版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2022年湖南省益陽地區(qū)中考聯考數學試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖,AD,CE分別是△ABC的中線和角平分線.若AB=AC,∠CAD=20°,則∠ACE的度數是()A.20° B.35° C.40° D.70°2.如圖是本地區(qū)一種產品30天的銷售圖象,圖①是產品日銷售量y(單位:件)與時間t(單位;天)的函數關系,圖②是一件產品的銷售利潤z(單位:元)與時間t(單位:天)的函數關系,已知日銷售利潤=日銷售量×一件產品的銷售利潤,下列結論錯誤的是()A.第24天的銷售量為200件 B.第10天銷售一件產品的利潤是15元C.第12天與第30天這兩天的日銷售利潤相等 D.第27天的日銷售利潤是875元3.若關于x的不等式組無解,則m的取值范圍()A.m>3 B.m<3 C.m≤3 D.m≥34.如圖,在△ABC中,AC=BC,點D在BC的延長線上,AE∥BD,點ED在AC同側,若∠CAE=118°,則∠B的大小為()A.31° B.32° C.59° D.62°5.如圖所示的幾何體的俯視圖是(
)A. B. C. D.6.下列函數中,y隨著x的增大而減小的是()A.y=3x B.y=﹣3x C. D.7.三個等邊三角形的擺放位置如圖,若∠3=60°,則∠1+∠2的度數為()A.90° B.120° C.270° D.360°8.某公園里鮮花的擺放如圖所示,第①個圖形中有3盆鮮花,第②個圖形中有6盆鮮花,第③個圖形中有11盆鮮花,……,按此規(guī)律,則第⑦個圖形中的鮮花盆數為()A.37 B.38 C.50 D.519.如圖,在△ABC中,AB=AC,∠BAC=90°,直角∠EPF的頂點P是BC中點,PE,PF分別交AB,AC于點E,F,給出下列四個結論:①△APE≌△CPF;②AE=CF;③△EAF是等腰直角三角形;④S△ABC=2S四邊形AEPF,上述結論正確的有()A.1個 B.2個 C.3個 D.4個10.等式成立的x的取值范圍在數軸上可表示為(
)A. B. C. D.11.﹣的絕對值是()A.﹣ B. C.﹣2 D.212.A、B兩地相距180km,新修的高速公路開通后,在A、B兩地間行駛的長途客車平均車速提高了50%,而從A地到B地的時間縮短了1h.若設原來的平均車速為xkm/h,則根據題意可列方程為A. B.C. D.二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,△AOB是直角三角形,∠AOB=90°,OB=2OA,點A在反比例函數y=的圖象上.若點B在反比例函數y=的圖象上,則k的值為_____.14.如圖,⊙O的半徑為2,AB為⊙O的直徑,P為AB延長線上一點,過點P作⊙O的切線,切點為C.若PC=2,則BC的長為______.15.因式分解:9x﹣x2=_____.16.下列圖形是用火柴棒擺成的“金魚”,如果第1個圖形需要8根火柴,則第2個圖形需要14根火柴,第根圖形需要____________根火柴.17.如圖,以點為圓心的兩個同心圓中,大圓的弦是小圓的切線,點是切點,則劣弧AB的長為.(結果保留)18.李明早上騎自行車上學,中途因道路施工推車步行了一段路,到學校共用時15分鐘.如果他騎自行車的平均速度是每分鐘250米,推車步行的平均速度是每分鐘80米,他家離學校的路程是2900米,設他推車步行的時間為x分鐘,那么可列出的方程是_____________.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)下面是小星同學設計的“過直線外一點作已知直線的平行線”的尺規(guī)作圖過程:已知:如圖,直線l和直線l外一點A求作:直線AP,使得AP∥l作法:如圖①在直線l上任取一點B(AB與l不垂直),以點A為圓心,AB為半徑作圓,與直線l交于點C.②連接AC,AB,延長BA到點D;③作∠DAC的平分線AP.所以直線AP就是所求作的直線根據小星同學設計的尺規(guī)作圖過程,使用直尺和圓規(guī),補全圖形(保留作圖痕跡)完成下面的證明證明:∵AB=AC,∴∠ABC=∠ACB(填推理的依據)∵∠DAC是△ABC的外角,∴∠DAC=∠ABC+∠ACB(填推理的依據)∴∠DAC=2∠ABC∵AP平分∠DAC,∴∠DAC=2∠DAP∴∠DAP=∠ABC∴AP∥l(填推理的依據)20.(6分)如圖,在平面直角坐標系xOy中,函數()的圖象經過點,AB⊥x軸于點B,點C與點A關于原點O對稱,CD⊥x軸于點D,△ABD的面積為8.(1)求m,n的值;(2)若直線(k≠0)經過點C,且與x軸,y軸的交點分別為點E,F,當時,求點F的坐標.21.(6分)(本題滿分8分)如圖,四邊形ABCD中,,E是邊CD的中點,連接BE并延長與AD的延長線相較于點F.(1)求證:四邊形BDFC是平行四邊形;(2)若△BCD是等腰三角形,求四邊形BDFC的面積.22.(8分)一輛快車從甲地開往乙地,一輛慢車從乙地開往甲地,兩車同時出發(fā),設慢車離乙地的距離為y1(km),快車離乙地的距離為y2(km),慢車行駛時間為x(h),兩車之間的距離為S(km),y1,y2與x的函數關系圖象如圖①所示,S與x的函數關系圖象如圖②所示:(1)圖中的a=______,b=______.(2)求快車在行駛的過程中S關于x的函數關系式.(3)直接寫出兩車出發(fā)多長時間相距200km?23.(8分)已知:如圖,在Rt△ABO中,∠B=90°,∠OAB=10°,OA=1.以點O為原點,斜邊OA所在直線為x軸,建立平面直角坐標系,以點P(4,0)為圓心,PA長為半徑畫圓,⊙P與x軸的另一交點為N,點M在⊙P上,且滿足∠MPN=60°.⊙P以每秒1個單位長度的速度沿x軸向左運動,設運動時間為ts,解答下列問題:(發(fā)現)(1)的長度為多少;(2)當t=2s時,求扇形MPN(陰影部分)與Rt△ABO重疊部分的面積.(探究)當⊙P和△ABO的邊所在的直線相切時,求點P的坐標.(拓展)當與Rt△ABO的邊有兩個交點時,請你直接寫出t的取值范圍.24.(10分)如圖,在中,,的垂直平分線交于,交于,射線上,并且.()求證:;()當的大小滿足什么條件時,四邊形是菱形?請回答并證明你的結論.25.(10分)如圖,正方形ABCD中,E,F分別為BC,CD上的點,且AE⊥BF,垂足為G.(1)求證:AE=BF;(2)若BE=,AG=2,求正方形的邊長.26.(12分)如圖,在△ABC中,∠B=∠C=40°,點D、點E分別從點B、點C同時出發(fā),在線段BC上作等速運動,到達C點、B點后運動停止.求證:△ABE≌△ACD;若AB=BE,求∠DAE的度數;拓展:若△ABD的外心在其內部時,求∠BDA的取值范圍.27.(12分)某班為確定參加學校投籃比賽的任選,在A、B兩位投籃高手間進行了6次投籃比賽,每人每次投10個球,將他們每次投中的個數繪制成如圖所示的折線統(tǒng)計圖.(1)根據圖中所給信息填寫下表:投中個數統(tǒng)計平均數中位數眾數A8B77(2)如果這個班只能在A、B之間選派一名學生參賽,從投籃穩(wěn)定性考慮應該選派誰?請你利用學過的統(tǒng)計量對問題進行分析說明.
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、B【解析】
先根據等腰三角形的性質以及三角形內角和定理求出∠CAB=2∠CAD=40°,∠B=∠ACB=(180°-∠CAB)=70°.再利用角平分線定義即可得出∠ACE=∠ACB=35°.【詳解】∵AD是△ABC的中線,AB=AC,∠CAD=20°,∴∠CAB=2∠CAD=40°,∠B=∠ACB=(180°-∠CAB)=70°.∵CE是△ABC的角平分線,∴∠ACE=∠ACB=35°.故選B.【點睛】本題考查了等腰三角形的兩個底角相等的性質,等腰三角形的頂角平分線、底邊上的中線、底邊上的高相互重合的性質,三角形內角和定理以及角平分線定義,求出∠ACB=70°是解題的關鍵.2、C【解析】試題解析:A、根據圖①可得第24天的銷售量為200件,故正確;B、設當0≤t≤20,一件產品的銷售利潤z(單位:元)與時間t(單位:天)的函數關系為z=kx+b,把(0,25),(20,5)代入得:,解得:,∴z=-x+25,當x=10時,y=-10+25=15,故正確;C、當0≤t≤24時,設產品日銷售量y(單位:件)與時間t(單位;天)的函數關系為y=k1t+b1,把(0,100),(24,200)代入得:,解得:,∴y=t+100,當t=12時,y=150,z=-12+25=13,∴第12天的日銷售利潤為;150×13=1950(元),第30天的日銷售利潤為;150×5=750(元),750≠1950,故C錯誤;D、第30天的日銷售利潤為;150×5=750(元),故正確.故選C3、C【解析】
根據“大大小小找不著”可得不等式2+m≥2m-1,即可得出m的取值范圍.【詳解】,由①得:x>2+m,由②得:x<2m﹣1,∵不等式組無解,∴2+m≥2m﹣1,∴m≤3,故選C.【點睛】考查了解不等式組,根據求不等式的無解,遵循“大大小小解不了”原則得出是解題關鍵.4、A【解析】
根據等腰三角形的性質得出∠B=∠CAB,再利用平行線的性質解答即可.【詳解】∵在△ABC中,AC=BC,∴∠B=∠CAB,∵AE∥BD,∠CAE=118°,∴∠B+∠CAB+∠CAE=180°,即2∠B=180°?118°,解得:∠B=31°,故選A.【點睛】此題考查等腰三角形的性質,關鍵是根據等腰三角形的性質得出∠B=∠CAB.5、B【解析】
根據俯視圖是從上往下看得到的圖形解答即可.【詳解】從上往下看得到的圖形是:故選B.【點睛】本題考查三視圖的知識,解決此類圖的關鍵是由三視圖得到相應的立體圖形.從正面看到的圖是正視圖,從上面看到的圖形是俯視圖,從左面看到的圖形是左視圖,能看到的線畫實線,被遮擋的線畫虛線6、B【解析】試題分析:A、y=3x,y隨著x的增大而增大,故此選項錯誤;B、y=﹣3x,y隨著x的增大而減小,正確;C、,每個象限內,y隨著x的增大而減小,故此選項錯誤;D、,每個象限內,y隨著x的增大而增大,故此選項錯誤;故選B.考點:反比例函數的性質;正比例函數的性質.7、B【解析】
先根據圖中是三個等邊三角形可知三角形各內角等于60°,用∠1,∠2,∠3表示出△ABC各角的度數,再根據三角形內角和定理即可得出結論.【詳解】∵圖中是三個等邊三角形,∠3=60°,
∴∠ABC=180°-60°-60°=60°,∠ACB=180°-60°-∠2=120°-∠2,
∠BAC=180°-60°-∠1=120°-∠1,
∵∠ABC+∠ACB+∠BAC=180°,
∴60°+(120°-∠2)+(120°-∠1)=180°,
∴∠1+∠2=120°.
故選B.【點睛】考查的是等邊三角形的性質,熟知等邊三角形各內角均等于60°是解答此題的關鍵.8、D【解析】試題解析:第①個圖形中有盆鮮花,第②個圖形中有盆鮮花,第③個圖形中有盆鮮花,…第n個圖形中的鮮花盆數為則第⑥個圖形中的鮮花盆數為故選C.9、C【解析】
利用“角邊角”證明△APE和△CPF全等,根據全等三角形的可得AE=CF,再根據等腰直角三角形的定義得到△EFP是等腰直角三角形,根據全等三角形的面積相等可得△APE的面積等于△CPF的面積相等,然后求出四邊形AEPF的面積等于△ABC的面積的一半.【詳解】∵AB=AC,∠BAC=90°,點P是BC的中點,∴AP⊥BC,AP=PC,∠EAP=∠C=45°,∴∠APF+∠CPF=90°,∵∠EPF是直角,∴∠APF+∠APE=90°,∴∠APE=∠CPF,在△APE和△CPF中,,∴△APE≌△CPF(ASA),∴AE=CF,故①②正確;∵△AEP≌△CFP,同理可證△APF≌△BPE,∴△EFP是等腰直角三角形,故③錯誤;∵△APE≌△CPF,∴S△APE=S△CPF,∴四邊形AEPF=S△AEP+S△APF=S△CPF+S△BPE=S△ABC.故④正確,故選C.【點睛】本題考查了全等三角形的判定與性質,等腰直角三角形的判定與性質,根據同角的余角相等求出∠APE=∠CPF,從而得到△APE和△CPF全等是解題的關鍵,也是本題的突破點.10、B【解析】
根據二次根式有意義的條件即可求出的范圍.【詳解】由題意可知:,解得:,故選:.【點睛】考查二次根式的意義,解題的關鍵是熟練運用二次根式有意義的條件.11、B【解析】
根據求絕對值的法則,直接計算即可解答.【詳解】,故選:B.【點睛】本題主要考查求絕對值的法則,掌握負數的絕對值等于它的相反數,是解題的關鍵.12、A【解析】
直接利用在A,B兩地間行駛的長途客車平均車速提高了50%,而從A地到B地的時間縮短了1h,利用時間差值得出等式即可.【詳解】解:設原來的平均車速為xkm/h,則根據題意可列方程為:﹣=1.故選A.【點睛】本題主要考查了由實際問題抽象出分式方程,根據題意得出正確等量關系是解題的關鍵.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、﹣2【解析】
要求函數的解析式只要求出B點的坐標就可以,過點A,B作AC⊥x軸,BD⊥x軸,分別于C,D.根據條件得到△ACO∽△ODB,得到:=1,然后用待定系數法即可.【詳解】過點A,B作AC⊥x軸,BD⊥x軸,分別于C,D.設點A的坐標是(m,n),則AC=n,OC=m.∵∠AOB=90°,∴∠AOC+∠BOD=90°.∵∠DBO+∠BOD=90°,∴∠DBO=∠AOC.∵∠BDO=∠ACO=90°,∴△BDO∽△OCA.∴,∵OB=1OA,∴BD=1m,OD=1n.因為點A在反比例函數y=的圖象上,∴mn=1.∵點B在反比例函數y=的圖象上,∴B點的坐標是(-1n,1m).∴k=-1n?1m=-4mn=-2.故答案為-2.【點睛】本題考查了反比例函數圖象上點的坐標特征,相似三角形的判定和性質,利用相似三角形的性質求得點B的坐標(用含n的式子表示)是解題的關鍵.14、2【解析】
連接OC,根據勾股定理計算OP=4,由直角三角形30度的逆定理可得∠OPC=30°,則∠COP=60°,可得△OCB是等邊三角形,從而得結論.【詳解】連接OC,∵PC是⊙O的切線,∴OC⊥PC,∴∠OCP=90°,∵PC=2,OC=2,∴OP===4,∴∠OPC=30°,∴∠COP=60°,∵OC=OB=2,∴△OCB是等邊三角形,∴BC=OB=2,故答案為2【點睛】本題考查切線的性質、等腰三角形的性質、等邊三角形的判定等知識,解題的關鍵是靈活運用所學知識解決問題,屬于中考??碱}型.15、x(9﹣x)【解析】試題解析:故答案為點睛:常見的因式分解的方法:提取公因式法,公式法,十字相乘法.16、【解析】
根據圖形可得每增加一個金魚就增加6根火柴棒即可解答.【詳解】第一個圖中有8根火柴棒組成,第二個圖中有8+6個火柴棒組成,第三個圖中有8+2×6個火柴組成,……∴組成n個系列正方形形的火柴棒的根數是8+6(n-1)=6n+2.故答案為6n+2【點睛】本題考查數字規(guī)律問題,通過歸納與總結,得到其中的規(guī)律是解題關鍵.17、8π.【解析】試題分析:因為AB為切線,P為切點,劣弧AB所對圓心角考點:勾股定理;垂徑定理;弧長公式.18、【解析】分析:根據題意把李明步行和騎車各自所走路程表達出來,再結合步行和騎車所走總里程為2900米,列出方程即可.詳解:設他推車步行的時間為x分鐘,根據題意可得:80x+250(15-x)=2900.故答案為80x+250(15-x)=2900.點睛:弄清本題中的等量關系:李明推車步行的路程+李明騎車行駛的路程=2900是解題的關鍵.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)詳見解析;(2)(等邊對等角),(三角形外角性質),(同位角相等,兩直線平行).【解析】
(1)根據角平分線的尺規(guī)作圖即可得;
(2)分別根據等腰三角形的性質、三角形外角的性質和平行線的判定求解可得.【詳解】解:(1)如圖所示,直線AP即為所求.(2)證明:∵AB=AC,∴∠ABC=∠ACB(等邊對等角),∵∠DAC是△ABC的外角,∴∠DAC=∠ABC+∠ACB(三角形外角性質),∴∠DAC=2∠ABC,∵AP平分∠DAC,∴∠DAC=2∠DAP,∴∠DAP=∠ABC,∴AP∥l(同位角相等,兩直線平行),故答案為(等邊對等角),(三角形外角性質),(同位角相等,兩直線平行).【點睛】本題主要考查作圖能力,解題的關鍵是掌握角平分線的尺規(guī)作圖、等腰三角形的性質、三角形外角的性質和平行線的判定.20、(1)m=8,n=-2;(2)點F的坐標為,【解析】分析:(1)利用三角形的面積公式構建方程求出n,再利用待定系數法求出m的的值即可;(2)分兩種情形分別求解如①圖,當k<0時,設直線y=kx+b與x軸,y軸的交點分別為,.②圖中,當k>0時,設直線y=kx+b與x軸,y軸的交點分別為點,.詳解:(1)如圖②∵點A的坐標為,點C與點A關于原點O對稱,∴點C的坐標為.∵AB⊥x軸于點B,CD⊥x軸于點D,∴B,D兩點的坐標分別為,.∵△ABD的面積為8,,∴.解得.∵函數()的圖象經過點,∴.(2)由(1)得點C的坐標為.①如圖,當時,設直線與x軸,y軸的交點分別為點,.由CD⊥x軸于點D可得CD∥.∴△CD∽△O.∴.∵,∴.∴.∴點的坐標為.②如圖,當時,設直線與x軸,y軸的交點分別為點,.同理可得CD∥,.∵,∴為線段的中點,.∴.∴點的坐標為.綜上所述,點F的坐標為,.點睛:本題考查了反比例函數綜合題、一次函數的應用、三角形的面積公式等知識,解題的關鍵是會用方程的思想思考問題,會用分類討論的思想思考問題,屬于中考壓軸題.21、(1)見解析;(2)62或3【解析】試題分析:(1)根據平行線的性質和中點的性質證明三角形全等,然后根據對角線互相平分的四邊形是平行四邊形完成證明;(2)由等腰三角形的性質,分三種情況:①BD=BC,②BD=CD,③BC=CD,分別求四邊形的面積.試題解析:(1)證明:∵∠A=∠ABC=90°∴AF∥BC∴∠CBE=∠DFE,∠BCE=∠FDE∵E是邊CD的中點∴CE=DE∴△BCE≌△FDE(AAS)∴BE=EF∴四邊形BDFC是平行四邊形(2)若△BCD是等腰三角形①若BD=DC在Rt△ABD中,AB=B∴四邊形BDFC的面積為S=22×3=62②若BD=DC過D作BC的垂線,則垂足為BC得中點,不可能;③若BC=DC過D作DG⊥BC,垂足為G在Rt△CDG中,DG=D∴四邊形BDFC的面積為S=35考點:三角形全等,平行四邊形的判定,勾股定理,四邊形的面積22、(1)a=6,b=;(2);(3)或5h【解析】
(1)根據S與x之間的函數關系式可以得到當位于C點時,兩人之間的距離增加變緩,此時快車到站,指出此時a的值即可,求得a的值后求出兩車相遇時的時間即為b的值;(2)根據函數的圖像可以得到A、B、C、D的點的坐標,利用待定系數法求得函數的解析式即可.(3)分兩車相遇前和兩車相遇后兩種情況討論,當相遇前令s=200即可求得x的值.【詳解】解:(1)由s與x之間的函數的圖像可知:當位于C點時,兩車之間的距離增加變緩,由此可以得到a=6,∵快車每小時行駛100千米,慢車每小時行駛60千米,兩地之間的距離為600,∴;(2)∵從函數的圖象上可以得到A、B、C、D點的坐標分別為:(0,600)、(,0)、(6,360)、(10,600),∴設線段AB所在直線解析式為:S=kx+b,∴解得:k=-160,b=600,設線段BC所在的直線的解析式為:S=kx+b,∴解得:k=160,b=-600,設直線CD的解析式為:S=kx+b,解得:k=60,b=0∴(3)當兩車相遇前相距200km,此時:S=-160x+600=200,解得:,當兩車相遇后相距200km,此時:S=160x-600=200,解得:x=5,∴或5時兩車相距200千米【點睛】本題考查了一次函數的綜合知識,特別是本題中涉及到了分段函數的知識,解題時主要自變量的取值范圍.23、【發(fā)現】(3)的長度為;(2)重疊部分的面積為;【探究】:點P的坐標為;或或;【拓展】t的取值范圍是或,理由見解析.【解析】
發(fā)現:(3)先確定出扇形半徑,進而用弧長公式即可得出結論;(2)先求出PA=3,進而求出PQ,即可用面積公式得出結論;探究:分圓和直線AB和直線OB相切,利用三角函數即可得出結論;拓展:先找出和直角三角形的兩邊有兩個交點時的分界點,即可得出結論.【詳解】[發(fā)現](3)∵P(2,0),∴OP=2.∵OA=3,∴AP=3,∴的長度為.故答案為;(2)設⊙P半徑為r,則有r=2﹣3=3,當t=2時,如圖3,點N與點A重合,∴PA=r=3,設MP與AB相交于點Q.在Rt△ABO中,∵∠OAB=30°,∠MPN=60°.∵∠PQA=90°,∴PQPA,∴AQ=AP×cos30°,∴S重疊部分=S△APQPQ×AQ.即重疊部分的面積為.[探究]①如圖2,當⊙P與直線AB相切于點C時,連接PC,則有PC⊥AB,PC=r=3.∵∠OAB=30°,∴AP=2,∴OP=OA﹣AP=3﹣2=3;∴點P的坐標為(3,0);②如圖3,當⊙P與直線OB相切于點D時,連接PD,則有PD⊥OB,PD=r=3,∴PD∥AB,∴∠OPD=∠OAB=30°,∴cos∠OPD,∴OP,∴點P的坐標為(,0);③如圖2,當⊙P與直線OB相切于點E時,連接PE,則有PE⊥OB,同②可得:OP;∴點P的坐標為(,0);[拓展]t的取值范圍是2<t≤3,2≤t<4,理由:如圖4,當點N運動到與點A重合時,與Rt△ABO的邊有一個公共點,此時t=2;當t>2,直到⊙P運動到與AB相切時,由探究①得:OP=3,∴t3,與Rt△ABO的邊有兩個公共點,∴2<t≤3.如圖6,當⊙P運動到PM與OB重合時,與Rt△ABO的邊有兩個公共點,此時t=2;直到⊙P運動到點N與點O重合時,與Rt△ABO的邊有一個公共點,此時t=4;∴2≤t<4,即:t的取值范圍是2<t≤3,2≤t<4.【點睛】本題是圓的綜合題,主要考查了弧長公式,切線的性質,銳角三角函數,三角形面積公式,作出圖形是解答本題的關鍵.24、(1)見解析;(2)見解析【解析】
(1)求出EF∥AC,根據EF=AC,利用平行四邊形的判定推出四邊形ACEF是平行四邊形即可;(2)求出CE=AB,AC=AB,推出AC=CE,根據菱形的判定推出即可.【詳解】(1)證明:∵∠ACB=90°,DE是BC的垂直平分線,∴∠BDE=∠ACB=90°,∴EF∥AC,∵EF=AC,∴四邊形ACEF是平行四邊形,∴AF=CE;(2)當∠B=30°時,四邊形ACEF是菱形,證明:∵∠B=30°,∠ACB=90°,∴AC=AB,∵DE是BC的垂直平分線,∴BD=DC,∵DE∥AC,∴BE=AE,∵∠ACB=90°,∴CE=AB,∴CE=AC,∵四邊形ACEF是平行四邊形,∴四邊形ACEF是菱形,即當∠B=30°時,四邊形ACEF是菱形.【點睛】本題考查了菱形的判定平行四邊形的判定線段垂直平分線,含30度角的直角三角形性質,直角三角形斜邊上中線性質等知識點的應用綜合性比較強,有一定的難度.25、(1)見解析;(2)正方形的邊長為.【解析】
(1)由正方形的性質得出AB=BC,∠ABC=∠C=90°,∠BAE+∠AEB=90°,由AE⊥BF,得出∠CBF+∠AEB=90°,推出∠BAE=∠CBF,由ASA證得△ABE≌△BCF即可得出結論;(2)證出∠BGE=∠ABE=90°,∠BEG=∠AEB,得出△BGE∽△ABE,得出BE2=EG?AE,設EG=x,則AE=AG+EG=2+x,代入求出x,求得AE=3,由勾股定理即可得出結果.【詳解】(1)證明:∵四邊形ABCD是正方形,∴AB=BC,∠ABC=∠C=90°,∴∠BAE+∠AEB=90°,∵AE⊥BF,垂足為G,∴∠CBF+∠AEB=90°,∴∠BAE=∠CBF,在△ABE與△BCF中,,∴△ABE≌△BCF(ASA),∴AE=BF;(2)解:∵四邊形ABCD為正方形,∴∠AB
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025中國電信招聘會高頻重點提升(共500題)附帶答案詳解
- 2025中國農科院農業(yè)資源與農業(yè)區(qū)劃所植物內生微生物組學方向博士后公開招聘3人高頻重點提升(共500題)附帶答案詳解
- 2025下半年安徽蚌埠市固鎮(zhèn)縣事業(yè)單位招聘崗位歷年高頻重點提升(共500題)附帶答案詳解
- 2025下半年四川遂寧事業(yè)單位招聘工作人員311人高頻重點提升(共500題)附帶答案詳解
- 2025下半年四川省資陽安岳縣事業(yè)單位招聘227人筆試高頻重點提升(共500題)附帶答案詳解
- 2025下半年四川廣安市事業(yè)單位招聘108人高頻重點提升(共500題)附帶答案詳解
- 2025下半年四川涼山冕寧縣招聘事業(yè)單位工作人員80人高頻重點提升(共500題)附帶答案詳解
- 2025上海崇明工程質量檢測限公司招聘5人高頻重點提升(共500題)附帶答案詳解
- 2025上半年江蘇連云港市東??h招聘事業(yè)單位人員26人歷年高頻重點提升(共500題)附帶答案詳解
- 2025上半年江蘇南通海安市部分事業(yè)單位選調工作人員12人歷年高頻重點提升(共500題)附帶答案詳解
- 2024年重慶空港貴賓服務限公司社會招聘20人公開引進高層次人才和急需緊缺人才筆試參考題庫(共500題)答案詳解版
- 電場知識點講解例題
- 《2023版CSCO前列腺癌診療指南》解讀課件
- 術后低氧血癥的常見原因及對策
- YYT 1843-2022 醫(yī)用電氣設備網絡安全基本要求
- 管道溝槽土方開挖施工方案
- 2024年保育員(初級)證考試題庫及答案
- 計算機通信網智慧樹知到期末考試答案2024年
- 光伏電站安全管理及運行制度
- 兒童保健服務內容與流程
- 幼兒園幼兒食品安全培訓
評論
0/150
提交評論