2022年北京市東城區(qū)重點(diǎn)名校中考數(shù)學(xué)模擬預(yù)測試卷含解析_第1頁
2022年北京市東城區(qū)重點(diǎn)名校中考數(shù)學(xué)模擬預(yù)測試卷含解析_第2頁
2022年北京市東城區(qū)重點(diǎn)名校中考數(shù)學(xué)模擬預(yù)測試卷含解析_第3頁
2022年北京市東城區(qū)重點(diǎn)名校中考數(shù)學(xué)模擬預(yù)測試卷含解析_第4頁
2022年北京市東城區(qū)重點(diǎn)名校中考數(shù)學(xué)模擬預(yù)測試卷含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2022年北京市東城區(qū)重點(diǎn)名校中考數(shù)學(xué)模擬預(yù)測試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.如圖,AB與⊙O相切于點(diǎn)B,OA=2,∠OAB=30°,弦BC∥OA,則劣弧的長是()A. B. C. D.2.據(jù)報(bào)道,南寧創(chuàng)客城已于2015年10月開城,占地面積約為14400平方米,目前已引進(jìn)創(chuàng)業(yè)團(tuán)隊(duì)30多家,將14400用科學(xué)記數(shù)法表示為()A.14.4×103 B.144×102 C.1.44×104 D.1.44×10﹣43.如圖,AB∥CD,∠ABK的角平分線BE的反向延長線和∠DCK的角平分線CF的反向延長線交于點(diǎn)H,∠K﹣∠H=27°,則∠K=()A.76° B.78° C.80° D.82°4.三角形兩邊的長是3和4,第三邊的長是方程x2-12x+35=0的根,則該三角形的周長為()A.14 B.12 C.12或14 D.以上都不對5.將一把直尺和一塊含30°和60°角的三角板ABC按如圖所示的位置放置,如果∠CDE=40°,那么∠BAF的大小為()A.10° B.15° C.20° D.25°6.我國作家莫言獲得諾貝爾文學(xué)獎之后,他的代表作品《蛙》的銷售量就比獲獎之前增長了180倍,達(dá)到2100000冊.把2100000用科學(xué)記數(shù)法表示為()A.0.21×108 B.21×106 C.2.1×107 D.2.1×1067.A、B兩地相距180km,新修的高速公路開通后,在A、B兩地間行駛的長途客車平均車速提高了50%,而從A地到B地的時(shí)間縮短了1h.若設(shè)原來的平均車速為xkm/h,則根據(jù)題意可列方程為A. B.C. D.8.如圖,E為平行四邊形ABCD的邊AB延長線上的一點(diǎn),且BE:AB=2:3,△BEF的面積為4,則平行四邊形ABCD的面積為()

A.30 B.27 C.14 D.329.如圖,直線y=kx+b與x軸交于點(diǎn)(﹣4,0),則y>0時(shí),x的取值范圍是()A.x>﹣4 B.x>0 C.x<﹣4 D.x<010.滿足不等式組的整數(shù)解是()A.﹣2 B.﹣1 C.0 D.1二、填空題(共7小題,每小題3分,滿分21分)11.如圖,在△ABC中,P,Q分別為AB,AC的中點(diǎn).若S△APQ=1,則S四邊形PBCQ=__.12.如圖,已知△ABC中,∠ABC=50°,P為△ABC內(nèi)一點(diǎn),過點(diǎn)P的直線MN分別交AB、BC于點(diǎn)M、N.若M在PA的中垂線上,N在PC的中垂線上,則∠APC的度數(shù)為_____13.已知菱形的周長為10cm,一條對角線長為6cm,則這個菱形的面積是_____cm1.14.已知,(),請用計(jì)算器計(jì)算當(dāng)時(shí),、的若干個值,并由此歸納出當(dāng)時(shí),、間的大小關(guān)系為______.15.如圖,點(diǎn)A在反比例函數(shù)y=(x>0)上,以O(shè)A為邊作正方形OABC,邊AB交y軸于點(diǎn)P,若PA:PB=1:2,則正方形OABC的面積=_____.16.計(jì)算:sin30°﹣(﹣3)0=_____.17.如圖,點(diǎn)A、B、C是⊙O上的三點(diǎn),且△AOB是正三角形,則∠ACB的度數(shù)是。三、解答題(共7小題,滿分69分)18.(10分)如圖,在平面直角坐標(biāo)系中,等邊三角形ABC的頂點(diǎn)B與原點(diǎn)O重合,點(diǎn)C在x軸上,點(diǎn)C坐標(biāo)為(6,0),等邊三角形ABC的三邊上有三個動點(diǎn)D、E、F(不考慮與A、B、C重合),點(diǎn)D從A向B運(yùn)動,點(diǎn)E從B向C運(yùn)動,點(diǎn)F從C向A運(yùn)動,三點(diǎn)同時(shí)運(yùn)動,到終點(diǎn)結(jié)束,且速度均為1cm/s,設(shè)運(yùn)動的時(shí)間為ts,解答下列問題:(1)求證:如圖①,不論t如何變化,△DEF始終為等邊三角形.(2)如圖②過點(diǎn)E作EQ∥AB,交AC于點(diǎn)Q,設(shè)△AEQ的面積為S,求S與t的函數(shù)關(guān)系式及t為何值時(shí)△AEQ的面積最大?求出這個最大值.(3)在(2)的條件下,當(dāng)△AEQ的面積最大時(shí),平面內(nèi)是否存在一點(diǎn)P,使A、D、Q、P構(gòu)成的四邊形是菱形,若存在請直接寫出P坐標(biāo),若不存在請說明理由?19.(5分)圖中的每個小方格都是邊長為1個單位長度的正方形,每個小正方形的頂點(diǎn)叫格點(diǎn),△ABC的頂點(diǎn)均在格點(diǎn)上(1)畫出將△ABC繞點(diǎn)B按逆時(shí)針方向旋轉(zhuǎn)90°后所得到的△A1BC1;(2)畫出將△ABC向右平移6個單位后得到的△A2B2C2;(3)在(1)中,求在旋轉(zhuǎn)過程中△ABC掃過的面積.20.(8分)如圖,在Rt△ABC中,∠ACB=90°,AC=2cm,AB=4cm,動點(diǎn)P從點(diǎn)C出發(fā),在BC邊上以每秒cm的速度向點(diǎn)B勻速運(yùn)動,同時(shí)動點(diǎn)Q也從點(diǎn)C出發(fā),沿C→A→B以每秒4cm的速度勻速運(yùn)動,運(yùn)動時(shí)間為t秒,連接PQ,以PQ為直徑作⊙O.(1)當(dāng)時(shí),求△PCQ的面積;(2)設(shè)⊙O的面積為s,求s與t的函數(shù)關(guān)系式;(3)當(dāng)點(diǎn)Q在AB上運(yùn)動時(shí),⊙O與Rt△ABC的一邊相切,求t的值.21.(10分)如圖,四邊形ABCD是平行四邊形,點(diǎn)E在BC上,點(diǎn)F在AD上,BE=DF,求證:AE=CF.22.(10分)如圖,已知BD是△ABC的角平分線,點(diǎn)E、F分別在邊AB、BC上,ED∥BC,EF∥AC.求證:BE=CF.23.(12分)如圖所示,某工程隊(duì)準(zhǔn)備在山坡(山坡視為直線l)上修一條路,需要測量山坡的坡度,即tanα的值.測量員在山坡P處(不計(jì)此人身高)觀察對面山頂上的一座鐵塔,測得塔尖C的仰角為37°,塔底B的仰角為26.6°.已知塔高BC=80米,塔所在的山高OB=220米,OA=200米,圖中的點(diǎn)O、B、C、A、P在同一平面內(nèi),求山坡的坡度.(參考數(shù)據(jù)sin26.6°≈0.45,tan26.6°≈0.50;sin37°≈0.60,tan37°≈0.75)24.(14分)某手機(jī)店銷售部型和部型手機(jī)的利潤為元,銷售部型和部型手機(jī)的利潤為元.(1)求每部型手機(jī)和型手機(jī)的銷售利潤;(2)該手機(jī)店計(jì)劃一次購進(jìn),兩種型號的手機(jī)共部,其中型手機(jī)的進(jìn)貨量不超過型手機(jī)的倍,設(shè)購進(jìn)型手機(jī)部,這部手機(jī)的銷售總利潤為元.①求關(guān)于的函數(shù)關(guān)系式;②該手機(jī)店購進(jìn)型、型手機(jī)各多少部,才能使銷售總利潤最大?(3)在(2)的條件下,該手機(jī)店實(shí)際進(jìn)貨時(shí),廠家對型手機(jī)出廠價(jià)下調(diào)元,且限定手機(jī)店最多購進(jìn)型手機(jī)部,若手機(jī)店保持同種手機(jī)的售價(jià)不變,設(shè)計(jì)出使這部手機(jī)銷售總利潤最大的進(jìn)貨方案.

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、B【解析】解:連接OB,OC.∵AB為圓O的切線,∴∠ABO=90°.在Rt△ABO中,OA=2,∠OAB=30°,∴OB=1,∠AOB=60°.∵BC∥OA,∴∠OBC=∠AOB=60°.又∵OB=OC,∴△BOC為等邊三角形,∴∠BOC=60°,則劣弧BC的弧長為=π.故選B.點(diǎn)睛:此題考查了切線的性質(zhì),含30度直角三角形的性質(zhì),以及弧長公式,熟練掌握切線的性質(zhì)是解答本題的關(guān)鍵.2、C【解析】

科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時(shí),要看把原數(shù)變成a時(shí),小數(shù)點(diǎn)移動了多少位,n的絕對值與小數(shù)點(diǎn)移動的位數(shù)相同.當(dāng)原數(shù)絕對值大于10時(shí),n是正數(shù);當(dāng)原數(shù)的絕對值小于1時(shí),n是負(fù)數(shù).【詳解】14400=1.44×1.故選C.【點(diǎn)睛】此題考查科學(xué)記數(shù)法的表示方法.科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時(shí)關(guān)鍵要正確確定a的值以及n的值.3、B【解析】如圖,分別過K、H作AB的平行線MN和RS,∵AB∥CD,∴AB∥CD∥RS∥MN,∴∠RHB=∠ABE=∠ABK,∠SHC=∠DCF=∠DCK,∠NKB+∠ABK=∠MKC+∠DCK=180°,∴∠BHC=180°﹣∠RHB﹣∠SHC=180°﹣(∠ABK+∠DCK),∠BKC=180°﹣∠NKB﹣∠MKC=180°﹣(180°﹣∠ABK)﹣(180°﹣∠DCK)=∠ABK+∠DCK﹣180°,∴∠BKC=360°﹣2∠BHC﹣180°=180°﹣2∠BHC,又∠BKC﹣∠BHC=27°,∴∠BHC=∠BKC﹣27°,∴∠BKC=180°﹣2(∠BKC﹣27°),∴∠BKC=78°,故選B.4、B【解析】

解方程得:x=5或x=1.當(dāng)x=1時(shí),3+4=1,不能組成三角形;當(dāng)x=5時(shí),3+4>5,三邊能夠組成三角形.∴該三角形的周長為3+4+5=12,故選B.5、A【解析】

先根據(jù)∠CDE=40°,得出∠CED=50°,再根據(jù)DE∥AF,即可得到∠CAF=50°,最后根據(jù)∠BAC=60°,即可得出∠BAF的大?。驹斀狻坑蓤D可得,∠CDE=40°,∠C=90°,∴∠CED=50°,又∵DE∥AF,∴∠CAF=50°,∵∠BAC=60°,∴∠BAF=60°?50°=10°,故選A.【點(diǎn)睛】本題考查了平行線的性質(zhì),熟練掌握這一點(diǎn)是解題的關(guān)鍵.6、D【解析】2100000=2.1×106.點(diǎn)睛:對于一個絕對值較大的數(shù),用科學(xué)記數(shù)法寫成的形式,其中,n是比原整數(shù)位數(shù)少1的數(shù).7、A【解析】

直接利用在A,B兩地間行駛的長途客車平均車速提高了50%,而從A地到B地的時(shí)間縮短了1h,利用時(shí)間差值得出等式即可.【詳解】解:設(shè)原來的平均車速為xkm/h,則根據(jù)題意可列方程為:﹣=1.故選A.【點(diǎn)睛】本題主要考查了由實(shí)際問題抽象出分式方程,根據(jù)題意得出正確等量關(guān)系是解題的關(guān)鍵.8、A【解析】∵四邊形ABCD是平行四邊形,∴AB//CD,AB=CD,AD//BC,∴△BEF∽△CDF,△BEF∽△AED,∴,∵BE:AB=2:3,AE=AB+BE,∴BE:CD=2:3,BE:AE=2:5,∴,∵S△BEF=4,∴S△CDF=9,S△AED=25,∴S四邊形ABFD=S△AED-S△BEF=25-4=21,∴S平行四邊形ABCD=S△CDF+S四邊形ABFD=9+21=30,故選A.【點(diǎn)睛】本題考查了平行四邊形的性質(zhì),相似三角形的判定與性質(zhì)等,熟記相似三角形的面積等于相似比的平方是解題的關(guān)鍵.9、A【解析】試題分析:充分利用圖形,直接從圖上得出x的取值范圍.由圖可知,當(dāng)y<1時(shí),x<-4,故選C.考點(diǎn):本題考查的是一次函數(shù)的圖象點(diǎn)評:解答本題的關(guān)鍵是掌握在x軸下方的部分y<1,在x軸上方的部分y>1.10、C【解析】

先求出每個不等式的解集,再根據(jù)不等式的解集求出不等式組的解集即可.【詳解】∵解不等式①得:x≤0.5,解不等式②得:x>-1,∴不等式組的解集為-1<x≤0.5,∴不等式組的整數(shù)解為0,故選C.【點(diǎn)睛】本題考查了解一元一次不等式組和不等式組的整數(shù)解,能根據(jù)不等式的解集找出不等式組的解集是解此題的關(guān)鍵.二、填空題(共7小題,每小題3分,滿分21分)11、1【解析】

根據(jù)三角形的中位線定理得到PQ=BC,得到相似比為,再根據(jù)相似三角形面積之比等于相似比的平方,可得到結(jié)果.【詳解】解:∵P,Q分別為AB,AC的中點(diǎn),∴PQ∥BC,PQ=BC,∴△APQ∽△ABC,∴=()2=,∵S△APQ=1,∴S△ABC=4,∴S四邊形PBCQ=S△ABC﹣S△APQ=1,故答案為1.【點(diǎn)睛】本題考查相似三角形的判定和性質(zhì),三角形中位線定理等知識,解題的關(guān)鍵是熟練掌握基本知識,屬于中考常考題型.12、115°【解析】

根據(jù)三角形的內(nèi)角和得到∠BAC+∠ACB=130°,根據(jù)線段的垂直平分線的性質(zhì)得到AM=PM,PN=CN,由等腰三角形的性質(zhì)得到∠MAP=∠APM,∠CPN=∠PCN,推出∠MAP+∠PCN=∠PAC+∠ACP=×130°=65°,于是得到結(jié)論.【詳解】∵∠ABC=50°,∴∠BAC+∠ACB=130°,∵若M在PA的中垂線上,N在PC的中垂線上,∴AM=PM,PN=CN,∴∠MAP=∠APM,∠CPN=∠PCN,∵∠APC=180°-∠APM-∠CPN=180°-∠PAC-∠ACP,∴∠MAP+∠PCN=∠PAC+∠ACP=×130°=65°,∴∠APC=115°,故答案為:115°【點(diǎn)睛】本題考查了線段的垂直平分線的性質(zhì),等腰三角形的性質(zhì),三角形的內(nèi)角和,熟練掌握線段的垂直平分線的性質(zhì)是解題的關(guān)鍵.13、14【解析】

根據(jù)菱形的性質(zhì),先求另一條對角線的長度,再運(yùn)用菱形的面積等于對角線乘積的一半求解.【詳解】解:如圖,在菱形ABCD中,BD=2.∵菱形的周長為10,BD=2,∴AB=5,BO=3,∴AC=3.∴面積故答案為14.【點(diǎn)睛】此題考查了菱形的性質(zhì)及面積求法,難度不大.14、【解析】試題分析:當(dāng)n=3時(shí),A=≈0.3178,B=1,A<B;當(dāng)n=4時(shí),A=≈0.2679,B=≈0.4142,A<B;當(dāng)n=5時(shí),A=≈0.2631,B=≈0.3178,A<B;當(dāng)n=6時(shí),A=≈0.2134,B=≈0.2679,A<B;……以此類推,隨著n的增大,a在不斷變小,而b的變化比a慢兩個數(shù),所以可知當(dāng)n≥3時(shí),A、B的關(guān)系始終是A<B.15、1.【解析】

根據(jù)題意作出合適的輔助線,然后根據(jù)正方形的性質(zhì)和反比例函數(shù)的性質(zhì),相似三角形的判定和性質(zhì)、勾股定理可以求得AB的長.【詳解】解:由題意可得:OA=AB,設(shè)AP=a,則BP=2a,OA=3a,設(shè)點(diǎn)A的坐標(biāo)為(m,),作AE⊥x軸于點(diǎn)E.∵∠PAO=∠OEA=90°,∠POA+∠AOE=90°,∠AOE+∠OAE=90°,∴∠POA=∠OAE,∴△POA∽△OAE,∴=,即=,解得:m=1或m=﹣1(舍去),∴點(diǎn)A的坐標(biāo)為(1,3),∴OA=,∴正方形OABC的面積=OA2=1.故答案為1.【點(diǎn)睛】本題考查了反比例函數(shù)圖象點(diǎn)的坐標(biāo)特征、正方形的性質(zhì),解答本題的關(guān)鍵是明確題意,找出所求問題需要的條件,利用數(shù)形結(jié)合的思想解答.16、-【解析】

sin30°=,a0=1(a≠0)【詳解】解:原式=-1=-故答案為:-.【點(diǎn)睛】本題考查了30°的角的正弦值和非零數(shù)的零次冪.熟記是關(guān)鍵.17、30°【解析】試題分析:圓周角定理:同弧或等弧所對的圓周角相等,均等于所對圓心角的一半.∵△AOB是正三角形∴∠AOB=60°∴∠ACB=30°.考點(diǎn):圓周角定理點(diǎn)評:本題屬于基礎(chǔ)應(yīng)用題,只需學(xué)生熟練掌握圓周角定理,即可完成.三、解答題(共7小題,滿分69分)18、(1)證明見解析;(2)當(dāng)t=3時(shí),△AEQ的面積最大為cm2;(3)(3,0)或(6,3)或(0,3)【解析】

(1)由三角形ABC為等邊三角形,以及AD=BE=CF,進(jìn)而得出三角形ADF與三角形CFE與三角形BED全等,利用全等三角形對應(yīng)邊相等得到BF=DF=DE,即可得證;(2)先表示出三角形AEC面積,根據(jù)EQ與AB平行,得到三角形CEQ與三角形ABC相似,利用相似三角形面積比等于相似比的平方表示出三角形CEQ面積,進(jìn)而表示出AEQ面積,利用二次函數(shù)的性質(zhì)求出面積最大值,并求出此時(shí)Q的坐標(biāo)即可;(3)當(dāng)△AEQ的面積最大時(shí),D、E、F都是中點(diǎn),分兩種情形討論即可解決問題;【詳解】(1)如圖①中,∵C(6,0),∴BC=6在等邊三角形ABC中,AB=BC=AC=6,∠A=∠B=∠C=60°,由題意知,當(dāng)0<t<6時(shí),AD=BE=CF=t,∴BD=CE=AF=6﹣t,∴△ADF≌△CFE≌△BED(SAS),∴EF=DF=DE,∴△DEF是等邊三角形,∴不論t如何變化,△DEF始終為等邊三角形;(2)如圖②中,作AH⊥BC于H,則AH=AB?sin60°=3,∴S△AEC=×3×(6﹣t)=,∵EQ∥AB,∴△CEQ∽△ABC,∴=()2=,即S△CEQ=S△ABC=×9=,∴S△AEQ=S△AEC﹣S△CEQ=﹣=﹣(t﹣3)2+,∵a=﹣<0,∴拋物線開口向下,有最大值,∴當(dāng)t=3時(shí),△AEQ的面積最大為cm2,(3)如圖③中,由(2)知,E點(diǎn)為BC的中點(diǎn),線段EQ為△ABC的中位線,當(dāng)AD為菱形的邊時(shí),可得P1(3,0),P3(6,3),當(dāng)AD為對角線時(shí),P2(0,3),綜上所述,滿足條件的點(diǎn)P坐標(biāo)為(3,0)或(6,3)或(0,3).【點(diǎn)睛】本題考查四邊形綜合題、等邊三角形的性質(zhì)和判定、菱形的判定和性質(zhì)、二次函數(shù)的性質(zhì)等知識,解題的關(guān)鍵是學(xué)會構(gòu)建二次函數(shù)解決最值問題,學(xué)會用分類討論的思想思考問題,屬于中考壓軸題.19、(1)(1)如圖所示見解析;(3)4π+1.【解析】

(1)根據(jù)旋轉(zhuǎn)的性質(zhì)得出對應(yīng)點(diǎn)位置,即可畫出圖形;

(1)利用平移的性質(zhì)得出對應(yīng)點(diǎn)位置,進(jìn)而得出圖形;

(3)根據(jù)△ABC掃過的面積等于扇形BCC1的面積與△A1BC1的面積和,列式進(jìn)行計(jì)算即可.【詳解】(1)如圖所示,△A1BC1即為所求;(1)如圖所示,△A1B1C1即為所求;(3)由題可得,△ABC掃過的面積==4π+1.【點(diǎn)睛】考查了利用旋轉(zhuǎn)變換依據(jù)平移變換作圖,熟練掌握網(wǎng)格結(jié)構(gòu),準(zhǔn)確找出對應(yīng)點(diǎn)位置作出圖形是解題的關(guān)鍵.求掃過的面積的主要思路是將不規(guī)則圖形面積轉(zhuǎn)化為規(guī)則圖形的面積.20、(1);(2)①;②;(3)t的值為或1或.【解析】

(1)先根據(jù)t的值計(jì)算CQ和CP的長,由圖形可知△PCQ是直角三角形,根據(jù)三角形面積公式可得結(jié)論;(2)分兩種情況:①當(dāng)Q在邊AC上運(yùn)動時(shí),②當(dāng)Q在邊AB上運(yùn)動時(shí);分別根據(jù)勾股定理計(jì)算PQ2,最后利用圓的面積公式可得S與t的關(guān)系式;(3)分別當(dāng)⊙O與BC相切時(shí)、當(dāng)⊙O與AB相切時(shí),當(dāng)⊙O與AC相切時(shí)三種情況分類討論即可確定答案.【詳解】(1)當(dāng)t=時(shí),CQ=4t=4×=2,即此時(shí)Q與A重合,CP=t=,∵∠ACB=90°,∴S△PCQ=CQ?PC=×2×=;(2)分兩種情況:①當(dāng)Q在邊AC上運(yùn)動時(shí),0<t≤2,如圖1,由題意得:CQ=4t,CP=t,由勾股定理得:PQ2=CQ2+PC2=(4t)2+(t)2=19t2,∴S=π=;②當(dāng)Q在邊AB上運(yùn)動時(shí),2<t<4如圖2,設(shè)⊙O與AB的另一個交點(diǎn)為D,連接PD,∵CP=t,AC+AQ=4t,∴PB=BC﹣PC=2﹣t,BQ=2+4﹣4t=6﹣4t,∵PQ為⊙O的直徑,∴∠PDQ=90°,Rt△ACB中,AC=2cm,AB=4cm,∴∠B=30°,Rt△PDB中,PD=PB=,∴BD=,∴QD=BQ﹣BD=6﹣4t﹣=3﹣,∴PQ==,∴S=π==;(3)分三種情況:①當(dāng)⊙O與AC相切時(shí),如圖3,設(shè)切點(diǎn)為E,連接OE,過Q作QF⊥AC于F,∴OE⊥AC,∵AQ=4t﹣2,Rt△AFQ中,∠AQF=30°,∴AF=2t﹣1,∴FQ=(2t﹣1),∵FQ∥OE∥PC,OQ=OP,∴EF=CE,∴FQ+PC=2OE=PQ,∴(2t﹣1)+t=,解得:t=或﹣(舍);②當(dāng)⊙O與BC相切時(shí),如圖4,此時(shí)PQ⊥BC,∵BQ=6﹣4t,PB=2﹣t,∴cos30°=,∴,∴t=1;③當(dāng)⊙O與BA相切時(shí),如圖5,此時(shí)PQ⊥BA,∵BQ=6﹣4t,PB=2﹣t,∴cos30°=,∴,∴t=,綜上所述,t的值為或1或.【點(diǎn)睛】本題是圓的綜合題,涉及了三角函數(shù)、勾股定理、圓的面積、切線的性質(zhì)等知識,綜合性較強(qiáng),有一定的難度,以點(diǎn)P和Q運(yùn)動為主線,畫出對應(yīng)的圖形是關(guān)鍵,注意數(shù)形結(jié)合的思想.21、見解析【解析】

根據(jù)平行四邊形性質(zhì)得出AD∥BC,且AD=BC,推出AF∥EC,AF=EC,根據(jù)平行四邊形的判定推出四邊形AECF是平行四邊形,即可得出結(jié)論.【詳解】證明:∵四邊形ABCD是平行四邊形,∴AD∥BC,且AD=BC,∴AF∥EC,∵BE=DF,∴AF=EC,∴四邊形AECF是平行四邊形,∴AE=CF.【點(diǎn)睛】本題考查了平行四邊形的性質(zhì)和判定的應(yīng)用,注意:平行四邊形的對邊平行且相等,有一組對邊平行且相等的四邊形是平行四邊形.22、證明見解析.【解析】試題分析:先利用平行四邊形性質(zhì)證明DE=CF,再證明EB=ED,即可解決問題.試題解析:∵ED∥BC,EF∥AC,∴四邊形EFCD是平行四邊形,∴DE=CF,∵BD平分∠ABC,∴∠EBD=∠DBC,∵DE∥BC,∴∠EDB=∠DBC,∴∠EBD=∠EDB,∴EB=ED,∴EB=CF.考點(diǎn):平行四邊形的判定與性質(zhì).23、【解析】

過點(diǎn)P作PD⊥OC于D,PE⊥OA于E,則四邊形ODPE為矩形,先解Rt△PBD,得出BD=PD?tan26.6°;解Rt

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論