和性質(zhì)及勾股定理的應(yīng)用;把所求角的正切進(jìn)行轉(zhuǎn)移是基本思路,利用面積法求BG的長(zhǎng)是解決本題的難點(diǎn).23、(1)△ABC是等腰三角形;(2)△ABC是直角三角形;(3)x1=0,x2=﹣1.【解析】試題分析:(1)直接將x=﹣1代入得出關(guān)于a,b的等式,進(jìn)而得出a=b,即可判斷△ABC的形狀;(2)利用根的判別式進(jìn)而得出關(guān)于a,b,c的等式,進(jìn)而判斷△ABC的形狀;(3)利用△ABC是等邊三角形,則a=b=c,進(jìn)而代入方程求出即可.試題解析:(1)△ABC是等腰三角形;理由:∵x=﹣1是方程的根,∴(a+c)×(﹣1)2﹣2b+(a﹣c)=0,∴a+c﹣2b+a﹣c=0,∴a﹣b=0,∴a=b,∴△ABC是等腰三角形;(2)∵方程有兩個(gè)相等的實(shí)數(shù)根,∴(2b)2﹣4(a+c)(a﹣c)=0,∴4b2﹣4a2+4c2=0,∴a2=b2+c2,∴△ABC是直角三角形;(3)當(dāng)△ABC是等邊三角形,∴(a+c)x2+2bx+(a﹣c)=0,可整理為:2ax2+2ax=0,∴x2+x=0,解得:x1=0,x2=﹣1.考點(diǎn):一元二次方程的應(yīng)用.24、10【解析】【分析】先分別進(jìn)行0次冪的計(jì)算、負(fù)指數(shù)冪的計(jì)算、二次根式以及絕對(duì)值的化簡(jiǎn)、特殊角的三角函數(shù)值,然后再按運(yùn)算順序進(jìn)行計(jì)算即可.【詳解】原式=1+9-+4=10-+=10.【點(diǎn)睛】本題考查了實(shí)數(shù)的混合運(yùn)算,涉及到0指數(shù)冪、負(fù)指數(shù)冪、特殊角的三角函數(shù)值等,熟練掌握各運(yùn)算的運(yùn)算法則是解題的關(guān)鍵.25、(1)證明見(jiàn)解析;(2)BE=5【解析】試題分析:連接OD.根據(jù)圓周角定理得到∠ADO+∠ODB=90°,而∠CDA=∠CBD,∠CBD=∠BDO.于是∠ADO+∠CDA=90°,可以證明是切線(xiàn).(2)根據(jù)已知條件得到△CDA∽△CBD由相似三角形的性質(zhì)得到CDBD=ADBD.試題解析:(1)連接OD.∵OB=OD,∴∠OBD=∠BDO
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 冷鏈物流設(shè)施建設(shè)合同
- 大型酒店橋梁工程建橋合同
- 非營(yíng)利組織合同歸檔辦法
- 魚(yú)塘養(yǎng)殖企業(yè)產(chǎn)品追溯承包合同
- 藝術(shù)館裝修設(shè)計(jì)施工合同
- 軟件開(kāi)發(fā)合同規(guī)范
- 歷史兼職教師招聘協(xié)議樣本
- 工業(yè)倉(cāng)房租賃合同
- 塑膠保溫施工合同
- 衢州市親子活動(dòng)中心租賃合同
- 學(xué)校安全教育珍愛(ài)生命-拒絕打架斗毆課件
- YY/T 0698.7-2009最終滅菌醫(yī)療器械包裝材料第7部分:環(huán)氧乙烷或輻射滅菌無(wú)菌屏障系統(tǒng)生產(chǎn)用可密封涂膠紙要求和試驗(yàn)方法
- GB/T 40276-2021柔巾
- GB/T 3750-2008卡套式鉸接管接頭
- GB/T 20944.3-2008紡織品抗菌性能的評(píng)價(jià)第3部分:振蕩法
- 自然辯證法概論(新)
- 老舊小區(qū)維修改造監(jiān)理服務(wù)方案2
- 《政府會(huì)計(jì)》課后習(xí)題答案(第4-18章)
- 中小學(xué)音體美器材配備標(biāo)準(zhǔn)
- 重慶開(kāi)州區(qū)2021-2022學(xué)年度(上冊(cè))五年級(jí)期末質(zhì)量監(jiān)測(cè)卷語(yǔ)文試卷
- 審計(jì)意見(jiàn)類(lèi)型例題
評(píng)論
0/150
提交評(píng)論